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Lecture 1: Examples and definition

Motivated by applications to probability, volume and integration, we want to assign a value from [0,∞] to
subsets of X. Some basic properties we’d like to insist upon are:

1. µ(∅) = 0

2. If A1, A2, . . . are disjoint, then µ(
⋃
iAi) =

∑
i µ(Ai) (countable additivity)

Before we give the full definition of a measure let’s note some examples.

Examples 1. (a) X = {0, 1}n, µ : P (X)→ [0,∞), µ(A) = |A|/2n. (We’ll later extend to X = {0, 1}N.)

(b) (counting measure) µ(A) =

{
|A| A finite

∞ otherwise

(c) (Vitali set) Suppose that X = R and that (in addition to the above) µ also satisfies:

µ({a}) = 0 µ((a, b)) = b− a µ(A+ x) = µ(A) (translation invariance)

We show that it is impossible to have such a function that is defined on the whole of P (X), by showing
that there exists V ⊂ [0, 1] whose measure can be neither zero nor non-zero.

Define an equivalence relation on [0, 1] by x ∼ y iff (x − y) ∈ Q. Let V be such that it contains exactly
one element from each equivalence class (this needs the axiom of choice). If µ were defined on all subsets
of R, then what should µ(V ) be equal to? Note that

[0, 1] ⊂
⋃

q∈Q∩[−1,1]

(V + q) ⊂ [−1, 2] =⇒ µ([0, 1]) 6 µ(
⋃

q∈Q∩[−1,1]

(V + q)) 6 µ([−1, 2])

=⇒ 1 6
∑

q∈Q∩[−1,1]

µ(V + q) 6 3

=⇒ 1 6
∑

q∈Q∩[−1,1]

µ(V ) 6 3

We get a contradiction to the first inequality if µ(V ) = 0 and a contradiction to the second if µ(V ) > 0.

(d) Another notable example showing that not all subsets of R3 are (Lebesgue) measurable is provided by the
Banach-Tarski Theorem: Let S denote the unit sphere in R3. There exists a partition S = A1tA2 · · ·tAn
and elements gi ∈ SO(3) (i.e., rotations) and k < n such that:

S = g1A1 t · · · t gkAk and S = gk+1Ak+1 t · · · t gnAn

(e) (Cantor Ternary Set) Define sets Ci ⊂ [0, 1] recursively as follows:

C1 = [0,
1

3
] ∪ [

1

3
, 1]

C2 = [0,
1

9
] ∪ [

2

9
,

1

3
] ∪ [

2

3
,

7

9
] ∪ [

8

9
, 1]

Ci+1 =
1

3
Ci ∪ (

1

3
Ci +

2

3
)

Then define C =
⋂
i Ci.

The Lebesque measure of Ci satisfies m(Ci+1) = 2
3m(Ci) and it follows that m(C) = 0. (We will shortly

be defining Lebesgue measure, but for the moment this hopefully seems reasonable.) Any subset B ⊂ C
must also have measure zero. Since C has the same cardinality as R, there are many such subsets. They
are all Lebesgue measurable.

We’ve seen that we can’t expect to have a measure that is defined on all subsets. What classes of sets is it
reasonable to define a measure on?

1
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Definition 2. Let X be a non-empty set. An algebra on X is a non-empty subset A ⊂ P (X) that is closed
under taking complements and finite unions:

A ∈ A =⇒ X \A ∈ A, A,B ∈ A =⇒ A ∪B ∈ A

A σ-algebra is an algebra that is closed under countable unions:

{Ai}i∈N ⊂ A =⇒
⋃
i∈N

Ai ∈ A

Examples 3. 1) P (X) is a σ-algebra. {∅, X} is a σ-algebra.

2) A = {A ⊂ X | A is countable or X \A is countable} is a σ-algebra.

3) A0 = {A ⊂ R | A = A1 t A2 t · · · t An, n ∈ N, Ai = (ai, bi] or Ai = (ai, bi]
c} is an algebra (on R). A0 is

the algebra generated by {(a, b] | a < b}. It is not a σ-algebra since ∪i(−1,−1/i] = (−1, 0) /∈ A0.

4) Let X be a topological space. The Borel σ-algebra is the σ-algebra generated by the open sets. This
includes all open sets, closed sets, Fσ-sets (e.g., Q ⊂ R), Gδ-sets, etc.

Definition 4. A measure space is a triple (X,A, µ) of a (non-empty) set X, a σ-algebra on X and a function
µ : A → [0,∞] satisfying

1) µ(∅) = 0

2) If {Ai}i∈N ⊂ A is a disjoint family, then µ(
⋃
iAi) =

∑
i µ(Ai)

The measure µ is called finite if µ(X) <∞. It is called σ-finite if there exist Ai ∈ A such that µ(Ai) <∞ and
X =

∑
i∈NAi. A set A ∈ A is called null if µ(A) = 0. The measure µ is called complete if every subset of a

null set is in A.

Example 5. X an uncountable set, A the countable or co-countable subsets, µ(A) = 0 if A countable and
µ(A) = 1 otherwise.

Exercises

Exercise 1. A family of sets R ⊂ P(X) is called a ring if it is closed under finite unions and differences (i.e.,
if A,B ∈ R, then A ∪B ∈ R and A \B ∈ R). A ring that is closed under countable unions is called a σ-ring.

Show that:

a) Rings (resp. σ-rings) are closed under finite (resp. countable) intersections.

b) A ring (resp. σ-ring) R is an algebra (resp. σ-algebra) iff X ∈ R.

c) If R is a σ-ring, then {A ⊂ X | A ∈ R or Ac ∈ R} is a σ-algebra.

d) If R is a σ-ring, then {A ⊂ X | A ∩B ∈ R for all B ∈ R} is a σ-algebra.

Exercise 2. Let A be an infinite σ-algebra. Show that:

a) A contains an infinite sequence of disjoint sets.

b) |A| > 2ℵ0

Exercise 3. Given K ⊂ P(X), the σ-algebra generated by K is defined to be the intersection of all σ-algebras
on X that contain K. Show that the σ-algebra generated by K, is the union of the σ-algebras generated by L
as L ranges over all countable subsets of K.

Exercise 4. Let µ and ν be measures on (X,A) and a, b ∈ [0,∞). Show that aµ+ bν is a measure on (X,A).

Exercise 5. If (X,A, µ) is a measure space and A,B ∈ A. Show that µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B).

Exercise 6. Let (X,A, µ) be a measure space. Show that:

1. If A,B ∈ A and µ(A∆B) = 0, then µ(A) = µ(B). (A∆B denotes the symmetric difference of A and B)

2. Show that A ∼ B iff µ(A∆B) = 0 defines an equivalence relation on A

3. For A,B ∈ A define d(A,B) = µ(A∆B). Show that d is a metric on A/ ∼

2
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Lecture 2: Premeasures and outer measures

Lemma 6. Let (X,A, µ) be a measure space. Let A,B ∈ A and {Ai}i∈N ⊂ A.

1) A ⊂ B =⇒ µ(A) 6 µ(B) (monotonicity)

2) µ(
⋃
iAi) 6

∑
i µ(Ai) (subadditivity)

3) If Ai ⊂ Ai+1 for all i, then µ(
⋃
Ai) = limi µ(Ai) (continuity from below)

4) If Ai ⊃ Ai+1 for all i and µ(Ai) <∞ for some i, then µ(
⋂
Ai) = limi µ(Ai) (continuity from above)

Proof. The first two parts are left as an exercise. For the third (setting A0 = ∅),

µ(
⋃
i

Ai) = µ(
⋃
i

(Ai \Ai−1)) =
∑
i∈N

µ(Ai \Ai−1) (countable additivity)

= lim
n→∞

n∑
i=1

µ(Ai \Ai−1) = lim
n→∞

µ(An)

For the fourth part, we can assume that µ(A1) <∞. Define Bi = A1 \Ai. Then Bi ⊂ Bi+1 and

µ(A1)− µ(
⋂
i

Ai) = µ(A1 \
⋂
i

Ai) = µ(
⋃
i

Bi) = lim
i
µ(Bi) (by 3)

= lim
i
µ(A1 \Ai) = lim

i
(µ(A1)− µ(Ai)) = µ(A1)− lim

i
(µ(Ai))

Lemma 7 (Completion Lemma). Let (X,A, µ) be a measure space and let Ā = {A ∪ B | A ∈ A, B ⊂ N for
some null N ∈ A}. Then Ā is a σ-algebra and there is a unique extension of µ to a complete measure on Ā.

Proof. Exercise.

We want to mimic the way in which areas in R2 can be estimated/defined using grids to construct measures on
an arbitrary set. More precisely, given a premeasure we contruct an outer measure and then a measure. After
giving a general construction, we will use it to define Lebesgue measure on R.

Definition 8. Let A0 be an algebra on X. A premeasure is a function µ0 : A0 → [0,∞] that satisfies

1) µ0(∅) = 0

2) If {Ai}i∈N is a disjoint collection of elements of A0 and ∪iAi ∈ A0, then µ0(∪iAi) =
∑
i µ0(Ai)

(countably additive on its domain)

The second condition says, vaguely, that there is no immediate obstruction to extending µ0 (and A0) to a
measure.

Example 9. Consider the algebra of Example 3.3. The function µ0 : A0 → [0,∞] given by

µ0(∪i(ai, bi]) =
∑
i

bi − ai µ0((−∞, b]) =∞ µ0((a,∞)) =∞ µ0(∅) = 0

is a premeasure.

Definition 10. An outer measure on a (non-empty) set X is a function λ : P (X)→ [0,∞] that satisfies

1) λ(∅) = 0

2) A ⊂ B =⇒ λ(A) 6 λ(B) (monotonicity)

3) λ(∪iAi) 6
∑
i λ(Ai) (countable subadditivity)

3
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Exercises

Exercise 7. Let λ be an outer measure on X and (An)n∈N a disjoint sequence of λ-measurable sets. Show that
λ(B ∩ (∪n∈NAn)) =

∑
n∈N λ(B ∩An) for any B ⊂ X.

Exercise 8. Let µ be a finite measure on (X,A), and let λ be the outer measure on X induced by µ. Suppose
that A ⊂ X satisfies λ(A) = λ(X). Show that:

1. If B,C ∈ A and A ∩B = A ∩ C, then µ(B) = µ(C).

2. Let AA = {A ∩ B | B ∈ A} and define a function ν on AA by ν(A ∩ B) = µ(B). Show that AA is a
σ-algebra on A and ν is a measure on AA.

4
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Lecture 3: Constructing measures

To obtain an outer measure we can start with a class of sets on which some notion of size/measure has been
fixed (e.g., intervals in R) and then approximate arbitrary subsets by countable unions. The following lemma
makes this precise.

Lemma 11. Let K ⊂ P (X) and ρ : K → [0,∞] be such that ∅ ∈ K, X ∈ K and ρ(∅) = 0. Define λ : P (X) →
[0,∞] by

λ(A) = inf{
∑
i∈N

ρ(Ki) | Ki ∈ K, A ⊂ ∪iKi}

Then λ is an outer measure on X.

Proof. It’s clear that λ(∅) = 0. Monotonicity is also immediate from the definition of λ. To establish countable
subadditivity, let {Ai}i ⊂ P (X) and let ε > 0. For each i there is a sequence {Aij} ⊂ K such that Ai ⊂ ∪jAij
and

∑
j ρ(Aij) < λ(Ai) + 2−iε. Then

∪iAi ⊂ ∪i ∪j Aij =⇒ λ(∪iAi) 6
∑
i,j

ρ(Ai,j) 6
∑
i

(λ(Ai) + 2−iε) = ε+
∑
i

λ(Ai)

Since this holds for any ε > 0 we must have λ(∪iAi) 6
∑
i λ(Ai).

Definition 12. Let λ be an outer measure on X. A subset A ⊂ X is called λ-measurable if the following holds
for all B ⊂ X:

λ(B) = λ(B ∩A) + λ(B ∩Ac)

Note that we always have λ(B) 6 λ(B∩A) +λ(B∩Ac) by subadditivity. If λ(B) =∞, then the above equality
holds (for any A).

Lemma 13. Let µ0 be a premeasure on an algebra A0. Let λ : P (X)→ [0,∞] be the outer measure defined in
Lemma 11 (with K = A0). Then λ|A0 = µ0 and every element of A0 is λ-measurable.

Proof. It’s immediate from the construction of λ that λ(A) 6 µ0(A) for all A ∈ A0. To establish the reverse
inequality, suppose that A ⊂ ∪iAi with Ai ∈ A0. We want to show that µ0(A) 6

∑
i µ0(Ai). Let Bi =

Ai \ ∪j<iAj . Then the Bi are disjoint, ∪iBi = ∪iAi and

µ0(A) = µ0(A ∩ ∪iBi) = µ0(∪i(A ∩Bi)) =
∑
i

µ0(A ∩Bi) (since µ0 is a premeasure)

6
∑
i

µ0(Ai) (since A ∩Bi ⊂ Bi ⊂ Ai)

To establish the second claim fix A ∈ A0 and B ⊂ X. We need to show that λ(B) > λ(B ∩ A) + λ(B ∩ Ac).
Suppose B ⊂ ∪iBi for some Bi ∈ A0.Then

λ(B ∩A) + λ(B ∩Ac) 6 λ(∪i(Bi ∩A)) + λ(∪i(Bi ∩Ac)) (monotonicity)

6
∑
i

λ(Bi ∩A) +
∑
i

λ(Bi ∩Ac) (subadditivity)

=
∑
i

µ0(Bi ∩A) +
∑
i

µ0(Bi ∩Ac) (first part of current result)

=
∑
i

µ0(Bi ∩A) + µ0(Bi ∩Ac)

=
∑
i

µ0(Bi) (µ0 is additive on its domain)

Since this inequality holds for any cover B ⊂ ∪iBi, we conclude that λ(B ∩A) + λ(B ∩Ac) 6 λ(B).

5
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Lecture 4: Carathéodory’s Extension Theorem

Proposition 14. Let λ be an outer measure on X and A ⊂ P (X) the collection of all λ-measurable sets. Then
A is a σ-algebra and λ restricted to A is a complete measure.

Proof. That A is closed under complementation is clear from the definition of λ-measurable (it’s symmetric in
A and Ac). To show that A is closed under finite unions, let A1, A2 ∈ A and B ⊂ X.

λ(B) = λ(B ∩A1) + λ(B ∩Ac1)

= λ((B ∩A1) ∩A2) + λ((B ∩A1) ∩Ac2) + λ((B ∩Ac1) ∩A2) + λ((B ∩Ac1) ∩Ac2)

> λ(B ∩ (A1 ∪A2)) + λ(B ∩ (A1 ∪A2)c) (subadditivity)

since

B ∩ (A1 ∪A2) = (B ∩A1 ∩A2) ∪ (B ∩A1 ∩Ac2) ∪ (B ∩Ac1 ∩A2)

Therefore A1 ∪A2 ∈ A and A is closed under finite unions (A is an algebra).

Also, for disjoint A1, A2 ∈ A we have

λ(A1 ∪A2) = λ((A1 ∪A2) ∩A1) + λ((A1 ∪A2) ∩Ac1) = λ(A1) + λ(A2)

That is, λ is finitely additive on A.

Now to establish that A is closed under countable disjoint unions. Let {Ai}i∈N ⊂ A be a disjoint family of sets.
Define A = ∪iAi and let B ⊂ X and n ∈ N. Then

λ(B ∩A) > λ(B ∩ (∪i6nAi)) (monotonicity)

= λ(∪i6n(B ∩Ai))

=
∑
i6n

λ(B ∩Ai) (Ai ∈ A and are disjoint)

On the other hand

λ(B ∩A) = λ(∪i(B ∩Ai))

6
∑
i

λ(B ∩Ai) (subadditivity)

Therefore

λ(B ∩A) =
∑
i

λ(B ∩Ai) (∗)

Since ∪i6nAi ∈ A we have

λ(B) = λ(B ∩ (∪i6nAi)) + λ(B ∩ (∪i6nAi)c)
> λ(B ∩ (∪i6nAi)) + λ(B ∩Ac) (monotonicity)

=
∑
i6n

λ(B ∩Ai) + λ(B ∩Ac)

−−−−→
n→∞

∑
i∈N

λ(B ∩Ai) + λ(B ∩Ac)

= λ(B ∩A) + λ(B ∩Ac) (by (∗) above)

Therefore A is closed under countable disjoint unions.

Putting B = X in (∗), we get that λ is countably additive on A: λ(∪iAi) =
∑
i λ(Ai).

If the sets {Ai}i are not necessarily disjoint, we still have

∪iAi = ∪i(Ai \ ∪j<iAj) ∈ A

6
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All that remains is to show that λ|A is complete. Suppose A ∈ A is null, that is, λ(A) = 0 and let C ⊂ A. We
need to show that C ∈ A. For any B ⊂ X we have

λ(B) 6 λ(B ∩ C) + λ(B ∩ Cc) (subadditivity of λ)

= 0 + λ(B ∩ Cc) (monotonicity of λ, noting that B ∩ C ⊂ A)

6 λ(B) (monotonicity of λ)

Theorem 15 (Carathéodory’s Extension Theorem). Let µ0 be a premeasure on an algebra A0. Let A be the
σ-algebra generated by A0. Then there is a measure µ on A such that

1) µ extends µ0;

2) If ν is any measure on A that extends µ0, then ν(A) 6 µ(A) for all A ∈ A with equality if µ(A) <∞;

3) If µ0 is σ-finite, then µ is the unique extension of µ0 to A.

Proof. Let λ be the outer measure obtained from µ0 as in Lemma 11 and letM be the collection of λ-measureable
sets. From Proposition 14 we know thatM is a σ-algebra and that λ|M is a complete measure. From Lemma 13
we have that A0 ⊂ M and λ|A0 = µ0. Since A0 ⊂ M and M is a σ-algabra, we have A0 ⊂ A ⊂M. Defining
µ = λ|A we have a measure on A with µ|A0 = λ|A0 = µ0.

To establish the second part, suppose that ν is any measure on A with ν|A0 = µ0. Let A ∈ A and Ai ∈ A0

such that A ⊂ ∪iAi. Then

ν(A) 6 ν(∪iAi) 6
∑
i

ν(Ai) =
∑
i

µ0(Ai)

and it follows that ν(A) 6 λ(A) = µ(A). Also,

ν(∪iAi) = lim
n
ν(∪ni=1Ai) (continuity from below)

= lim
n
µ(∪ni=1Ai) (since ∪ni=1Ai ∈ A0 )

= µ(∪iAi)

Suppose that µ(A) <∞. Fix ε > 0 and choose the Ai ∈ A0 such that µ(∪iAi) < µ(A) + ε. Then

µ(A) 6 µ(∪iAi) = ν(∪iAi) = ν(A) + ν((∪iAi) \A) 6 ν(A) + µ((∪iAi) \A) 6 ν(A) + ε

Therefore, µ(A) <∞ implies that µ(A) 6 ν(A).

Suppose, for the third claim, that µ0 is σ-finite. That is, that there exist disjoint Ai ∈ A0 with X = ∪iAi and
µ0(Ai) <∞. Then, for any A ∈ A we have

ν(A) = ν(A ∩ ∪iAi) = ν(∪i(A ∩Ai)) =
∑
i

ν(A ∩Ai) =
∑
i

µ(A ∩Ai) = µ(A)

since µ(A ∩Ai) 6 µ(Ai) = µ0(Ai) <∞.

7
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Lecture 5: Borel measures on R

Before looking at measures on R, let’s note the following example as an application of the Extension Theorem.

Example 16. Let X = {0, 1}N and consider the elements of X as infinite words on the alphabet {0, 1}. For
each w ∈ {0, 1}<N let Aw = {x ∈ X | w is a prefix of u}. Define µ0(Aw) = 2−`(w), where `(w) is the length of
the word w. For example, µ0(X) = 1 and µ0(A0) = µ0(A1) = 1/2, Define A0 to be the set of all finite unions
of sets of the form Aw. Then A0 is an algebra and µ0 extends to a σ-finite premeasure on A0. By the above
theorem, this extends (uniquely) to a measure on the σ-algebra generated by A0. For example, µ({x}) = 0 and
µ(∪iA10i1) = 1/4.

We now apply the Carathéodory Extension Theorem to obtain Lebesgue measure on R. Let BR ⊂ P (R) denote
the Borel σ-algebra, that is, BR is generated by the open subset of R. We want to consider the possible measure
spaces (R,BR, µ). A slight generalisation of the usual construction of Lebesgue measure will give all such
measures (having the property that bounded intervals have finite measure).

Let A0 ⊂ P (R) be the algebra generated by the collection of all ‘fingernail’ intervals: S = {(a, b] | a, b ∈ R, a <
b}.

Exercise 9. Every element of A0 can be written as a finite disjoint union of the form A1 t · · · t An, where
Ai ∈ S for i < n and either An ∈ S or Acn ∈ S.

Exercise 10. The σ-algebra generated by A0 is exactly BR.

Lemma 17. Let F : R→ R be an increasing, right-continuous function. Define µ0 : A0 → [0,∞] by

µ0(∪ni=1(ai, bi]) =
∑
i

F (bi)− F (ai)

where the intervals (ai, bi] are disjoint. Then µ0 is a premeasure on A0.

Proof. It’s an exercise to check that µ0 is well-defined and finitely additive. It remains to show that if {Ai}i ⊂ A0

is a disjoint family and ∪iAi ∈ A0, then µ0(∪iAi) =
∑
i µ(Ai). There is no lose in generality in assuming that

Ai = (ai, bi] and A ∈ S (see exercise before this result). Suppose that A = (a, b] for some a, b ∈ R. We need to
show that

∑
i µ0((ai, bi]) = µ0((a, b]). We have

µ0((a, b]) = µ0(∪i(ai, bi]))
= µ0(∪i6n(ai, bi]) + µ0((a, b] \ ∪i6n(ai, bi])

>
∑
i6n

µ0((ai, bi])

Since this holds for all n, we conclude that

µ0((a, b]) >
∑
i

µ0((ai, bi])

For the reverse inequality we will use a compactness argument. Fix ε > 0. Since F is right continuous, for all i
there is a δi > 0 such that F (bi + δi) − F (bi) < ε2−i and a δ > 0 such that F (a + δ) − F (a) < ε. Noting that
[a+ δ, b] is compact and contained in ∪i(ai, bi + δi), there is a finite subcover. Relabelling if necessary, we can
assume that ai+1 < bi + δi < ai+2.

a1 b1 + δ1

a2 b2 + δ2

a3 bn−1 + δn−1

an bn + δn

a+ δ b

8
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Then ∑
i

µ0((ai, bi]) >
∑
i6n

µ0((ai, bi]) =
∑
i6n

F (bi)− F (ai)

>
∑
i6n

F (bi + δi)− ε2−i − F (ai)

> (
∑
i6n

F (bi + δi)− F (ai))− ε

= F (b1 + δ1)− F (a1) + (
∑

26i6n−1

F (bi + δi)− F (ai)) + F (bn + δn)− F (an)− ε

> F (b1 + δ1)− F (a+ δ) + (
∑

26i6n−1

F (bi + δi)− F (ai)) + F (b)− F (an)− ε

> F (b1 + δ1)− F (a)− ε+ (
∑

26i6n−1

F (bi + δi)− F (ai)) + F (b)− F (an)− ε

= F (b)− F (a)− 2ε+ F (b1 + δ1) + (
∑

26i6n−1

−F (ai) + F (bi + δi))− F (an)

= F (b)− F (a)− 2ε+ (
∑

16i6n−1

F (bi + δi)− F (ai+1))

> F (b)− F (a)− 2ε

Since this holds for all ε, we have
∑
i µ0((ai, bi]) > F (b)− F (a).

Exercise 11. Finish the proof by considering the case in which A = (a, b]c.

We now show that every Borel measure on R (such that intervals have finite measure) can be constructed using
an appropriate function F .

Theorem 18. Let F be as above.

1) There exists a unique Borel measure µF : BR → [0,∞] satisfying µF (a, b] = F (b)− F (a).

2) For two such functions F and G, µF = µG iff F −G is a constant.

3) Suppose that µ : BR → [0,∞] is a measure satisfying µ(a, b] < ∞ for all a < b ∈ R. Then µ = µF for
some (increasing, right continuous) function F : R→ R.

Proof. The preceding result gives a premeasure µ0 on A0, which then, by the Extension Theorem, extends
uniquely to a measure µF : BR → [0,∞]. The second part is left as an exercise.

For the third part, define F : R→ R by

F (x) =

{
µ(0, x] x > 0

−µ(x, 0] x < 0

Then F is increasing since µ is monotone. That F is right continuous follows from the fact that µ is continuous
from below (for the case x < 0) and continuous from above (for x > 0).

Given such a measure µF we can consider its extension to a complete measure µ :Mµ → [0,∞]. Such measure
are called Lebesgue-Stieltjes measures.

9
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Lecture 6: Properties of Lebesgue measure. Measurable functions

Exercise 12. Show that for any A ∈Mµ we have µ(A) = inf{
∑
i µ(ai, bi) | A ⊂ ∪i(ai, bi)}.

Proposition 19. For all A ∈Mµ the following hold:

1) µ(A) = inf{µ(V ) | V ⊃ A, V open} (outer regularity)

2) µ(A) = sup{µ(K) | K ⊂ A,K compact} (inner regularity)

Proof. The first follows from the exercise above. For the second part, suppose first that A is bounded. Let
ε > 0. There is an open V such that V ⊃ Ā \A and µ(V ) 6 µ(Ā \A) + ε. Let K = Ā \ V . Then K is compact
(being closed and bounded), K ⊂ A and

µ(K) = µ(A)− µ(A ∩ V ) (since A = (A ∩K) ∪ (A ∩Kc) = K ∪ (A ∩ V ))

= µ(A)− (µ(V )− µ(V \A))

> µ(A)− µ(V ) + µ(Ā \A)

> µ(A)− ε

It remains to consider the case in which A is unbounded. For i ∈ N let Ai = A ∩ [−i, i] and let Ki ⊂ Ai be
compact with µ(Ki) > µ(Ai)− 2−i. Then

lim
i
µ(Ki) 6 µ(A) = lim

i
µ(Ai) 6 lim

i
(µ(Ki) + 2−i) = lim

i
µ(Ki)

Exercise 13. Let µ :Mµ → [0,∞] be a Lebesgue-Stieljes measure. Show that the following are equivalent for
A ⊂ R.

a) A ∈Mµ

b) A = V \N for some Gδ set V and null set N

c) A = C ∪N for some Fσ set C and null set N

In the case in which F is the identity function, the resulting complete measure is called Lebesgue measure.
We’ll denote it by m : L → [0,∞]. Note that BR ( L.

Proposition 20. For all A ∈ L and x ∈ R the following hold:

1) m(A+ x) = m(A)

2) m(xA) = |x|m(A)

Exercise 14. Prove the above proposition.

Measurable functions

We now turn to integration. Our first step is to define the class of functions with which we will be able to work.

Definition 21. Let A be a σ-algebra on a set X and B a σ-algebra on a set Y . A function f : X → Y is called
(A,B)-measurable if f−1(B) ∈ A for all B ∈ B.

In the case in which (Y,B) = (R,BR) we will say A-measurable in place of (A,B)-measurable. We will often
be concerned with the case (X,A) = (R,L) and (Y,B) = (R,BR) in which case we’ll usually say Lebesgue
measurable in place of (A,B)-measurable.

Example 22. Let B be a subset of X. Then 1B is A-measurable if and only if B ∈ A.

Exercise 15. Let f : X → R be a function.

a) Show that if f is A-measurable and A ∈ A, then the restriction f |A is A-measurable.

10
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b) Let {Ai}i ⊂ A with ∪iAi = X. Show that if the restrictions f |Ai are all A-measurable, then f is
A-measurable.

Exercise 16. Let X, Y be topological spaces and BX , BY the respective Borel σ-algebras. Show that any
continuous function f : X → Y is (BX ,BY )-measurable.

Exercise 17. a) Let ψ : R2 → R be given by ψ(x, y) = xy. Show that ψ is (BR2 ,BR)-measurable.

b) Let ξ : R2 → R be given by ξ(x, y) = x+ y. Show that ξ is (BR2 ,BR)-measurable.

c) Let A be a σ-algebra on a set X. Suppose the f : X → R and g : X → R are A-measurable. Show that
f + g and fg are A-measurable. Hint: Define ϕ : X → R2 by ϕ(x) = (f(x), g(x)) and show that ϕ is
(A,BR2)-measurable.

Lemma 23. Let A be a σ-algebra on a set X. Let (fi)i∈N be a sequence of A-measurable functions fi : X → R̄.
Then the following functions are A-measurable:

min{fi, f2} max{f1, f2} sup fi inf fi lim sup fi lim inf fi

Proof. Let s : X → R̄ be given by s(x) = supi fi(x). Then

s−1(a,∞] = ∪∞1 f−1
i (a,∞] ∈ A since f−1(a,∞] ∈ A

Since BR̄ is generated by {(a,∞] | a ∈ R}, it follows that s is A-measurable.

Let l : X → R̄ be given by l(x) = lim supi fi(x). Then

l−1(a,∞] = ∩n∈N ∪i>n f−1
i (a,∞] ∈ A

and l is A-measurable.

Exercise 18. Finish of the remaining cases.

Exercise 19. Show that the supremum of an uncountable family of Borel measurable functions {fi : R→ R |
i ∈ I} can fail to be Borel measurable.

11



lecture notes on measure theory lawrence reeves

Lecture 7: Measurable functions and integration

Definition 24. A function h : X → R is simple if it is a linear combination of characteristic functions of
elements of A. That is,

h =

n∑
i=1

ai1Ai

for some n ∈ N, ai ∈ R, Ai ∈ A.

Exercise 20. A function h : X → R is simple iff h is A-measurable and finite-valued (i.e., |h(X)| <∞).

Note that if h is simple, we can assume that the sets Ai are disjoint since h =
∑
a∈h(X) a1h−1(a).

Lemma 25. Let f : X → R̄ be A-measurable and suppose f > 0. There exists a sequence of simple functions
(hi)i∈N such that

1) 0 6 hi 6 hi+1 6 f

2) hi(x)→ f(x) for all x ∈ X

3) hi → f uniformly on any set on which f is bounded.

Proof. For i ∈ N subdivide the interval [0, 2i] into disjoint fingernail intervals of length 2−i.

Let the subintervals be Iij = (aij , bij ] and define Aij = f−1(Iij) ∈ A and Ai,∞ = f−1(2i,∞) ∈ A. Setting

hi =

22i∑
j=1

aij1Aij + 2i1Ai,∞

gives the desired sequence.

Let (X,A, µ) be a measure space. A property (of points in X) is said to hold almost everywhere if there exists
N ∈ A with µ(N) = 0 and such that the property holds on X \N .

Exercise 21. Give an example of two function f, g : R → R that agree on a dense subset of R, but for which
f(x) 6= g(x) almost everywhere on X (with respect to Lebesgue measure on R.)

Proposition 26. Let (X,A, µ) be a measure space and let Ā be the completion of A (with respect to µ). Then
a function f : X → R̄ is Ā-measurable if and only if there are A-measurable functions f0, f1 : X → R̄ such that

1) f0 6 f 6 f1 holds everywhere on X, and

2) f0 = f1 holds µ-almost everywhere on X.

Proof. Suppose first that such f0 and f1 exist and let N ∈ A be such that f0 = f1 = f on X \N . Then for any
B ∈ BR

f−1(B) = (f−1
0 (B) ∩N c) ∪ (f−1(B) ∩N) ∈ Ā

For the converse, suppose first that f is simple and that f > 0, that is, f =
∑k
i=1 ai1Ai for some ai > 0 and

Ai ∈ Ā. Since Ai ∈ Ā, there exist Ai,0, Ai,1 ∈ A such that Ai,0 ⊂ Ai ⊂ Ai,1 and µ(Di \ Ci) = 0. The functions

f0 =
∑k
i=1 ai1Ai,0 and f1 =

∑k
i=1 ai1Ai,1 satisfy the two conditions above.

Suppose now that f : X → R is Ā-measurable and that f > 0. By proceeding lemma, there exists a sequence
(hi)i of positive simple functions such that f(x) = limi hi(x) for all x ∈ X. We have already seen that for each
hi there exist A-measurable functions hi,0 and hi,1 such that hi,0 6 hi 6 hi,1 for all x ∈ X and hi,0 = hi,1
µ-almost everywhere. Take f0 = lim supi hi,0 and f1 = lim infi hi,1.

If f is measurable but not necessarily positive, we can apply the above argument to the two functions f+ =
max(f, 0) and f− = min(f, 0).

12



lecture notes on measure theory lawrence reeves

Integration

We define the integral first for simple positive functions and then extend to measurable positive functions and
then to arbitrary measurable functions.

Given a measure space (X,A, µ) and a simple function h : X → R with h =
∑k
i=1 ai1Ai for some ai > 0 and

disjoint Ai ∈ A, the integral of h with respect to µ is defined to be∫
h dµ =

k∑
i=1

aiµ(Ai) ∈ [0,∞]

For A ∈ A define
∫
A
h dµ =

∫
h1A dµ.

Exercise 22. Let h, g : X → R be positive simple functions and let c ∈ [0,∞]. Show that

1)
∫
ch dµ = c

∫
h dµ

2)
∫
h+ g dµ =

∫
h dµ+

∫
g dµ

3) h 6 g =⇒
∫
h dµ 6

∫
g dµ

4) A 7→
∫
A
h dµ determines a measure on A

Now for a positive measurable function f : X → R̄ define∫
f dµ = sup

{∫
h dµ | h simple, 0 6 h 6 f

}
Exercise 23. Let f, g be positive measurable functions and c > 0. Show that

1) f 6 g =⇒
∫
f dµ 6

∫
g dµ 2)

∫
cf dµ = c

∫
f dµ

Lemma 27. Let f : X → R̄ be positive and measurable. Then∫
f dµ = 0 ⇐⇒ f = 0 µ-almost everywhere

Proof. Suppose that there exists a µ-null set N ∈ A such that f |Nc= 0. If h is a simple function such that

0 6 h 6 f , then we can write h as h =
∑k
i=1 aiAi where the Ai are disjoint and ∪iAi = N . Therefore

∫
h dµ = 0.

Since this holds for all such h, we have that
∫
f dµ = 0.

For the converse we have f−1(0,∞] = ∪i∈Nf−1(1/i,∞] and therefore

µ(f−1(0,∞]) 6= 0 =⇒ µ(f−1(1/i,∞]) 6= 0 for some i

=⇒ f >
1

i
1A for some A ∈ A with µ(A) > 0

=⇒
∫
f dµ >

1

i

∫
1Ai dµ =

1

i
µ(Ai) > 0

13
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Lecture 8: Montotone convergence theorem

Lemma 28. Let f : X → R̄ be positive and measurable. If (hi)i is a sequence of simple functions such that
0 6 hi 6 hi+1 6 f and hi(x)→ f(x) for all x ∈ X (such exist by Lemma 25), then

∫
f dµ = lim

∫
hi dµ.

Proof. Note first that
∫
hi dµ 6

∫
f dµ since hi 6 f . Therefore

∫
f dµ > lim

∫
hi dµ. For the reverse inequality

suppose that h is any simple function such that 0 6 h 6 f and let ε ∈ (0, 1). Define

Ai = {x ∈ X | hi(x) > εh(x)}

Then note that

• Ai ∈ A

• Ai+1 ⊃ Ai

• ∪iAi = X since hi → f > εh

•
∫
hi dµ >

∫
Ai
hi dµ >

∫
Ai
εh dµ = ε

∫
Ai
h dµ

•
∫
Ai
h dµ→

∫
h dµ since A 7→

∫
A
h dµ is a measure and hence continuous from below

Therefore lim
∫
hi dµ > ε

∫
h dµ and since this holds for all ε we conclude that lim

∫
hi dµ >

∫
h dµ. Taking the

supremum over all h gives lim
∫
hi dµ >

∫
f dµ as desired.

Exercise 24. Use Lemmas 25 and 28 to show that if f, g : X → R̄ are A-measurable and positive, then∫
f + g dµ =

∫
f dµ+

∫
g dµ

Monotone convergence theorem

Theorem 29 (Montone Convergence Theorem). Let (fi)i∈N be a sequence of measurable positive functions
fi : X → R̄ such that fi 6 fi+1. Then ∫

lim
i
fi dµ = lim

i

∫
fi dµ

Proof. The proof is similar to that of Lemma 28. Let f = lim fi (which is equal to sup fi). Since fi 6 f
we have lim

∫
fi dµ 6

∫
f dµ. For the reverse inequality, let ε ∈ (0, 1). Suppose that h is a simple function

with 0 6 h 6 f . Let Ai = {x ∈ X | fi(x) > εh(x)}. Then Ai ⊂ Ai+1 and ∪iAi = X. Also, Ai ∈ A since
Ai = (fi − εh)−1[0,∞]. Then∫

fi dµ >
∫
Ai

fi dµ >
∫
Ai

εh dµ = ε

∫
Ai

h dµ→ ε

∫
h dµ

So,

lim

∫
fi dµ > ε

∫
h dµ for all ε ∈ (0, 1)

therefore,

lim

∫
fi dµ >

∫
h dµ for all h

therefore,

lim

∫
fi dµ >

∫
f dµ

Corollary 30. Let (fi)i∈N be a sequence of measurable positive functions fi : X → R̄. Then∫ ∑
i

fi dµ =
∑
i

∫
fi dµ

14
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Proof. Let gn =
∑n
i=1 fi. From Exercise 24 we have that

∫
gn dµ =

∑n
1

∫
fi dµ. Applying the above theorem

to the gn we get ∫ ∑
i∈N

fi dµ =

∫
lim
n
gn dµ

= lim
n

∫
gn dµ (by the MCT)

= lim
n

n∑
1

∫
fi dµ (finite version)

=
∑
i∈N

∫
fi dµ

Exercise 25. Show that in the statement of the MCT it is enough to insist that for each i, fi 6 fi+1 µ-almost
everywhere.

Example 31. To see that the hypothesis that the sequence (fi)i be increasing (almost everywhere) is needed,
consider fi = 1(i,i+1). For this sequence, we have∫

lim
i
fi dµ =

∫
0 dµ = 0 whereas lim

i

∫
fi dµ = lim

i
1 = 1

15



lecture notes on measure theory lawrence reeves

Lecture 9: Fatou’s lemma and the dominated convergence theorem

This result is sometimes useful to show that a function is integrable and to provide an upper bound on the
value of the integral.

Lemma 32 (Fatou’s Lemma). Let (X,A, µ) be a measure space and (fi)i a sequence of measurable positive
functions on X. Then ∫

lim inf fi dµ 6 lim inf

∫
fi dµ

Proof.

inf
i>n

fi 6 fj ∀ j > n

=⇒
∫

inf
i>n

fi dµ 6
∫
fj dµ ∀ j > n

=⇒
∫

inf
i>n

fi dµ 6 inf
j>n

∫
fj dµ (∗)

Letting n→∞ and applying the MCT we get∫
lim inf fi dµ = lim

n→∞

∫
inf
i>n

fi dµ (MCT)

6 lim inf

∫
fj dµ (by (∗))

Corollary 33. With fi as above, suppose that f is a positive measurable function such that fi → f µ-almost
everywhere. Then ∫

f dµ 6 lim inf

∫
fi dµ

So far we’ve defined the integral for positive functions. Extending the definition to cover measurable functions
that aren’t positive is straightforward. Given a measurable function f : X → R̄ we have f = f+ − f−, where
f+ = max(0, f) and f− = max(0,−f) are both positive and measurable. If

∫
f+ dµ <∞ or

∫
f− dµ <∞, then

we say that the integral exists and define∫
f dµ =

∫
f+ dµ −

∫
f− dµ

We say that f is integrable if both
∫
f+ dµ <∞ and

∫
f− dµ <∞. In the case in which (X,A, µ) is (R,L,m)

we sometimes say Lebesgue integrable.

Exercise 26. Define L 1(X,A, µ,R) to be the set of all integrable functions f : X → R. Show that
L 1(X,A, µ,R) forms a vector space and that the integral is linear functional.

Proposition 34. Let f : X → R̄ be a measurable function. If f is integrable then∣∣∣∣∫ f dµ

∣∣∣∣ 6 ∫ |f | dµ
Proof. Note that f is measurable iff |f | = f+ + f− is measurable.

f integrable ⇐⇒ f+ and f− are both integrable ⇐⇒ |f | = f+ + f− is integrable

If f and |f | are integrable then we have,∣∣∣∣∫ f dµ

∣∣∣∣ =

∣∣∣∣∫ f+ dµ−
∫
f− dµ

∣∣∣∣ 6 ∫ f+ dµ+

∫
f− dµ =

∫
|f | dµ

16
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Exercise 27. Find an example of a function f : R → R such that f is not Lebesgue integrable, but |f | is
Lebesgue integrable.

Theorem 35 (Dominated Convergence Theorem). Let g be a positive integrable function and let f and {fi}i
be measurable functions X → R̄. Suppose that

1) f = lim fi µ-almost everywhere

2) |fi| 6 g µ-almost everywhere for all i

Then f and all fi are integrable and ∫
f dµ = lim

i

∫
fi dµ

Proof. The integrability of f and the fi follows from that of g.

For each i, both g + fi and g − fi are positive measurable function. Applying (the corollary to) Fatou’s lemma
to the sequence (g + fi)i we get∫

g + f dµ 6 lim inf

∫
g + fi dµ =

∫
g dµ+ lim inf

∫
fi dµ

Similarly, considering the sequence (g − fi)i∫
g − f dµ 6 lim inf

∫
g − fi dµ =

∫
g dµ− lim sup

∫
fi dµ

Therefore

lim inf

∫
fi dµ >

∫
f dµ > lim sup

∫
fi dµ

Now some consequences of the DCT. Firstly, we can extend the result of Corollary 30 to functions that are not
necessarily positive.

Proposition 36. Let (fi)i be a sequence of integrable functions fi ∈ L 1(X,A, µ,R) and suppose that
∑
i∈N
∫
|fi| dµ <

∞. Then
∑
i fi converges (almost everywhere) to a function in L 1 and∫ ∑

i

fi dµ =
∑
i

∫
fi dµ

Proof. By Corollary 30 we have that
∫ ∑

i |fi| dµ =
∑
i

∫
|fi| dµ. Therefore, since

∑
i∈N
∫
|fi| dµ < ∞ there is

a function g ∈ L 1 such that g =
∑
i |fi| almost everywhere. Also,

∑
i fi(x) converges for almost all x ∈ X.

Applying the DCT to the sequence of partial sums
∑n

1 fi (noting that |
∑n

1 fi| 6 g almost everywhere) we
conclude that ∫ ∑

i∈N
fi dµ =

∫
lim
n

n∑
1

fi dµ = lim

n∑
1

∫
fi dµ =

∑
i∈N

∫
fi dµ

Next we observe that the simple functions are (in an appropriate sense) dense in L 1.

Proposition 37. Let f ∈ L 1(X,A, µ,R) and let ε ∈ (0,∞). There exists an integrable simple function h such
that ∫

|f − h| dµ < ε

Proof. Fix a sequence of simple functions hi such that |hi| 6 |hi+1| 6 |f | and hi(x) → f(x) for all x ∈ X.
Apply the DCT to the sequence |f − hi| 6 2|f | to get lim

∫
|f − hi| dµ =

∫
0 dµ = 0.
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Lecture 10: The spaces L p and Lp

We’ve already encountered L 1. We now define related spaces L p and Lp (for p ∈ [1,∞]) and consider some
properties.

Let (X,A, µ) be a measure space and let p ∈ [1,∞). We define

L p(X,A, µ,R) = {f : X → R | |f |p is integrable }

Exercise 28. Verify that L p(X,A, µ,R) forms a vector space. (For closure under addition it’s useful to observe
that |f(x) + g(x)|p 6 2p|f(x)|p + 2p|g(x)|p.)

A function f : X → R is called essentially bounded if there exists M such that the set {x ∈ X | |f(x)| > M}
is µ-null1. We now define

L∞(X,A, µ,R) = {f : X → R | f is A-measurable and essentially bounded}

As with L p for p <∞, L∞ equipped with the usual operations forms a vector space.

We can define a seminorm on L p by

‖f‖p =

(∫
|f |p dµ

) 1
p

for 1 6 p <∞

‖f‖∞ = inf{M | the set {x ∈ X | |f(x)| > M} is null}

Exercise 29. Let f ∈ L∞. Show that {x ∈ X | |f(x)| > ‖f‖∞} is µ-null.

Proposition 38 (Hölder’s inequality). Let f ∈ L p and g ∈ L q where p, q ∈ [1,∞] satisfy 1
p + 1

q = 1. Then

fg ∈ L 1 and ∫
|fg| dµ 6 ‖f‖p‖g‖q

Proof. Outline. Suppose first that f ∈ L 1 and g ∈ L∞. Then |f(x)g(x)| 6 |f(x)|‖g‖∞ almost everywhere. It
follows that fg ∈ L 1 and that

∫
|fg| dµ 6 ‖g‖∞

∫
|f | dµ = ‖f‖p‖g‖∞.

Now suppose that p (hence q) is in (1,∞).

Exercise 30. Show that for all x, y ∈ [0,∞) we have xy 6 xp/p+ yq/q.

Then for all x we have |f(x)g(x)| 6 1
p |f(x)|p + 1

q |g(x)|q and so fg ∈ L 1 and∫
|fg| dµ 6

1

p

∫
|f |p dµ+

1

q

∫
|g|q dµ

If ‖f‖p = ‖g‖q = 1 then the above gives the required inequality. Otherwise replace f by f/‖f‖p and g by
g/‖g‖q. (We can assume that ‖f‖p and ‖g‖q are non-zero, since otherwise the result is clearly true.)

Proposition 39 (Minkowski’s inequality). Let p ∈ [1,∞] and let f, g ∈ L p. Then

‖f + g‖p 6 ‖f‖p + ‖g‖p

Proof. Outline. If p = 1 we have

‖f + g‖1 =

∫
|f + g| dµ 6

∫
|f | dµ+

∫
|g| dµ = ‖f‖1 + ‖g‖1

If p =∞ we have

|f(x) + g(x)| 6 |f(x)|+ |g(x)| 6 ‖f‖∞ + ‖g‖∞

outside a null set.

1In the case in which (X,A, µ) is not σ-finite we should use ‘locally µ-null’.
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Now suppose that p ∈ (1,∞) and let q ∈ (1,∞) be such that 1/p+ 1/q = 1. Note that |f + g|p−1 ∈ L q because
f + g ∈ L p and (p− 1)q = p.∫

|f + g|p dµ 6
∫

(|f |+ |g|) |f + g|p−1 dµ =

∫
|f | |f + g|p−1 dµ+

∫
|g| |f + g|p−1 dµ

6 ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q (Hölder’s inequality, twice)

= (‖f‖p + ‖g‖p)(
∫
|f + g|p dµ)1/q

Assuming
∫
|f + g|p dµ 6= 0, we obtain (

∫
|f + g|p dµ)1/p 6 ‖f‖p + ‖g‖p as required. If ‖f + g‖p = 0 the result

is clear.

Corollary 40. The function f 7→ ‖f‖p is a seminorm on L p.

We don’t get a norm on L p because there are non-zero functions with ‖f‖p = 0. Let N p = {f ∈ L p | ‖f‖p = 0}
and define Lp to be the quotient L p/N p. The elements of Lp consist of equivalence classes of the relation on
L p given by f ∼ g iff ‖f − g‖p = 0. The equivalence class is sometimes denoted f̄ .

Exercise 31. Show that for f, g ∈ L p, f ∼ g =⇒ ‖f‖p = ‖g‖p.

It follows that we ‖ · ‖p induces a function on Lp (also denoted ‖ · ‖p) and, by the above corollary, it is a norm
on Lp.

Exercise 32. Show that the following defines an inner product on L2.

〈f̄ , ḡ〉 =

∫
fg dµ

Theorem 41. Let p ∈ [1,∞]. The normed space Lp (equipped with the norm ‖ · ‖p) is complete.

Proof. A normed space is complete iff every absolutely convergent series is convergent. Let fi ∈ L p be such
that

∑
i∈N ‖fi‖p <∞.

Consider first the case in which p =∞. Let Ni be a null set such that |fi(x)| 6 ‖fi‖∞ on N c
i and let N = ∪iNi.

The series
∑
i fi(x) converges for all x /∈ N . The function f = 1Nc

∑
i fi is bounded and measurable and

‖f −
n∑
i=1

fi‖∞ = ‖
∑
i>n+1

fi‖∞ 6
∑
i>n+1

‖fi‖∞ −−−−→
n→∞

0

Now suppose that p ∈ [1,∞). Minkowski’s inequality gives(∫ ( n∑
i=1

|fi|

)p
dµ

)1/p

=

∥∥∥∥∥
n∑
i=1

|fi|

∥∥∥∥∥
p

6
n∑
i=1

‖fi‖p (∗)

This holds for all n. Applying the MCT to the sequence of functions (
∑n
i=1 |fi|)p we get∫

(

∞∑
i=1

|fi|)p dµ = lim
n

∫
(

n∑
i=1

|fi|)p dµ (MCT)

6 lim
n

(
n∑
i=1

‖fi‖p

)p
(by (∗))

=

( ∞∑
i=1

‖fi‖p

)p
<∞

Therefore g = (
∑∞
i=1 |fi|)p is integrable. It follows that

∑∞
i=1 |fi(x)| converges for all x in a conull set C ∈ A.

Define f = 1C

∑
i∈N fi. Then f is measurable and in L p since |f |p 6 g. Moreover, for all x ∈ C we have

0 = lim
n

(f(x)−
n∑
i=1

fi(x)) and |f(x)−
n∑
i=1

fi(x)|p 6 g(x)
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Using the DCT we then conclude that

lim
n

∥∥∥∥∥f −
n∑
i=1

fi

∥∥∥∥∥
p

= lim
n

(∫
|f −

n∑
i=1

fi|p dµ

)1/p

=

(
lim
n

∫
|f −

n∑
i=1

fi|p dµ

)1/p

=

(∫
|f −

∞∑
i=1

fi|p dµ

)1/p

(DCT)

= 0

We mention the following. Further details about Lp can be found in Rudin’s book (for example).

Proposition 42. The simple functions determine a dense subspace of Lp.

Proposition 43. Let p ∈ [1,∞). If µ is σ-finite and A is countably generated, then Lp is separable.
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Lecture 11: Signed measures

To be able to talk about the idea of differentiating one measure with respect to another and for other applications
it’s useful to relax the requirement that measures be positive valued.

Definition 44. Let A be a σ-algebra on a set X. A signed measure is a function ν : A → R̄ (with at most
one of −∞ and +∞ in its image) satisying:

1) ν(∅) = 0

2) If {Ai}i∈N ⊂ A is a disjoint family, then ν(
⋃
iAi) =

∑
i ν(Ai) (and the sum is absolutely convergent)

A signed measure is called finite if neither +∞ nor −∞ occur among its values.

Examples 45. a) Let f ∈ L 1(X,A, µ,R). Then ν(A) =
∫
A
f dµ gives a signed measure on (X,A). Notice

that ν = ν+ − ν− where ν+ and ν− are (positive) measures given by ν±(A) =
∫
A
f± dµ.

b) Let ν+ and ν− be (positive) measures on (X,A), at least one of which is finite. Then ν = ν+ − ν− is a
signed measure on (X,A).

Lemma 46. Let ν be a signed measure on (X,A). Let (Ai)i be a sequence of sets from A.

1) If (Ai)i is increasing, then ν(∪iAi) = limi ν(Ai).

2) If (Ai)i is decreasing and ν(A1) <∞, then ν(∩iAi) = limi ν(Ai).

Exercise 33. Prove this lemma. (See Lemma 6.)

Suppose ν is a signed measure on (X,A). A set A ∈ A is called positive if ν(B) > 0 for all subsets B ⊂ A with
B ∈ A. Similarly, A ∈ A is called negative if ν(B) 6 0 for all subsets B ⊂ A with B ∈ A.

Exercise 34. Show that a countable union of positive sets is positive.

Theorem 47 (Hahn decomposition theorem). Let ν be a signed measure on (X,A). Then

1) There exists a positive set P ∈ A and a negative set N ∈ A such that X = P ∪N and P ∩N = ∅.

2) If X = P ′ ∪N ′ is another such partition, then ν(P∆P ′) = ν(N∆N ′) = 0.

Proof. We can assume (by replacing ν with −ν if necessary) that ν does not take value +∞. Let δ = sup{ν(A) |
A ∈ A is positive }. There exist positive sets Pi ∈ A such that ν(Pi)→ δ. The set P = ∪iPi is positive because
it’s a countable union of positive sets. Moreover, ν(P ) = δ since ν(P ) = ν(P \Pi)+ν(Pi) > ν(Pi), and therefore
δ <∞.

Let N = X \P . We want to show that N is negative. Note first that if A ⊂ N is positive, then ν(A) = 0, since
ν(P ) = δ > ν(A ∪ P ) = ν(A) + ν(P ). If A ⊂ N and ν(A) > 0, then (since A is not positive) there exists a
subset B ⊂ A with ν(B) < 0 and therefore ν(A \B) > ν(A).

Suppose, for a contradiction, that N is not negative. Then there exists A ⊂ N with ν(A) > 0. Define a partial
order on the set Σ = {A ⊂ N | A ∈ A, ν(A) > 0} by

A1 4 A2 ⇐⇒ (A1 = A2 or (A2 ⊂ A1 and ν(A1) < ν(A2))

If A1 4 A2 4 · · · , then ∩iAi ∈ Σ and Ai 4 ∩iAi. By Zorn’s lemma2, there is a maximal element A ∈ Σ. This
is a contradiction since ν(A) > 0 and therefore A contains a subset of strictly larger measure. Therefore N is
negative.

If X = P ′∪N ′ is another partition with P ′ positive and N ′ negative, then P \P ′ ⊂ P and P \P ′ ⊂ (P ′)c = N ′.
Therefore µ(P \ P ′) = 0.

A decomposition as given in the above theorem is called a Hahn decomposition. Two signed measures µ and
ν are said to be mutually singular (written µ ⊥ ν) if there exist M,N ∈ A such that M ∩N = ∅, M ∪N = X,
M is µ-null and N is ν-null.

2It’s possible to give a proof that does not appeal to Zorn’s lemma. See the notes by Greg Hjorth.
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Corollary 48 (Hahn-Jordan decomposition theorem). Let ν be a signed measure on (X,A). There exist unique
positive measures ν+ and ν− such that ν = ν+ − ν− and ν+ ⊥ ν−.

Exercise 35. Prove the above corollary.

Using the above result we can now define the integral of a function f ∈ L1(ν+) ∩ L1(ν−) with respect to a
signed measure ν by ∫

f dν =

∫
f dν+ −

∫
f dν−

The variation of a signed measure ν is the positive measure |ν| defined by |ν| = ν+ + ν−. The total variation
‖ν‖ of ν is defined by ‖ν‖ = |ν|(X). Denote by M(X,A,R) the set of all finite signed measures on (X,A).

Exercise 36. Verify that M(X,A,R) forms a vector space (using the obvious operations) and that the total
variation is a norm.

Exercise 37. Show that if A,B ∈ A are disjoint, then |ν(A)|+ |ν(B)| 6 ‖ν‖
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Lecture 12: Signed measures (continued)

Proposition 49. The space M(X,A,R) equipped with the total variation norm is complete.

Proof. Let (νi)i be a Cauchy sequence in M . For any A ∈ A, |νi(A)− νj(A)| 6 ‖νi− νj‖. Therefore, for a fixed
A ∈ A the sequence (νi(A))i is a Cauchy sequence of real numbers and hence is convergent. Define a function
ν : A → R by ν(A) = limi νi(A). We’ll check that ν is a signed measure and that νi → ν.

It’s clear that ν(∅) = 0 and that ν is finitely additive. Let (Ai)i be a decreasing sequence of sets from A with
∩iAi = ∅. Given ε > 0 let N be such that |ν(A) − νi(A)| < ε/2 for all i > N and A ∈ A. By Lemma 46,
limi νN (Ai) = 0. Let K be such that |νN (Ai)| 6 ε/2 whenever i > K. Then, for i > K

|ν(Ai)| 6 |ν(Ai)− νN (Ai)|+ |νN (Ai)| <
ε

2
+
ε

2
= ε

The countable additivity of ν now follows since

ν(∪i∈NBi) = ν(∪ki=1Bi
⋃
∪∞i=k+1Bi) =

k∑
i=1

ν(Bi) + ν(∪∞i=k+1Bi)

It remains to show that ‖ν − νi‖ → 0. Let ε > 0 and N be such that ‖νi − νj‖ < ε whenever i, j > N . Let
X = Pj ∪Nj be a Hahn decomposition for ν − νj .

|νi(Pj)− νj(Pj)|+ |νi(Nj)− νj(Nj)| 6 ‖νi − νj‖

therefore

‖ν − νj‖ = |ν(Pj)− νj(Pj)|+ |ν(Nj)− νj(Nj)| = lim
i

(|νi(Pj)− νj(Pj)|+ |νi(Nj)− νj(Nj)|)

6 lim
i
‖νi − νj‖

6 lim
i
ε = ε

Definition 50. Let (X,A) be a measure space, let ν be a signed measure on (X,A), and let µ be a positive
measure on (X,A). We say that ν is absolutely continuous with respect to µ if µ(A) = 0 =⇒ ν(A) = 0 for
all A ∈ A. We will write this as ν � µ.

Exercise 38. Show that

a) ν � µ iff (ν+ � µ and ν− � µ)

b) (ν � µ and ν ⊥ µ) =⇒ ν = 0

The term ‘absolutely continuous’ is motivated by the following exercise.

Exercise 39. Let ν be a finite signed measure and µ a positive measure on (X,A). Show that ν � µ iff

∀ ε > 0 ∃ δ > 0 such that |ν(A)| < ε whenever µ(A) < δ

Lebesgue-Radon-Nikodym theorem

Suppose that f ∈ L1(X,A, µ,R) is positive. Then, as we’ve seen, ν(A) =
∫
A
f dµ defines a positive measure

on (X,A). This measure ν is clearly absolutely continuous with respect to µ. In fact, every finite measure on
(X,A) that is absolutely continuous with respect to µ arises in this way.
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Theorem 51 (Lebesgue-Radon-Nikodym theorem). Let µ be a σ-finite measure on (X,A) and let ν be a σ-finite
signed measure on (X,A). Then there exist unique σ-finite signed measures λ and ρ on (X,A) such that

1. ν = λ+ ρ 2. λ ⊥ µ 3. ρ� µ

Further, there exists f : X → R such that ρ(A) =
∫
A
f dµ for each A ∈ A.

The function f is unique up to µ-almost everywhere equality.

In particular, if ν � µ then we have ν(A) =
∫
A
f dµ for each A ∈ A. This is sometimes written as dν = fdµ.

The function f is called the Radon-Nikodym derivative of ν with respect to µ and is sometimes denoted dν
dµ .

Proof of Lebesgue-Radon-Nikodym Theorem. We consider first the case in which both µ and ν are positive and
finite. Define F = {f : X → [0,∞] |

∫
A
f dµ 6 ν(A) ∀A ∈ A}. Note that the zero function is in F and that

if f, g ∈ F then max{f, g} ∈ F . Let α = sup{
∫
f dµ | f ∈ F}. Then α 6 ν(X) < ∞. We use the MCT to

show that there is a function in F that achieves this value. Let fi ∈ F be such that
∫
fi dµ → α and define

gi = max{f1, . . . , fi} and f = supi∈N fi. We have gi+1 > gi and that f = limi gi. By the MCT we have∫
f dµ = limi

∫
gi dµ and therefore f ∈ F . Also,

α >
∫
gi dµ >

∫
fi dµ→ α

Therefore
∫
A
f dµ = α. Now define λ(A) = ν(A)−

∫
A
f dµ and ρ(A) =

∫
A
f dµ. Clearly, ν = λ+ ρ and ρ� µ.

We need to show that λ ⊥ µ.

Continued next lecture...
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Lecture 13: The Lebesgue-Radon-Nikodym theorem

Last lecture we began the proof of the following:

Theorem (Lebesgue-Radon-Nikodym theorem). Let µ be a σ-finite measure on (X,A) and let ν be a σ-finite
signed measure on (X,A). Then there exist unique σ-finite signed measures λ and ρ on (X,A) such that

1. ν = λ+ ρ 2. λ ⊥ µ 3. ρ� µ

Further, there exists f : X → R such that ρ(A) =
∫
A
f dµ for each A ∈ A.

The function f is unique up to µ-almost everywhere equality.

We will use the following.

Exercise 40. Let λ and µ be finite positive measures on (X,A). Then, either λ ⊥ µ or there exist ε > 0 and
A ∈ A such that µ(A) > 0 and λ > εµ on A (i.e., A is positive for λ− εµ).

Proof of L-R-N continued. We want to show that λ (as defined previously) satisfies λ ⊥ µ. Suppose, for a
contradiction, that λ and µ are not mutually singular. From Exercise40 there exist ε > 0 and B ∈ A such that
µ(B) > 0 and λ > εµ on B. Then, for any A ∈ A we have

εµ(A ∩B) 6 λ(A ∩B) 6 λ(A) = ν(A)−
∫
A

f dµ

=⇒
∫
A

(f + ε1B) dµ 6 ν(A)

=⇒ f + ε1B ∈ F

But this contradicts the choice of α since
∫
X
f + ε1B dµ = α+ εµ(B) > α.

For the uniqueness of λ and ρ, suppose that ν(A) = λ′(A) +
∫
A
f ′ dµ for all A ∈ A and that λ′ ⊥ µ. Then

(λ− λ′) ⊥ µ since λ ⊥ µ = 0 and λ′ ⊥ µ = 0. Say X = Y ∪ Z where Y is (λ− λ′)-null and Z is µ-null. Then

(λ− λ′)(A) = (λ− λ′)(A ∩ Z) =

∫
A∩Z

f ′ − f dµ = 0

Therefore λ = λ′. Also, for any C ⊂ Y

(λ− λ′)(C) = 0 =⇒
∫
C

f ′ − f dµ = 0

Therefore f = f ′ µ-a.e.

Now we consider the case in which both ν and µ are σ-finite and positive. Let Ai ∈ A be disjoint and such that
X = ∪iAi and µ(Ai) <∞ and ν(Ai) <∞. Define µi(A) = µ(A∩Ai) and νi(A) = ν(A∩Ai). From the previous
case there are λi and ρi such that νi = λi + ρi, λi ⊥ µi, ρi � µi, and fi : X → R such that ρi(A) =

∫
A
fi dµi

(with fi|Aci = 0). Define λ =
∑
i λi and f =

∑
i fi. Then

ν(A) =
∑
i

νi(A) =
∑
i

(
λi(A) +

∫
A

fi dµi

)
= λ(A) +

∑
i

∫
A∩Ai

fi dµ = λ(A) +

∫
A

f dµ

That λ ⊥ µ follows from Exercise 41 below.

The general case, in which ν is a signed measure follows from applying the above to ν+ and ν−

Exercise 41. Let µ be a measure and suppose that λi are measures satisfying λi ⊥ µ. Show that
∑
i λi ⊥ µ.

Exercise 42. Suppose ν, ν1, ν2 � µ and g ∈ L1(ν) and µ� ξ. Establish the following

a)
d(ν1 + ν2)

dµ
=

dν1

dµ
+
dν2

dµ
b)

∫
g dν =

∫
g
dν

dµ
dµ c)

dν

dξ
=

dν

dµ

dµ

dξ
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Remarks. The condition that µ be σ-finite is needed. Suppose, for example, that µ is counting measure on
X = [0, 1] and that ν is Lebesgue measure on [0, 1]. Then ν � µ but dν/ dµ does not exist.

We finish this section on signed measures by noting the relationship with functions of bounded variation. When
we considered Borel measures on R we saw that there is a bijection between the set of all bounded positive
measures on (R,BR) and the set of all bounded non-decreasing right-continuous functions F : R → R that
satisfy limx→−∞ F (x) = 0. (This follows from Theorem 18.)

Suppose that ν is a finite signed measure on (R,BR). Define a function Fν : R→ R by

Fν(x) = ν((−∞, x])

It’s easy to check that limx→−∞ Fν(x) = 0. Moreover, writing ν = ν+ + ν− and using the result for positive
measures, we can show that Fν is right-continuous.

If t0 < t1 < t2 < · · · < tk is an increasing sequence of of real numbers then

k∑
i=1

|Fν(ti)− Fν(ti−1)| =
k∑
i=1

| ν(ti−1, ti] | 6 ‖ν‖

In general, a function F : R→ R is said to be of bounded variation if

sup{
∑
i

|F (ti)− F (ti−1)| | (ti)i is increasing finite sequence } <∞

The function Fν is therefore right-continuous and of bounded variation. In fact

Proposition 52. The map ν 7→ Fν is a bijection between the set of all finite signed measures on (R,BR) and
the set of all right-continuous functions F : R→ R of bounded variation such that limx→−∞ F (x) = 0.

Proof. Sketch. We’ve already argued that Fν is of the right form. Suppose that Fµ = Fν . Then Fµ+ − Fµ− =
Fν+ − Fν− . From Theorem 18 it follows that µ+ + ν− = ν+ + µ− and hence that µ = ν. For surjectivity
note that if F is a right-continuous function of bounded variation, then there exist bounded right-continuous
non-decreasing functions F+ and F− such that F = F+ −F−. To see this, let F± = (VF ±F )/2, where VF (x)
is the variation of F over (−∞, x]. Then apply Theorem 18.
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Lecture 14: Product measures

Given measure spaces (X,A, µ) and (Y,B, ν) we would like to combine µ and ν to obtain a measure on X × Y .
Define the product of A and B to be the σ-algebra on X × Y given by

A⊗ B = 〈{A×B | A ∈ A, B ∈ B}〉 ⊂ P (X × Y )

That is, A ⊗ B is the σ-algebra generated by the collection of all rectangles, meaning a set of the form
A × B = {(a, b) | a ∈ A, b ∈ B} for some A ∈ A and B ∈ B. Let R0 be the collection of all subsets of X × Y
that can be written as a finite disjoint union of rectangles.

Exercise 43. Check that R0 is an algebra of sets and that A⊗ B is the σ-algebra generated by R0.

Exercise 44. Show that BR ⊗ BR = BR2 .

We will use µ and ν to define a premeasure ξ0 on R0 which then extends, by Carathéodory’s Extension Theorem
(Theorem 15), to a measure on A⊗ B. Define ξ0 : R0 → [0,∞] by

ξ0(∪iAi ×Bi) =
∑
i

µ(Ai)ν(Bi)

Exercise 45. Check that ξ0 is well-defined and is a premeasure on R0.

By Carathéodory’s Extension Theorem, ξ0 extends to a measure on (X×Y,A⊗B). If µ and ν are each σ-finite,
then there is a unique such extension which we call the product measure and denote by µ× ν. Note that

µ× ν(A×B) = µ(A)ν(B)

for all A ∈ A and B ∈ B and µ× ν is the unique such measure.

Example 53. Let m be Lebesgue measure on (R,L). The measure m × m on (R2,L ⊗ L) is not complete.
Let N ∈ L be non-empty and µ-null, and let V ∈ P(R) \ L (e.g., the Vitali set). Then N × R ∈ L ⊗ L and
m×m(N × R) = 0, however N × V /∈ L ⊗ L and N × V ⊂ N × R.

We define Lebesgue measure on Rn to be the completion of the measure m× · · · ×m on BR ⊗ · · · ⊗ BR = BRn
and denote the measure space by (Rn,Ln,mn).

Exercise 46. Show that the completion of BRn with respect to mn is equal to the completion of L ⊗ · · · ⊗ L
with respect to mn.

We want to compare integration with respect to a product measure µ× ν with integration first with respect to
µ and then with respect to ν.

Definition 54. For a subset S ⊂ X×Y and x ∈ X and y ∈ Y define sets Sx ⊂ Y and Sy ⊂ X (called sections)
by

Sx = {y ∈ Y | (x, y) ∈ S} Sy = {x ∈ X | (x, y) ∈ S}

For a function f with domain X × Y define functions fx on Y and fy on X by

fx(y) = f(x, y) fy(x) = f(x, y)

Lemma 55. Let (X,A) and (Y,B) be measurable spaces.

1) If S ∈ A⊗ B, then Sx ∈ B and Sy ∈ A

2) If f : X × Y → R̄ is (A⊗ B)-measurable, then fx is B-measurable and fy is A-measurable.

Proof. Let Σ = {S ⊂ X × Y | Sx ∈ B for all x ∈ X, and Sy ∈ A for all y ∈ Y }. Check that Σ is a σ-algebra,
and that Σ contains all rectangles. It follows that A⊗ B ⊂ Σ.

The second part follows from the first since (fx)−1(C) = (f−1(C))x and (fy)−1(C) = (f−1(C))y.

In the proof of Proposition 58 below we will need the Monotone Class Theorem.
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Definition 56. A collectionM⊂ P(X) of subsets of X is called a monotone class if X ∈M andM is closed
under both countable increasing unions and countable decreasing intersections.

Every σ-algebra is a monotone class, but a monotone class need not be a σ-algebra. However, the monotone
class generated by an algebra is always a σ-algebra by the following result.

Theorem 57 (Monotone Class Theorem). If A0 ⊂ P(X) is an algebra of sets, then the monotone class
generated by A0 coincides with the σ-algebra generated by A0.

Proof. LetM be the monotone class and A the σ-algebra generated by A0. The inclusionM⊂ A is immediate.
For the reverse inclusion we need to show that M is a σ-algebra.

We first show that A,B ∈M implies A ∩B ∈M. Given A ∈M, define M(A) = {B ∈M | A ∩B ∈M}. It’s
easy to check that M(A) is a monotone class. Since A0 is an algebra and A0 ⊂M

A ∈ A0 =⇒ A0 ⊂M(A) =⇒ M⊂M(A)

Therefore, if A ∈ A0 and B ∈ M, then A ∩ B ∈ M. Since M(B) is a monotone class containing A0, we have
M⊂M(B). Therefore, M is closed under finite intersections.

Now observe that M is closed under countable intersections because it is closed under finite intersections and
is a monotone class.

All that remains is to check that M is closed under complementation. Let N = {A ∈M | Ac ∈M} ⊂M. It’s
easy to check that N is a monotone class and that A0 ⊂ N . Therefore M ⊂ N , because M is the monotone
class generated by A0.
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Lecture 15: Fubini’s theorem

We would like to evaluate an integral with respect to a product measure as two iterated integrals.

Proposition 58. Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and let S ∈ A⊗ B. Then

1) the map x 7→ ν(Sx) is A-measurable

2) the map y 7→ µ(Sy) is B-measurable

3) µ× ν(S) =
∫
ν(Sx) dµ =

∫
µ(Sy) dν

Proof. Suppose first that both µ and ν are both finite. Let Σ ⊂ A⊗B be the collection of sets S for which the
proposition holds. Our strategy is to show that Σ contains the algebra R0 of all disjoint unions of rectangles
and that Σ is a monotone class. It then follows from the Monotone Class Theorem that Σ ⊃ A⊗ B.

If S = A × B is a rectangle, then ν(Sx) = 1A(x)ν(B). The map x 7→ ν(Sx) is simple, hence measurable.
Similarly, the map y 7→ µ(Sy) is measurable because µ(Sy) = µ(A)1B(y). Also

µ× ν(S) = µ(A)ν(B) =

∫
1Aν(B) dµ =

∫
µ(A)1B dν

Therefore Σ contains all rectangles. Similarly, any finite disjoint union of rectangles is in Σ, that is, R0 ⊂ Σ.

Now to show that Σ is a monotone class. Suppose that (Ai)i∈N is an increasing sequence of elements of Σ and
let A = ∪iAi. Let fi : Y → [0,∞] be the B-measurable function given by fi(y) = µ(Ayi ). The functions fi
increase pointwise to the function f : Y → [0,∞], f(y) = µ(Ay). Therefore f is B-measurable and, by the
Monotone Convergence Theorem, we have∫

µ(Ay) dν = lim

∫
µ(Ayi ) dν = limµ× ν(Ai) = µ× ν(A)

Similarly, the map x 7→ ν(Ax) is A-measurable and
∫
ν(Ax) dµ = µ × ν(A). Hence A ∈ Σ and Σ is closed

under countable increasing unions. Suppose now that B = ∩i∈NBi is a countable decreasing union of elements
Bi ∈ Σ. The map y 7→ µ(By1 ) is in L1(ν) since µ(By1 ) 6 µ(X) <∞ and ν(Y ) <∞. Applying the Dominated
Convergence Theorem gives∫

µ(By) dν = lim

∫
µ(Byi ) dν = limµ× ν(Bi) = µ× ν(B)

Similarly,
∫
ν(Bx) dµ = µ × ν(B) and B ∈ Σ. The result therefore holds in the case that µ and ν are both

finite.

For the general case write X × Y as an increasing union X × Y = ∪iXi × Yi where µ(Xi) <∞ and ν(Yi) <∞.
For any S ∈ A⊗ B we have from the finite case above that

µ× ν(S ∩ (Xi × Yi)) =

∫
1Xiν(Sx ∩ Yi) dµ =

∫
1Yiµ(Sy ∩Xi) dν

Then apply the Monotone Convergence Theorem.

Proposition 59. Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and let f : X × Y → R̄ be positive and
A⊗ B-measurable. Then

1) the function x 7→
∫
Y
fx dν is A-measurable

2) the function y 7→
∫
X
fy dµ is B-measurable

3)

∫
X×Y

f d(µ× ν) =

∫
Y

(∫
X

fy dµ

)
dν =

∫
X

(∫
Y

fx dν

)
dµ

Proof. First note that for f = 1S with S ∈ A⊗B we have fx = 1Sx and so
∫
fx dν = ν(Sx). Therefore, in this

case, part 1 follows from the previous proposition as does
∫
X

∫
Y
fx dν dµ = µ× ν(S) =

∫
X×Y f d(µ× ν). Part

2 and the remaining equality in part 3 are similar.

The result holds for positive simple A⊗B-measurable functions by the linearity properties of the integral. For
the general case apply Lemma 25 and the Monotone Convergence Theorem.
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Remark. The function f in the above result is not assumed to be integrable. The result can sometimes be used
to decide whether or not |f | (hence f) is integrable.

Theorem 60 (Fubini’s Theorem). Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and let f ∈ L 1(µ×ν).
Then

1) fx ∈ L 1(ν) for µ-almost all x ∈ X and the function x 7→
∫
Y
fx dν is in L 1(µ)

2) fy ∈ L 1(µ) for ν-almost all y ∈ Y and the function y 7→
∫
X
fy dµ is in L 1(ν)

3)

∫
X×Y

f d(µ× ν) =

∫
Y

(∫
X

fy dµ

)
dν =

∫
X

(∫
Y

fx dν

)
dµ

Proof. Write f = f+ − f− with f± positive and integrable. By the previous proposition, the functions x 7→∫
(f+)x dν and x 7→

∫
(f−)x dν are A-measurable and integrable. Since the functions are integrable, they are

finite µ-almost everywhere. Therefore fx is ν-integrable for µ-almost all x. So part 1 holds. Using the previous
proposition we also have ∫

f d(µ× ν) =

∫
f+ d(µ× ν)−

∫
f− d(µ× ν)

=

∫ (∫
(f+)x dν

)
dµ−

∫ (∫
(f−)x dν

)
dµ

=

∫ (∫
fx dν

)
dµ

Similar arguments apply to fy.

Example 61. The hypothesis that the measures be σ-finite is needed. For example, consider X = Y = [0, 1],
A = B = B[0,1], µ is Lebesgue measure and ν is counting measure. Let S = {(x, x) | x ∈ [0, 1]}. Then S ∈ A⊗B
and ∫ ∫

(1S)y dµ dν =

∫
0 dν = 0∫ ∫

(1S)x dν dµ =

∫
1 dµ = 1∫

1S d(µ× ν) = µ× ν(S) =∞

As an application of the above results on product measures let’s consider the convolution of two Lebesgue
integrable functions.

Proposition 62. Let f, g ∈ L 1(R,BR,m). The function f ∗ g defined by

f ∗ g(x) =

{∫
f(x− t)g(t) dµ(t) if t 7→ f(x− t)g(t) is Lebesgue integrable

0 otherwise

belongs to L 1(R,BR,m) and ‖f ∗ g‖1 6 ‖f‖1 ‖g‖1.

Proof. The function (x, t) 7→ f(x− t) is the composition of a continuous and a Borel function and is therefore
Borel. Similarly, (x, t) 7→ g(x) is Borel. Hence (x, t) 7→ f(x− t)g(x).

We have∫
|f(x− t)g(t)|d(m×m) =

∫ ∫
|f(x− t)g(t)| dm(x) dm(t) (Proposition 59)

=

∫
‖f‖1|g(t)| dm(t) (Lebesgue measure is translation invariant)

= ‖f‖1‖g‖1
Therefore the function (x, t) 7→ f(x − t)g(t) is in L 1(R2,BR2 ,m ×m) and then by Fubini’s theorem we have
that t 7→ f(x− t)g(t) is integrable for almost all x. Finally

|f ∗ g(x)| 6
∫
|f(x− t)g(t)| dm(t)

=⇒ ‖f ∗ g‖1 6
∫ ∫

|f(x− t)g(t)| dm(t) dm(x) = ‖f‖1‖g‖1

30



lecture notes on measure theory lawrence reeves

Exercise 47. Let mn be Lebesgue measure on (Rn,Ln) and let A ∈ Ln.

1. Show that

mn(A) = inf{mn(V ) | V ⊃ A, V open} = sup{mn(K) | K ⊂ A,K compact}

2. Suppose that mn(A) < ∞. Let ε > 0. Show that there exists a finite disjoint collection of rectangles
Ri ∈ BRn (i.e., sets of the form R = A1 × · · · ×An with Ai ∈ BR) such that mn(A∆ ∪ki=1 Ri) < ε.
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Lecture 16: Lebesgue measure on Rn

We have already defined the measure space (Rn,Ln,mn). We want to note some useful properties. When it is
clear from the context, we will sometimes write m in place of mn for the measure.

Proposition 63. Let A ∈ Ln. Then

1. m(A) = inf{m(V ) | V ⊃ A, V ⊂ Rn open} = sup{m(K) | K ⊂ A,K ⊂ Rn compact}

2. If m(A) < ∞, then for all ε > 0 there exists a finite collection of disjoint rectangles Ri, whose sides are
intervals, such that m(A∆ ∪ki=1 Ri) < ε

3. m is invariant under translations and rotation

Outline of proof. (in lecture)

Lemma 64. Let B be a collection of open balls in Rn and let A = ∪B∈BB. Let c ∈ R be such that c < m(A).

Then there exist disjoint B1, . . . , Bk ∈ B such that
∑k
i=1m(Bi) > 3−nc.

Proof. (in lecture)

Definition 65. A function f : Rn → R is called locally integrable if
∫
A
|f | dm < ∞ for all bounded A ∈ Ln.

Denote by L1
loc the set of all such functions. For f ∈ L1

loc, r > 0 and x ∈ Rn define

Arf(x) =
1

m(B(r, x))

∫
B(r,x)

f(y) dy

The Hardy-Littlewood maximal function is given by

Hf(x) = sup
r>0

Ar|f |(x)

Lemma 66. The function Arf is continuous in both r and x.

Theorem 67 (Maximal Theorem). ∃C > 0 ∀f ∈ L1 ∀α > 0

m({x | Hf(x) > α}) 6 C

α

∫
|f | dm

Proof. (in lecture)

Theorem 68. Let f ∈ L1
loc. Then

lim
r→0

Arf(x) = f(x) for almost all x ∈ Rn

Proof. (in lecture)
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Lecture 17: Hausdorff measure

We would like to measure the size of subsets of a metric space (X, d) in a way that doesn’t assume any extra
structure on the subset. For example, it should work for subsets of Rn that are not submanifolds.

Definition 69. A metric outer measure on X is an outer measure λ on X such that

λ(A ∪B) = λ(A) + λ(B) whenever d(A,B) > 0

Lemma 70. Let λ be a metric outer measure on X. Every Borel set in X is λ-measurable.

Proof. First note that, since the λ-measurable sets form a σ-algebra, it’s sufficient to show that closed subsets
of X are λ-measurable. Let F ⊂ X be closed. We need to show that for all A ⊂ X with λ(A) <∞ we have

λ(A) > λ(A ∩ F ) + λ(A ∩ F c)

Let Ai = {x ∈ A ∩ F c | d(x, F ) > 1/i}. Since F is closed we have ∪iAi = A ∩ F c. Also

λ(A) > λ((A ∩ F ) ∪Ai) (monotonicity of outer measures)

= λ(A ∩ F ) + λ(Ai) (metric outer measure)

We will be done if we show that limi λ(Ai) = λ(A ∩ F c). Let Ci = Ai+1 \Ai. Note that

d(Ci+1, Ai) >
1

i(i+ 1)
and therefore λ(Ai+2) > λ(Ai) + λ(Ci+1)

Induction gives

λ(A) > λ(A2i+1) >
i∑

j=1

λ(C2j) and λ(A) > λ(A2i) >
i∑

j=1

λ(C2j−1)

The two infinite series are therefore convergent and hence
∑
j>i λ(Cj) −−−→

i→∞
0. Since

λ(A ∩ F c) = λ(Ai ∪
∞⋃
j=i

Cj) 6 λ(Ai) +
∑
j>i

λ(Cj)

we have
λ(A ∩ F c) 6 lim inf λ(Ai) 6 lim supλ(Ai) 6 λ(A ∩ F c)

Definition 71. Let n > 0 and δ > 0. For A ⊂ X define

Hn,δ(A) = inf{
∑

diam(Ai)
n | A ⊂ ∪i∈NAi,diam(Ai) 6 δ}

The n-dimensional Hausdorff measure of a set A is defined to be

Hn(A) = lim
δ→0

Hn,δ(A)

Exercise 48. Show that for n = 0 this is the same as counting measure.
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Lecture 18: Hausdorff measure (continued)

Proposition 72. Hn is a metric outer measure on X.

Proof. That Hn,δ is an outer measure follows from Lemma 11. It follows that Hn is an outer measure. To see
that it is a metric outer measure, consider A,B ⊂ X with d(A,B) > 0. Let {Ci}i∈N and δ > 0 be such that
A ∪ B ⊂ ∪iCi and diam(Ci) 6 δ < d(A,B). No Ci can have non-empty intersection with both A and B. Let
I, J ⊂ N be such that Ci ∩A 6= ∅ iff i ∈ I and Ci ∩B 6= ∅ iff i ∈ J . Then I ∩ J = ∅ and

A ∪B ⊂

(⋃
i∈I

Ci

)
∪

(⋃
i∈J

Ci

)
A ⊂

⋃
i∈I

Ci B ⊂
⋃
i∈J

Ci

Therefore
∑
i∈N diam(Ci)

n > Hn,δ(A) +Hn,δ(B) and hence Hn,δ(A ∪B) > Hn,δ(A) +Hn,δ(B). Letting δ → 0
gives the required result.

Remark. It follows that all Borel subsets of X are Hn-measurable and therefore Hn gives a measure on (X,BX).
The measure Hn on (Rn,BR) is a scalar multiple of Lebesgue measure.

Exercise 49. Show that Hn is invariant under isometries of X.

Lemma 73. Let A ⊂ X.

1) Hn(A) <∞ =⇒ Hm(A) = 0 for all m > n

2) Hn(A) > 0 =⇒ Hm(A) =∞ for all m < n.

Proof. The two parts are equivalent. For the first suppose A ⊂ X satisfies Hn(A) < ∞. Then for all δ > 0
sufficiently small there exists a covering A ⊂ ∪iAi with diam(Ai) < δ and

∑
i diam(Ai)

n 6 Hn(A)+1. If m > n
we have ∑

i∈N
diam(Ai)

m 6 δm−n
∑
i∈N

diam(Ai)
n 6 δm−n(Hn(A) + 1)

Therefore Hm,δ(A) 6 δm−n(Hn(A) + 1) and letting δ → 0 gives Hm(A) = 0.

The Hausdorff dimension of ∅ 6= A ⊂ X is defined to be inf{m > 0 | Hm(A) = 0}. By the above lemma, this
is equal to sup{m > 0 | Hm(A) > 0}.

It’s possible to show that if X = Rm and A is a C1-submanifold, then this gives the expected dimension. But
what about more complicated subsets? For example what is the Hausdorff dimension of the ternary Cantor set
C ⊂ R? We know that H1(C) = 0 and H0(C) =∞. It turns out that C has Hausdorff dimension log3 2.
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Lecture 19: Self-similarity and fractional Hausdorff dimension

The Hausdorff dimension of a submanifold of Rn agrees with our existing notion of dimension for such a space.3

Interestingly, the Hausdorff dimension need not, in general, be an integer.

Sierpinski triangle

The Sierpinski triangle is the closed subset X ⊂ R2 defined as X = ∩i∈NXi where Xi ⊃ Xi−1 are defined
recursively as indicated below.

X0 X1

T0

T2

T1

T2,1

X2

The set Xi+1 is made up of three scaled copies of Xi arranged by translations.

Exercise 50. Show that X is compact, has cardinality 2ℵ0 and has Lebesgue measure zero.

We’ll show that X has Hausdorff dimension d = log2 3. A similar argument applies to the ternary Cantor set
and other self-similar sets in Rn.

Claim 1. Hd(X) 6 1

Proof. The set Xk is made up of 3k triangles, each of diameter 2−k. Therefore Hd,2−k(X) 6 3k(2−k)d = 1.

Therefore to show that X has dimension d it will be sufficient (using Lemma 73) to show that Hd(X) > 0.

To do this we define an outer measure λ on R2 by declaring that each level k triangle should have measure 3−k

and applying Lemma 11. That is, for A ⊂ R2, define

λ(A) = inf{
∑
i

3−`(wi) | wi ∈ {0, 1, 2}∗, A ∩X ⊂ ∪iTwi}

Exercise 51. Check that

a) λ(Tw) = 3−`(w) for all w ∈ {0, 1, 2}∗

b) λ(A) = 0 if A ∩X = ∅

c) λ(X) = 1

d) λ is a metric outer measure

Let µ be the Borel measure obtained by restricting λ to BR2 (Lemma 70 and Proposition 14).

Claim 2. There exists N > 0 such that if B ⊂ R2 is a ball of radius δ 6 1, then µ(B) 6 Nδd.

Proof. If w has length k, then the triangle Tw contains a ball of radius r(k) = 2−k−13−1/2 and is contained
within a ball of radius R(k) = 2−k3−1/2.

3See, for example, Folland §11.2
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Suppose that B intersects M(k) level k triangles. Then the ball B′,
having the same centre as B but with radius δ + 2R(k), contains M(k)
disjoint smaller balls (each of radius r(k)).

Adding up the (Lebesgue) areas, we get that M(k)r(k)2 6 (δ+ 2R(k))2

and hence

M(k) 6 (δ + 2R(k))2r(k)−2 = 12(δ2k + 2/
√

3)2

Define N = 12(2 + 2/
√

3)2. Now fix k such that 1/2k+1 6 δ 6 1/2k. Note that M(k) 6 N and

µ(B) 6 3−kM(k) 6 δdN

Claim 3. Hd(X) > 0

Proof. Let δ 6 1 and suppose that {Ai}i is a sequence of set Ai ⊂ R2 with diam(Ai) = δi 6 δ and X ⊂ ∪iAi.
Each Ai is contained within a ball, Bi of diameter δi. Note that µ(Bi) 6 Nδdi /2

d where N is as in the previous
claim. Then ∑

i

diam(Ai)
d =

∑
i

δdi >
2d

N

∑
µ(Bi) >

2d

N
µ(∪iBi) >

2d

N
µ(X) =

2d

N

It follows that Hd,δ(X) > 2d/N and therefore Hd(X) > 2d/N > 0

Exercise 52. Adapt the proof to show that the ternary Cantor set has Hausdorff dimension log3 2.

Examples 74.

The Sierpinski carpet has Hausdorff dimension log3 8.

The snowflake curve has Hausdorff dimension log3 4.
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Lecture 20: LCH spaces

We will look at measures on locally compact Hausdorff (LCH) spaces and the Riesz Representation Theorem
which relates measures and linear functionals on a certain space. Let’s start by recalling some definitions.

Definition 75. A topological space (X, τ) is locally compact if every point has an open neighbourhood whose
closure is compact. That is, ∀x ∈ X ∃V ∈ τ such that x ∈ V and V (the closure of V ) is compact.

A topological space (X, τ) is Hausdorff if for each distinct pair of points x 6= y ∈ X there exist Vx, Vy ∈ τ such
that x ∈ Vx, y ∈ Vy and Vx ∩ Vy = ∅.
The support of a continuous function f : X → R, denoted supp(f), is the closure of the set {x ∈ X | f(x) 6= 0}.
Denote by K(X) the set of all compactly supported continuous functions on X.

Examples 76. Some examples of LCH spaces are: Rn, compact metric spaces, any open subset of an LCH
space. The set Q ⊂ R endowed with the induced topology is not locally compact.

We will know establish some useful results about LCH spaces.

Exercise 53. Let X be a Hausdorff topological space and K1,K2 ⊂ X disjoint compact subsets. Show that
there are disjoint open subsets V1, V2 ⊂ X such that K1 ⊂ V1 and K2 ⊂ V2. Hint: Consider first the case in
which K1 = {x}.

Exercise 54. Let X be a Hausdorff topological space and let K ⊂ X be compact. Suppose that V1, V2 ⊂ X
are open sets and that K ⊂ V1 ∪ V2. Show that there exist compact K1,K2 ⊂ X such that K1 ⊂ V1, K2 ⊂ V2

and K = K1 ∪K2. Hint: apply previous result to K \ Vi.

Lemma 77. Let X be an LCH space. Let K,V ⊂ X be such that K is compact, V is open and K ⊂ V . There
exists an open set U ⊂ X such that U is compact and K ⊂ U ⊂ U ⊂ V .

Proof. Since X is locally compact, for all k ∈ K there is an open set Vk 3 k such that V k is compact. Replacing
Vk with Vk ∩ V , we can assume that Vk ⊂ V . Since V k \ Vk and {k} are compact and disjoint, they can be
separated by a pair of disjoint open sets, say Ak ⊃ V k \ Vk and Bk ⊃ {k}. Then Wk = Bk ∩ Vk is an open set
that contains k, W k is compact and moreover Wk ⊂ Vk ⊂ V .

Now, since K is covered by the family of open sets {Wk | k ∈ K} and K is compact, there is a finite set F ⊂ K
such that K ⊂ ∪k∈FWk. Define U = ∪k∈FWk. Finally, note that U = ∪k∈FWk is compact and contained in
V .

To state the following standard result we recall that a topological space is normal if it is Hausdorff and if every
pair of disjoint closed subsets can be separated by a pair of disjoint open subsets.

Exercise 55. Show that every compact Hausdorff topological space is normal.

Theorem 78 (Urysohn’s Lemma). Let X be a normal topological space and let A and B be disjoint closed
subsets of X. There exists a continuous function f : X → [0, 1] such that f |A = 0 and f |B = 1.

Proof. We describe a family of open sets {Vd | d ∈ D}, indexed by the set of dyadic rationals in the interval
(0, 1) and satisfying

A ⊂ Vr ⊂ Vr ⊂ Vs ⊂ Vs ⊂ Bc

whenever r < s. Given such a family, we define f : X → [0, 1] by

f(x) =

{
inf{r | x ∈ Vr} x ∈ ∪r∈DVr
1 otherwise

The function f is continuous since, for a ∈ (0, 1), we have f−1([0, a)) = ∪r<aVr and f−1((a, 1]) = ∪r>a(V r)
c.

That f |A = 0 and f |B = 1 is clear from the definition of f .

It remains to construct the sets Vr. Since X is normal there exists an open set V1/2 such that A ⊂ V1/2 ⊂
V 1/2 ⊂ Bc. Similarly, from normality applied to the closed sets A and V c1/2 we have an open set V1/4 such

that A ⊂ V1/4 ⊂ V 1/4 ⊂ V1/2. Considering the closed sets V 1/2 and B, we get an open set V3/4 such that

V1/2 ⊂ V3/4 ⊂ V 3/4 ⊂ Bc. Continue inductively to define Vr for all r.
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We first list two consequences of Urysohn’s lemma.

Proposition 79. Let X be an LCH space. Let K,V ⊂ X be subsets of X such that K ⊂ V , K is compact and
V is open. There exists f ∈ K(X) such that 1K 6 f 6 1V and supp(f) ⊂ V .

Proof. By the above lemma 77, there is a open set U such that U is compact and K ⊂ U ⊂ U ⊂ V . By
Urysohn’s lemma applied to the space U , there is a continuous function g : U → [0, 1] such that g|K = 1 and
g|U\U = 0. Define f : X → [0, 1] by f(x) = g(x) for x ∈ U and f(x) = 0 if x /∈ U . The function f is continuous

because for a closed F ⊂ [0, 1] we have that f−1(F ) is closed:

f−1(F ) =

{
g−1(F ) 0 /∈ F
g−1(F ) ∪ (U)c = g−1(F ) ∪ U c 0 ∈ F
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Lecture 21: Regular measures

Proposition 80. Let X be a LCH space and let f ∈ K(X). Suppose that {Vi}ni=1 is an open cover of supp(f).
There exist fi ∈ K(X) such that supp(fi) ⊂ Vi and f = f1 + · · ·+ fn.

Proof. It is enough to establish the case in which n = 2: supp(f) ⊂ V1 ∪ V2. By Exercise 54 above there
exist compact Ki ⊂ Vi such that supp(f) = K1 ∪ K2. By Proposition 79 there are gi ∈ K(X) satisfying
1Ki 6 gi 6 1Vi and supp(gi) ⊂ Vi. Define g3 = g2 −min(g1, g2) and note that supp(g3) ⊂ supp(g2) ⊂ V2. If
x ∈ supp(f), then g1(x) + g3(x) = g1(x) + g2(x) −min(g1(x), g2(x)) = max(g1(x), g2(x)) = 1. The functions
f1 = fg1 and f2 = fg3 have the required properties.

Definition 81. Let X be a Hausdorff topological space. A measure µ on (X,A) is regular if A ⊃ BX and

1) µ(K) <∞ for all compact K

2) µ is outer regular : µ(A) = inf{µ(V ) | A ⊂ V , V open}

3) µ is inner regular on open sets: µ(V ) = sup{µ(K) | K ⊂ V , K compact}

Examples 82. Lebesgue measure on R is a regular. Every finite Borel measure on R is regular. (Lecture 6)

We are going to relate regular Borel measures on X to linear functionals on K(X). If µ is a regular measure on
X, then f 7→

∫
f dµ is a linear functional on K(X).

Definition 83. A linear functional Λ on K(X) is positive is Λ(f) > 0 whenever f > 0.

Exercise 56. Show that if Λ is positive and f 6 g, then Λ(f) 6 Λ(g).

For V ⊂ X open and f ∈ K(X), the notation f ≺ V indicates that 0 6 f 6 1V and supp(f) ⊂ V .

Lemma 84. Let X be an LCH space and µ a regular Borel measure on X. Then, for V ⊂ X open we have

µ(V ) = sup{
∫
f dµ | f ∈ K(X), f ≺ V }

Proof. It’s clear that µ(V ) > sup{
∫
f dµ | f ∈ K(X), f ≺ V } by inner regularity. For the reverse inequality,

suppose that α < µ(V ). By inner regularity, there is a compact K ⊂ V such that µ(K) > α. By Proposition
79 there is f ∈ K(X) with 1K 6 f and f ≺ V . We have α < µ(K) <

∫
f dµ and therefore

α 6 sup{
∫
f dµ | f ∈ K(X), f ≺ V }

We’re now ready to prove the representation theorem.

Theorem 85. Let X be an LCH space and let Λ be a positive linear functional on K(X). Then there exists a
unique regular Borel measure µ on X such that for all f ∈ K(X)

Λ(f) =

∫
f dµ

Proof. We start with the uniqueness. Suppose that µ and ν are regular measures with Λ(f) =
∫
f dµ =

∫
f dν

for all f ∈ K(X). By Lemma 84 we have µ(V ) = ν(V ) for all open V ⊂ X. By outer regularity it follows that
µ(A) = ν(A) for all Borel A ⊂ X.

Now we turn to the existence part of the statement. The idea is to define a function on open sets first (motivated
by Lemma 84), then extend to an outer measure, then show that Borel sets are measurable and finally that the
resulting measure is regular. For an open set V ⊂ X define

ρ(V ) = sup{Λ(f) | f ∈ K(X), f ≺ V } (∗)

Now define λ : P (X)→ [0,∞] by
λ(A) = inf{ρ(V ) | V ⊃ A, V open} (†)

Note that λ(A) = ρ(A) for open A, since if A ⊂ V then ρ(A) 6 ρ(V ).
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Lecture 22: Riesz representation theorem

Continuing with the proof from last lecture.

Claim 1. λ is an outer measure.

It’s clear that λ(∅) = 0 and that λ(A) 6 λ(B) whenever A ⊂ B.

We first establish countable subadditivity for open subsets {Vi}i∈N. Let V = ∪iVi. If f ∈ K(X) satisfies f ≺ V ,
then supp(f) is a compact subset of ∪iVi. Therefore there exists n ∈ N such that supp(f) ⊂ ∪ni=1Vi. By
Proposition 80 there exist fi ∈ K(X) such that supp(fi) ⊂ Vi and f = f1 + · · ·+ fn. We have

Λ(f) =

n∑
i=1

Λ(fi) 6
n∑
i=1

λ(Vi) 6
∑
i∈N

λ(Vi)

Since the above holds for all f ∈ K(X) with f ≺ V , we conclude

λ(∪i∈NVi) = ρ(V ) 6
∑
i∈N

λ(Vi)

Now for any sequence of sets Ai ⊂ X such that
∑
i λ(Ai) < ∞ and for any ε > 0, let Vi be an open set such

that Ai ⊂ Vi and λ(Vi) < λ(Ai) + ε2−i. Then

λ(∪iAi) 6 λ(∪iVi) 6
∑
i

λ(Vi) 6 ε+
∑
i

λ(Ai)

It follows that λ is countably subadditive and hence an outer measure.

Claim 2. Every Borel subset of X is λ-measurable.

Since the λ-measurable sets form a σ-algebra, it’s enough to show that open sets are λ-measurable. Let U, V ⊂ X
be open. Given ε > 0 there exists f ∈ K(X) with f ≺ U ∩ V and Λ(f) > λ(U ∩ V ) − ε. Similarly, since
U ∩ (supp(f))c is open, there exists g ∈ K(X) with g ≺ U ∩ (supp(f))c and Λ(g) > λ(U ∩ (supp(f))c)− ε. We
have that f + g ≺ U and

λ(U) > Λ(f + g) (from definition of ρ)

= Λ(f) + Λ(g)

> λ(U ∩ V ) + λ(U ∩ (supp(f))c)− 2ε

> λ(U ∩ V ) + λ(U ∩ V c)− 2ε (monotonicity of λ)

Since this holds for all ε > 0, we conclude that λ(U) > λ(U ∩ V ) + λ(U ∩ V c). Now, to establish that V is
λ-measurable. Let A ⊂ X with λ(A) <∞. There exists an open U ⊃ A with λ(U) < λ(A) + ε. Therefore,

λ(A) > λ(U)− ε
> λ(U ∩ V ) + λ(U ∩ V c)− ε (from above)

> λ(A ∩ V ) + λ(A ∩ V c)− ε (monotonicity)

Since this holds for all ε > 0, we have λ(A) > λ(A ∩ V ) + λ(A ∩ V c) and hence V is λ-measurable. This
establishes that the Borel sets are λ-measurable.

Claim 3. Let A ⊂ X and f ∈ K(X). If 1A 6 f , then λ(A) 6 Λ(f).

Given ε ∈ (0, 1), define Vε = {x ∈ X | f(x) > 1 − ε}. Then Vε ⊃ A and, since f is continuous, Vε is open. If
g ∈ K(X) and g 6 1Vx , then

g 6 f/(1− ε) =⇒ Λ(g) 6
1

1− ε
Λ(f)

=⇒ λ(Vε) 6
1

1− ε
Λ(f) (by (∗))

Therefore λ(A) 6 1
1−εΛ(f) for any ε ∈ (0, 1), and it follows that λ(A) 6 Λ(f).
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Claim 4. Let K ⊂ X be compact and f ∈ K(X). If 0 6 f 6 1K , then Λ(f) 6 λ(K).

For any open set V with V ⊃ K, we have f ≺ V and therefore λ(V ) > Λ(f) by (∗). Since this holds for any
such V , from (†) we have that λ(K) > Λ(f).

Now let µ denote the measure obtained by restricting λ to BX .

Claim 5. The measure µ is regular.

Let K ⊂ X be compact. By Proposition 79, there exists f ∈ K(X) with 1K 6 f . By Claim 3 above,
λ(K) 6 Λ(f) < ∞. Therefore µ is finite on compact sets. The outer regularity of µ follows immediately from
the way in which λ was defined in (†). For inner regularity (on open sets), suppose that V ⊂ X is open and
µ(V ) > 0.

Then

µ(V ) = λ(V ) = sup{Λ(f) | f ∈ K(X), f ≺ V } (by (∗))
6 sup{λ(supp(f)) | f ∈ K(X), f ≺ V } (by Claim 4)

6 sup{λ(K) | K ⊂ V, K compact}

Let 0 < α < µ(V ). By (∗) there exists f ∈ K(X) such that f ≺ V and Λ(f) > α. Then λ(supp(f)) > Λ(f) > α.
It follows that µ(V ) = sup{λ(K) | K ⊂ V, K compact} and the claim is established.
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Lecture 23: Riesz representation theorem (ctd)

The proof of the theorem will be complete once we have shown the following claim.

Claim 6. For all f ∈ K(X) we have
∫
f dµ = Λ(f)

It’s enough to establish the claim in the case in which f takes values in [0, 1]. Fix M ∈ N and define a
decreasing sequence of subsets by

K0 = supp(f) and Ki = {x ∈ X | f(x) > i/M} for i > 1

For 1 6 i 6M let fi ∈ K(X) be defined by

fi(x) =


0 x /∈ Ki−1

f(x)− i−1
M x ∈ Ki−1 \Ki

1
M x ∈ Ki

i
M

Ki
Ki−1

i−1
M fi + i−1

M

f

Then we have f =
∑M
i=1 fi and

1

M
1Ki 6 fi 6

1

M
1Ki−1

=⇒ 1

M
µ(Ki) 6

∫
fi dµ 6

1

M
µ(Ki−1)

So we have

1

M

M∑
i=1

µ(Ki) 6
∫
f dµ 6

1

M

M∑
i=1

µ(Ki−1) (‡)

Now note that for any open set V ⊃ Ki−1 we have Mfi ≺ V and hence µ(V ) >MΛ(fi) by (∗). Since this holds
for any such V , by outer regularity we have that µ(Ki−1) >MΛ(fi). By Claim 3 we also have µ(Ki) 6 Λ(Mfi).
Therefore

1

M

M∑
i=1

µ(Ki) 6 Λ(f) 6
1

M

M∑
i=1

µ(Ki−1) (?)

Combining (‡) and (?) we get

|Λ(f)−
∫
f dµ| 6 1

M
(µ(K0)− µ(KM ))

6
1

M
(µ(supp(f)))

Since this holds for all M and since µ is finite on compact sets, we deduce that
∫
f dµ = Λ(f).

Exercise 57. Show that for all compact K ⊂ X we have µ(K) = inf{Λ(f) | f ∈ K(X), f > 1K}.

Exercise 58. Let X be LCH. Let A be a σ-algebra on X with A ⊃ BX . Suppose that µ is a regular measure
on (X,A). Show that the completion of µ is regular.
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Exercise 59. Let X be an LCH space, Y a closed subset of X and ν a regular Borel measure on Y . Let Λ be
the positive linear functional on K(X) given by Λ(f) =

∫
f |Y dν. Show that the regular measure on X induced

by Λ (as in the theorem) is given by µ(A) = ν(A ∩ Y ).

Exercise 60. Let X be an LCH space and µ a a regular Borel measure on X. Show that µ is inner regular on
all σ-finite (Borel) sets.

Exercise 61. Let µ be a σ-finite regular Borel measure on and LCH space X and let A ∈ BX . Show that
µA(B) = µ(B ∩A) defines a regular Borel measure on X.

Exercise 62. Let Rd denote R endowed with the discrete topology, and let X = R× Rd.
a) Let f : X → R be a function. Show that f ∈ K(X) if and only if fy ∈ K(R) for all y and fy = 0 for all

but finitely many y.

b) Define a positive linear functional on K(X) by Λ(f) =
∑
y∈R

∫
f(x, y) dx and let µ the associated regular

Borel measure on X. Show that µ(A) =∞ for any A ⊂ X such that Ay 6= ∅ for uncountably many y.

c) Let A = {0} × Rd. Show that µ(A) =∞ (just previous part!) but µ(K) = 0 for all compact K ⊂ A. (So
µ is not inner regular on A.)

d) Let A = (R\{0})×Rd. Show that the measure given by µA(B) = µ(A∩B) is not a regular Borel measure
on X.

Dual of C0(X)

We now look at regular signed measures. The class of functions that arise, C0(X) is slightly larger than K(X).
We will show that the Banach space Mr(X) of finite signed regular measures on X is isometrically isomorphic
to the dual of the Banach space C0(X). Note that these results can be extended to complex valued measures.

Definition 86. A function f : X → R vanishes at infinity if for all ε > 0 the set {x | |f(x)| > ε} is compact.
Denote by C0(X) the set of all such functions:

C0(X) = {f ∈ C(X) | f vanishes at infinity}

Since elements of C0(X) are bounded, ‖f‖∞ = sup{|f(x)| | x ∈ X} defines a norm on C0(X).

Exercise 63. Let X be an LCH space. Show that C0(X) is the closure of K(X) in the uniform norm. Show
that C0(X) is a Banach space

It follows that if µ is a regular Borel measure on X, then the associated positive linear functional on K(X)
extends continuously to C0(X) iff it is bounded with respect to the uniform norm. Since µ(X) = sup{

∫
f dµ |

f ∈ K(X), 0 6 f 6 1}, this happens when µ(X) < ∞. So positive bounded linear functionals on C0(X) are
given by integration with respect to a finite regular Borel measure.

Definition 87. A finite signed measure ν on an LCH space is called regular if |ν| is regular. Denote by Mr(X)
the set of all regular finite signed Borel measures on X.

Exercise 64. Let ν be a finite signed measure on (X,BX). Show that the following are equivalent:

a) ν is regular,

b) ν+ and ν− are both regular,

c) ν is a linear combination of finite regular Borel (positive) measures.

Exercise 65. Show that Mr(X) is a closed subspace of M(X) (with the total variation norm on M(X)).

Lemma 88. Let X be an LCH space and ν ∈Mr(X). Then

∀A ∈ BX ∀ε > 0 ∃K ⊂ A compact such that |ν(A)− ν(B)| < ε whenever B ∈ BX with K ⊂ B ⊂ A

Proof. Since |ν| is regular and |ν|(A) <∞, there is a compact K ⊂ A such that |ν|(A \K) < ε.
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Then for any B ∈ BX with K ⊂ B ⊂ A we have

|ν(A)− ν(B)| = |ν(A \B)| 6 |ν|(A \B) 6 |ν|(A \K) < ε

Continuous linear functionals on C0(X) admit a version of a Jordan decomposition.

Lemma 89. Let X be an LCH space. If Λ ∈ C0(X)∗, there exist positive functionals Λ+,Λ− ∈ C0(X)∗ such
that Λ = Λ+ − Λ−.

Proof. Given f ∈ C0(X) with f > 0 define Λ+(f) = sup{Λ(g) | g ∈ C0(X), 0 6 g 6 f}. Since |Λ(g)| 6
‖Λ‖‖g‖∞ 6 ‖Λ‖‖f‖∞, the supremum is finite and |Λ+(f)| 6 ‖Λ‖‖f‖∞.

Exercise 66. Show that 0 6 Λ+(f), Λ+(tf) = tΛ+(f) and Λ+(f1 + f2) = Λ+(f1) + Λ+(f2) (for all t > 0 and
f1, f2 > 0).

Now extend to any f ∈ C0(X) by defining Λ+(f) = Λ+(f+)− Λ+(f−)

Exercise 67. Show that Λ+ is a positive linear functional on C0(X).

We have
|Λ+(f)| 6 max{Λ+(f+),Λ+(f−)} 6 ‖Λ‖max{‖f+‖∞, ‖f−‖∞} = ‖Λ‖‖f‖∞

and therefore ‖Λ+‖ 6 ‖Λ‖. Define Λ− = Λ+−Λ. Then Λ− is clearly linear and continuous. It is positive since
if f > 0, then Λ+(f) > Λ(f) (by the definition of Λ+).
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Lecture 24: Dual of C0(X)

Theorem 90. Let X be an LCH space. The map Mr(X) → C0(X)∗ that sends µ to the linear functional
f 7→

∫
f dµ is an isometric isomorphism.

Proof. Given ν ∈Mr(X) define Λν ∈ C0(X)∗ by Λν(f) =
∫
f dν. It’s readily checked that Λν is indeed linear,

that |Λν(f)| 6 ‖f‖∞‖ν‖ and that the map Φ : ν 7→ Λν is linear.

So we have a linear map Φ : Mr(X)→ C0(X)∗ given by Φ(ν) = Λν satisfying ‖Φ(ν)‖ 6 ‖ν‖. We want to show
that Φ is norm preserving and surjective.

To show that Φ is norm preserving, let ν ∈ Mr(X) and ε > 0. Let X = P ∪ N be a Hahn decomposition
corresponding to ν. By Lemma 88 there are compact KP ⊂ P and KN ⊂ N such that

‖ν‖ − ε < |ν(KP )|+ |ν(KN )| 6 |ν|(KP ) + |ν|(KN )

Let f ∈ K(X) be such that ‖f‖∞ 6 1 and f |KP = 1 and f |KN = −1. Then (with K = KP ∪KN )∫
K

f dν =| ν(KP )|+ | ν(KN )| > ‖ν‖ − ε and

∣∣∣∣∫
Kc

f dν

∣∣∣∣ 6 |ν|(Kc) < ε

Therefore |
∫
f dν| > ‖ν‖ − 2ε. Since ‖f‖∞ 6 1 and ε > 0 was arbitrary, it follows that ‖Φ(ν)‖ > ‖ν‖. So Φ is

norm preserving.

Now to show that Φ is surjective. Suppose first that Λ ∈ C0(X)∗ is positive. Applying the Riesz representation
theorem to Λ|K(X) provides a regular Borel measure µ with Λ(f) =

∫
f dµ for all f ∈ K(X). By Lemma 84 we

have

µ(X) = sup{
∫
f dµ | f ∈ K(X), f ≺ X} = sup{Λ(f) | f ∈ K(X), 0 6 f 6 1} 6 ‖Λ‖

We have a finite measure µ such that Λ(f) = Φ(µ)(f) for all f ∈ K(X). Because K(X) is dense in C0(X) and
Λ and Φ are continuous, the equality holds for all f ∈ C0(X). The surjectivity of Φ follows from this and the
preceding lemma.

Let’s note the following special case.

Corollary 91. Let X be a compact metric space. Then M(X) is isometrically isomorphic to C(X)∗.

Topological groups

We’re going to look at measures on topological groups. We’ll see that any locally compact group admits a
measure that is invariant under the action of the group in itself.

Definition 92. A topological group is a group G endowed with a topology such that the map G × G → G,
given by (g, h) 7→ gh and the map G → G given by g 7→ g−1 are continuous. A locally compact group is a
topological group that is locally compact and Hausdorff.

Examples 93.

1) (R,+) and (R \ {0},×) are locally compact groups.

2) (Q,+) is a topological group, but not locally compact.

3) {z ∈ C | |z| = 1} is a locally compact group.

4) Any topological vector space is a topological group (underlying abelian group).

5) Any group endowed with the discrete topology is a locally compact group.

Exercise 68. Show that G = {[ a b0 1 ] ∈ GL2(R) | a > 0} is a locally compact group.

Lemma 94. Let G be a topological group and g ∈ G.
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1) The functions h 7→ gh and h 7→ hg are homeomorpishms from G to G.

2) If K,L ⊂ G are compact, then so too are gK, Kg, KL and K−1.

Proof. The map h 7→ gh is continuos as it is the composition of two continuous maps: G → G × G given by
h 7→ (g, h) and G×G→ G given by (k, h) 7→ kh. It has a continuous inverse given by the map h 7→ g−1h, and
is therefore a homeomorphism. Similarly for the second listed map in the first part.

Since the image of a compact set under a continuous map is compact, the sets gK, Kg and K−1 are compact.
Since K × L is a compact subset of G×G , KL is compact.
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Lecture 25: Topological groups

Lemma 95. Let G be a topological group and V ⊂ G on open subset such that 1G ∈ V .

1) There exists an open U ⊂ V such that 1G ∈ U and UU ⊂ V .

2) There exists an open U ⊂ V such that 1G ∈ U and U = U−1.

Proof. The set W = {(g, h) | gh ∈ V } is an open neighbourhood of (1, 1) in G × G. Therefore there are open
neighbourhoods U1, U2 of 1 in G such that U1 × U2 ⊂ W . The set U = U1 ∩ U2 ⊂ G is an open, contains 1G
and satisfies UU ⊂ V .

For the second part, note that U−1 is an open neighbourhood of 1, and define S = U ∩ U−1.

Lemma 96. Let G be a topological group. Every open subgroup of G is also closed.

Proof. Let H 6 G be open. Then the complement of H is a union of cosets of H

Hc =
⋃
g∈Hc

gH

Because each coset is open (Lemma 94) , Hc is open.

Definition 97. A function f : G → R is left uniformly continuous if for all ε > 0 there exists an open
neighbourhood V 3 1 such that |f(g) − f(h)| < ε whenever h ∈ gV . The function f is right uniformly
continuous is the same condition holds with V g in place of gV .

Exercise 69. Consider the locally compact group G = {[ a b0 1 ] ∈ GL2(R) | a > 0}. Construct a function
f : G→ R that is right uniformly continuous, but not left uniformly continuous.

Proposition 98. Let G be a locally compact group. Every function in K(G) is both left uniformly continuous
and right uniformly continuous.

Proof. Let f ∈ K(G) and K = supp(f) and let ε > 0. Since f is continuous, for all x ∈ K there is an open
Vx 3 1 such that |f(x) − f(y)| < ε/2 whenever y ∈ xVx. By Lemma 95 there is an open Ux ⊂ Vx such that
1 ∈ Ux and UxUx ⊂ Vx. The set {xUx | x ∈ K} is an open cover of K. Because K is compact there exists a finite
subset {x1, . . . , xn} ⊂ K such that K ⊂ x1Ux1 ∪ · · · ∪ xnUxn . Since Ux1 ∩ · · · ∩ Uxn is an open neighbourhood
of 1, by Lemma 95 there is an open V ⊂ Ux1

∩ · · · ∩ Uxn such that 1 ∈ V and V = V −1. We will show that for
all h, g ∈ G we have

h ∈ gV =⇒ |f(g)− f(h)| < ε (∗)

Note first that (∗) clearly holds if h, g ∈ Kc. So suppose now that g ∈ K and h ∈ gV . Then g ∈ xiUxi ⊂ xiVxi
for some i ∈ {1, . . . , n} and h ∈ gV ⊂ gUxi ⊂ xiUxiUxi ⊂ xiVxi . That is, there is an i such that h, g ∈ xiVxi .
Therefore |f(xi)− f(g)| < ε/2 and |f(xi)− f(h)| < ε/2 and therefore |f(g)− f(h)| < ε.

Now suppose that we have h ∈ K and h ∈ gV . Because V is symmetric, h ∈ gV is equivalent to g ∈ hV . We
can therefore apply the argument of the previous paragraph. The left uniform continuity of f is shown.

The argument for right uniform continuity is similar.

Corollary 99. Let G be a locally compact group, let µ be a regular Borel measure on G, and let f ∈ K(G).
The functions g 7→

∫
f(gh) dµ(h) and g 7→

∫
f(hg) dµ(h) are continuous.

Proof. Let g0 ∈ G and V ⊂ G an open neighbourhood of g0 such that V is compact. Let K = supp(f). For
each g ∈ V the function h 7→ f(hg) is continuous and has support contained within the compact set K(V )−1.

Let ε > 0. Choose ε′ > 0 such that ε′µ(K(V )−1) < ε. By preceding proposition f is left uniformly continuous
and hence there is an open neighbourhood U of 1 such that |f(a)− f(b)| < ε′ whenever a, b ∈ G satisfy a ∈ bU .
Then for g ∈ V ∩ g0U and h ∈ G we have hg ∈ hg0U and therefore∣∣∣∣∫ f(hg) dµ(h)−

∫
f(hg0) dµ(h)

∣∣∣∣ 6 ∫ |f(hg)− f(hg0)| dµ(h)

6 ε′µ(K(V )−1)

6 ε
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Therefore the function g 7→
∫
f(hg) dµ(h) is continuous at the point g0 ∈ G.

The argument for the continuity of the other function in the statement is entirely similar.
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Lecture 26: Haar measure

Definition 100. Let G be a locally compact group. A Borel measure µ on G is left-invariant if µ(gA) = µ(A)
for all g ∈ G and A ∈ BG. The measure µ is right-invariant if µ(Ag) = µ(A) for all g ∈ G and A ∈ BG. A left
Haar measure on G is a non-zero regular Borel measure on G that is left-invariant. A right Haar measure on
G is a non-zero regular Borel measure on G that is right-invariant.

Examples 101. 1) Lesbesgue measure on Rn is both a left (and right) Haar measure.

2) Counting measure on any group endowed with the discrete topology.

3) G = (R>0,×), µ(A) =
∫
A

1
xdx is a left (and right) Haar measure.

4) G = {[ a b0 1 ] ∈ GL2(R) | a > 0}, µ(A) =
∫
A′
x−2dm2 (where A′ ⊂ R2 corresponds to A, and m2 is Lebesgue

measure on R2) gives a left Haar measure on G.

Before considering an existence statement for Haar measures, let’s note the following property.

Lemma 102. Let G be a locally compact group and µ a left Haar measure on G. Then

1) µ(V ) > 0 for every non-empty open V ⊂ G,

2)
∫
f dµ > 0 for every f ∈ K(G) with f > 0, f 6= 0.

Proof. Because µ is not the zero measure and is regular , there exists a compact K ⊂ G such that µ(K) > 0. Let
V ⊂ G be non-empty and open. Then, by compactness of K, there exist g1, . . . , gn ∈ G such that K ⊂ ∪ni=1giV .
Therefore

0 < µ(K) 6 µ(∪ni=1giV ) 6
n∑
i=1

µ(giV ) =

n∑
i=1

µ(V ) = nµ(V )

For the second part, the conditions on f imply the existence of ε > 0 and open V ⊂ G such that f |V > ε.
Therefore ∫

f dµ >
∫
ε1V dµ = εµ(V ) > 0

Theorem 103. Let G be a locally compact group. There exists a left Haar measure on G.

Proof. Denote by C the collection of all compact subsets of G and denote by V the collection of all open
neighbourhoods of the identity in G. The idea of the proof is to first construct a function ρ : C → [0,∞) that
is monotonic, finitely additive and satisfies ρ(K) = ρ(gK) for all g ∈ G and K ∈ C. We then use ρ to define an
outer measure and then a measure.

For K ⊂ G compact and A ⊂ G with non-empty interior define

(K : A) = min{n > 0 | ∃ g1, . . . , gn ∈ G,K ⊂ ∪ni=1giA}

Fix a compact set K0 with non-empty interior. Given V ∈ V , define ρV : C → [0,∞) by

ρV (K) =
(K : V )

(K0 : V )

Exercise 70. Show that

a) ρV (K) 6 (K : K0)

b) ρV (gK) = ρV (K)

c) K ⊂ L =⇒ ρV (K) 6 ρV (L)

d) ρV (K ∪ L) 6 ρV (K) + ρV (L)

Let X =
∏
K∈C [0, (K : K0)] endowed with the product topology. By Tychonoff’s Theorem, X is compact. Since

ρV (K) 6 (K : K0), ρV can be identified with an element of X. For each W ∈ V define

D(W ) = {ρV | V ∈ V, V ⊂W} ⊂ X and S =
⋂
W∈V

D(W )

Since X is compact, the set S is non empty. Fix ρ ∈ S (so we have a function ρ : C → [0,∞)).
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Claim 1.

1) ρ(K ∪ L) 6 ρ(K) + ρ(L)

2) K ⊂ L =⇒ ρ(K) 6 ρ(L)

3) K ∩ L = ∅ =⇒ ρ(K ∪ L) = ρ(K) + ρ(L)

4) ρ(gK) = ρ(K)

For fixed K,L ∈ C the map X → R given by x 7→ x(K) + x(L)− x(K ∪ L) is continuous and non-negative at
each point of D(W ). Therefore ρ(K) + ρ(L)− ρ(K ∪ L) > 0. Parts 2 and 4 are similar.
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Lecture 27: Existence of Haar measure

Continuing from last lecture.

Suppose that K1 ∩K2 = ∅. Let V1 and V2 be disjoint open sets with Vi ⊃ Ki.

Exercise 71. Show that there exist U1, U2 ∈ V such that KiUi ⊂ Vi.

Let U = U1 ∩ U2. Then K1U and K2U are disjoint. Therefore, no gU−1 can intersect both K1 and K2. It
follows that for any W ∈ V with W ⊂ U−1 we have ρW (K1 ∪K2) = ρW (K1) + ρW (K2). Therefore, the map
X → R given by x 7→ x(K1) + x(K2)− x(K1 ∪K2) vanishes at each element of D(U−1). Since ρ ∈ (D(U−1)),
part 3 of the claim is established.

We now define an outer measure λ on G first on open sets by

λ(V ) = sup{ρ(K) | K ∈ C,K ⊂ V }

and then on all subsets by
λ(A) = inf{λ(V ) | V open, V ⊃ A}

Exercise 72. Show that λ is an outer measure.

Claim 2. All Borel subsets of G are λ-measurable

As in the proof of the Riesz representation theorem, we show that for open sets U, V ⊂ G we have

λ(U) > λ(U ∩ V ) + λ(U ∩ V c)

Let ε > 0. There is a compact subset K ⊂ U ∩ V such that ρ(K) > λ(U ∩ V ) − ε. Now choose a compact
L ⊂ U ∩Kc such that ρ(L) > λ(U ∩Kc)− ε. Then K and L are disjoint and ρ(L) > λ(U ∩ V c)− ε. Therefore

λ(U) > λ(K ∪ L) > ρ(K ∪ L) = ρ(K) + ρ(L) > λ(U ∩ V ) + λ(U ∩ V c)− 2ε

The establishes the claim.

Let µ be the measure given by restricting λ to BG.

Claim 3. The measure µ is regular.

If V is an open set having compact closure, then

λ(V ) = sup{ρ(K) | K ∈ C,K ⊂ V } 6 ρ(V ) <∞

Given a compact K, there is an open V ⊃ K with compact closure by Lemma 77. Therefore µ(K) 6 µ(V ) <∞.

That µ is outer regular follows from its definition. For inner regularity (on open sets), note that if K ⊂ V with
K compact and V open we have ρ(K) 6 µ(V ) and therefore ρ(K) 6 µ(K). Therefore µ(V ) = sup{ρ(K) |
K ⊂ V } 6 sup{µ(K) | K ⊂ V } 6 µ(V )

The proof of the theorem is complete once we note that µ is translation invariant and non-zero because ρ has
those properties.
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Lecture 28: Uniqueness of Haar measure

Next we turn to the question of uniqueness for Haar measures. If µ is a left Haar measure on a locally compact
group G, then so too is cµ for for any c > 0. We will see that any two left Haar measures on G are related in
this way.

We will need the following result about iterated integrals on LCH spaces.

Lemma 104. Let X and Y be LCH spaces and let µ and ν be regular Borel measures on X and Y respectively.
For h ∈ K(X × Y ) we have ∫

X

∫
Y

h(x, y) dν(y) dµ(x) =

∫
Y

∫
X

h(x, y) dµ(x) dµ(y)

Theorem 105. Let G be a locally compact group. If µ and ν are left Haar measures on G, then there exists
c > 0 such that ν = cµ.

Proof. Fix a non-zero function f ∈ K(G) with f > 0. We will show that for all g ∈ K(G)∫
g dµ∫
f dµ

=

∫
g dν∫
f dν

(∗)

From this it follows that
∫
g dν = c

∫
g dµ with c =

∫
f dν/

∫
f dµ. Since this holds for all g ∈ K(G), the Riesz

representation theorem tells us that ν = cµ.

It remains to establish (∗). Let h ∈ K(G×G) be the function given by

h(x, y) =
g(x)f(yx)∫
f(zx) dν(z)

Note that x 7→
∫
f(zx) dν(z) is continuous by Corollary 99 and non-zero by Lemma 102. Also, supp(h) ⊂

supp(g)× supp(f) supp(g)−1.∫
X

∫
Y

h(x, y) dν dµ =

∫
Y

∫
X

h(x, y) dµ dν (lemma above)

=

∫
Y

∫
X

h(y−1x, y) dµ dν (µ is translation invariant)

=

∫
X

∫
Y

h(y−1x, y) dν dµ (lemma above)

=

∫
X

∫
Y

h(y−1, xy) dν dµ (ν is translation invariant)

For our choice of h this gives∫
X

∫
Y

g(x)f(yx)∫
f(zx) dν(z)

dν dµ =

∫
X

∫
Y

g(y−1)f(x)∫
f(zy−1) dν(z)

dν dµ

∫
X

g(x)∫
f(zx) dν(z)

∫
Y

f(yx) dν dµ =

∫
X

f(x) dµ

∫
Y

g(y−1)∫
f(zy−1) dν(z)

dν

∫
X

g(x) dµ =

∫
X

f(x) dµ

∫
Y

g(y−1)∫
f(zy−1) dν(z)

dν

∫
g dµ∫
f dµ

=

∫
Y

g(y−1)∫
f(zy−1) dν(z)

dν
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Lecture 29: Properties of Haar measure

We now investigate some properties of Haar measure.

Exercise 73. Let µ be a left Haar measure on a locally compact group G. Show that µ is finite if and only if
G is compact.

Let µ be a left Haar measure on G and g ∈ G. Since x 7→ xg is a homeomorphism of G, the formula
µg(A) = µ(Ag) defines a regular Borel measure on G. Moreover, for all h ∈ G and A ∈ BG we have

µg(hA) = µ(hAg) = µ(Ag) = µg(A)

Therefore µg is a left Haar measure and hence µg = ∆(g)µ for some ∆(g) > 0.

Definition 106. The function ∆ : G→ R given by g 7→ ∆(g) is the modular function of G.

If ν is another left Haar measure on G, then ν = cµ and so

νg = cµg = c∆(g)µ = ∆(g)ν

It follows that the modular function does not depend on the particular left Haar measure used.

Example 107. For the group G = {[ a b0 1 ] ∈ GL2(R) | a > 0} 6 GL2(R), the modular function is given by
∆([ a b0 1 ]) = 1/a.

Exercise 74. Given a function f : G→ R and x ∈ G, define fx : G→ R by fx(y) = f(yx−1). Show that∫
fx dµ = ∆(x)

∫
f dµ

Lemma 108. Let G be a locally compact group with modular function ∆.

1) ∆ is continuous.

2) ∆(gh) = ∆(g)∆(h)

Proof. For the continuity statement fix f ∈ K(G) non-negative and non-zero. Then
∫
f dµ > 0 by Lemma 102

and

x 7→
∫
fx dµ = ∆(x)

∫
f dµ

is continuous by Corollary 99.

For the second part note that

∆(gh)µ(A) = µ(Agh) = ∆(h)µ(Ag) = ∆(h)∆(g)µ(A)

Definition 109. A locally compact group G is unimodular if ∆(g) = 1 for all g ∈ G.

Clearly, if G is abelian, then it is unimodular.

Proposition 110. If G/[G,G] is finite, then G is unimodular.

Proof. We saw in the lemma above that ∆ is a continuous homomorphism from G to the abelian group
((0,∞),×). It therefore factors through the abelianisation G/[G,G]. Therefore, if G/[G,G] is finite, then
∆(G) is a finite subgroup of ((0,∞),×). The only finite subgroup is the trivial subgroup.

Proposition 111. Every compact group is unimodular.

Proof. Since ∆ is continuous, it is bounded on the compact G. If g ∈ G satisfied ∆(g) > 1, then ∆(gn) = ∆(g)n

would be unbounded.
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Example 112. The group GL(n,R) is unimodular. This follows from the fact that

µ(A) =

∫
A

1

|det(a)|n
dm(a)

defines a left and right Haar measure on GL(n,R). (Where m is Lebesgue measure on Rn2

.)
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Lecture 30: Polish spaces

Aside from LCH spaces another class on which it is fruitful to consider a measure are Polish spaces.

Definition 113. A Polish space is a topological space that is separable and admits a compatible complete
metric.

Examples 114. 1. Rn

2. compact metric spaces, e.g., {0, 1}N

3. separable Banach spaces, e.g., C([0, 1])

Before developing some properties of Polish spaces, let’s note the following definitions.

Definition 115. A standard Borel space is a measurable space (X,A) (i.e., A is a σ-algebra on X) such that
there exists a Polish topology on X with A the Borel σ-algebra. A Borel probability space is a standard Borel
space equipped with a probability measure.

Amazingly, any two uncountable standard Borel spaces are ‘Borel isomorphic’.

Back to Polish spaces.

Proposition 116. Every closed subspace of a Polish space is Polish. Every open subspace of a Polish space is
Polish.

Proof. Every subspace of a separable metrizable space is separable. What needs to be shown is the the open
(or closed) subspace is completely metrizable. Let d be a complete metric on a Polish space X.

If F ⊂ X is closed, then the restriction of d to F is a complete metric on F .

Suppose that V ( X is open. Define a metric on V by

dV (x, y) = d(x, y) +

∣∣∣∣ 1

d(x, V c)
− 1

d(y, V c)

∣∣∣∣
To see that this metric is compatible with the subspace topology on V note first that the function x 7→ d(x, V c)
is continuous. Consider a sequence of points (xi)i∈N with xi ∈ V . Then xi → x ∈ V with respect to dV , if and
only if xi → x with respect to d.

Now to see that the metric dV is complete. Suppose that (xi)i∈N is a Cauchy sequence in (V, dV ). Since
d(xi, xj) 6 dV (xi, xj), the sequence is also Cauchy in (X, d). It therefore converges in (X, d) to a point x ∈ X.
Note that it must be the case that x ∈ V , since otherwise we would have d(xi, V

c) → 0 and therefore for all
i ∈ N, dV (xi, xj)→∞ as j →∞. Therefore x ∈ V and xi → x with respect to dV .

Corollary 117. Every second countable LCH space is Polish.

Outline of proof. The one-point compactification of X is compact, Hausdorff and second countable. Therefore
X is an an open subset of a Polish space.
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Lecture 31: Borel measures on Polish spaces

Proposition 118. The product of a sequence (finite or infinite) of Polish spaces is Polish.

Proof. Let (Xi)i be a sequence of Polish spaces. Fix a metric di on Xi that is complete and satisfies di(x, y) 6 1
for all x, y ∈ Xi. Define a metric on X =

∏
iXi by

d(x, y) =
∑
i

2−idi(xi, yi)

Then d is compatible with the product topology on
∏
iXi and is complete (exercise!). To show that the space

is separable we show that there is a countable basis for its topology. For each i let Vi be a countable basis for
the topology on Xi. A countable basis for the product topology on X is given by the collection of all sets of
the form

V1 × V2 × · · · × Vk ×Xk+1 ×Xk+2 × · · ·

where Vi ∈ Vi

It follows from the above proposition that NN (sometimes called Baire space) is Polish.

Proposition 119. Every finite Borel measure on a Polish space is regular.

Proof. Suppose that X is a Polish space and µ is a probability measure on (X,BX). Fix a complete metric d
on X. We first show that for all A ∈ BX

µ(A) = inf{µ(V ) | V ⊃ A, V open} (∗)
= sup{µ(F ) | F ⊂ A,F closed}

LetA ⊂ BX be the collection of elements A ∈ BX such that (∗) holds. We show thatA contains the open sets and
is a σ-algebra. From which it follows that A = BX . Let V ⊂ X be open and define Fi = {x ∈ V | d(x, V c) > 1

i }.

V =
⋃
i∈N

Fi

µ(V ) = limµ(Fi) (continuity from below )

So V satisfies (∗).
Now suppose that A ∈ A. We have

µ(Ac) = µ(X)− µ(A)

= µ(X)− sup{µ(F ) | F ⊂ A, closed}
= inf{µ(X)− µ(F ) | F ⊂ A, closed}}
= inf{µ(F c) | F ⊂ A, closed}}
= inf{µ(V ) | V ⊃ A, open}

and similarly

µ(Ac) = µ(X)− inf{µ(V ) | V ⊃ A, open}
= sup{µ(X)− µ(V ) | V ⊃ A, open}}
= sup{µ(F ) | F ⊂ A, closed}}

Therefore Ac ∈ A. Now suppose that (Ai)i∈N ⊂ A and let ε > 0. For each i let Fi ⊂ Ai be closed with
µ(Ai \ Fi) < ε2−(i+1). Let k be such that µ((∪i∈NAi) \ (∪ki=1Ai)) < ε/2. Then we have

µ((∪i∈NAi) \ (∪ki=1Fi)) < ε/2 + ε

k∑
i=1

2−(i+1) < ε

Therefore µ((∪i∈NAi) = sup{µ(F ) | F ⊂ A, closed}. Now choose Vi ⊃ Ai with µ(Vi \Ai) < ε2−i. We have

µ((∪i∈NVi) \ (∪i∈NAi)) 6 µ(∪i∈N(Vi \Ai)) 6
∑
i∈N

µ(Vi \Ai) <
∑

ε2−i = ε
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Therefore µ((∪i∈NAi) = inf{µ(V ) | V ⊃ A, open}, and we have shown that A = BX .

We know turn to showing inner regularity, that is that µ(A) = sup{µ(K) | K ⊂ A, compact} for all A ∈ BX .
Given that the Borel sets satisfy (∗) above, it is enough to show that µ(F ) = sup{µ(K) | K ⊂ F, compact} for
all closed sets F ⊂ X.

Let F ⊂ X be closed. Fix ε > 0 and a dense subset {xi}i∈N ⊂ F . For i, j ∈ N let Bji be the closed set given by

Bji = {y ∈ F | d(xi, y) 6 2−j}

Since the xi are dense, for each j ∈ N we have F ⊂ ∪i∈NBji . Let Nj ∈ N be such that µ(F \ (∪Nji=1B
j
i )) < ε2−j .

Define
K = ∩j∈N ∪i6Nj B

j
i

Note that K is a closed subset of X. Also, for each j, K can be covered by finitely many balls of radius 2−j .
It follows that K is compact. Finally, note that

µ(F \K) = µ(F ∩Kc)

= µ(F ∩ (∪j∈N ∩i6Nj (Bji )
c))

= µ(∪j∈N(F \ (∪i6NjB
j
i )))

6
∑
j∈N

ε2−j = ε
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Lecture 32: Maps between Polish spaces

Theorem 120 (Lusin’s Theorem). Let X and Y be Polish spaces and µ a Borel probability measure on X. If
f : X → Y is Borel, then for all ε > 0 there is a compact K ⊂ X such that f |K is continuous and µ(Kc) < ε.

Proof. Let {Vi}i∈N be a basis for the topology of Y . By hypothesis f−1(Vi) ∈ BX . Fix an ε > 0. Since µ is
regular (by Proposition 119) there is an open Ui ⊃ f−1(Vi) with µ(Ui \ f−1(Vi)) < ε2−(i+1). Define A ∈ BX by

A = X \ ∪i(Ui \ f−1(Vi))

Then f |A is continuous since
(f |A)−1(Vi) = f−1(Vi) ∩A = Ui ∩A

Also,

µ(∪i(Ui \ f−1(Vi))) 6
∑
i

µ(Ui \ f−1(Vi)) 6 ε/2

Since µ is regular, there exists a compact set K ⊂ A such that µ(K) > µ(A)− ε/2 and we have

µ(Kc) = 1− µ(K) < 1 +
ε

2
− µ(A) = 1 +

ε

2
− (1− µ(∪iUi \ f−1(Vi))) < ε

Proposition 121. Let X and Y be Polish spaces and f : X → Y a continuous map. Then f(X) is measurable
with respect to any Borel probability measure on Y .

Proof. Fix compatible metrics complete dX and dY on X and Y respectively and a Borel probability measure
ν on Y . We need to show that there exist E,F ∈ BY such that E ⊂ f(X) ⊂ F and ν(F \ E) = 0.

Exercise 75. Let F ⊂ X be a closed subset and ε > 0. Show that there exist closed non-empty subsets Fi ⊂ F
such that F = ∪iFi, diam(Fi) < ε and diam(f(Fi)) < ε.

Using the above exercise we inductively define a collection of closed sets {Fw ⊂ X | w ∈ N<∞} with the
following properties:

F∅ = X Fw = ∪i∈NFw∧i diam(Fw) < 2−`(w) diam(f(Fw)) < 2−`(w)

Now, for each w ∈ N<∞ let Bw ∈ BY be such that f(Fw) ⊂ Bw ⊂ f(Fw) with ν(Bw) minimal. Then

f(Fw) = ∪i∈Nf(Fw∧i) ⊂ ∪iBw∧i ⊂ ∪if(Fw∧i) ⊂ f(Fw)

Therefore ν(Bw∩∪i∈NBw∧i) = ν(Bw) since Bw∩∪i∈NBw∧i is Borel and therefore can not have measure smaller
than Bw by choice of Bw.

We have ν(Bw \ ∪i∈NBw∧i) = 0. Define A = ∪w∈N<∞(Bw \ ∪i∈NBw∧i). Then A ∈ BY and ν(A) = 0. Let
E = B∅ \A and F = B∅. Then we have E ⊂ F , f(X) ⊂ F and ν(F \ E) = ν(B∅ \ (B∅ \A)) = ν(B∅ ∩A) = 0.
So we will be done if we show that E ⊂ f(X).

Let y ∈ B∅ \A. Then there exists i1 ∈ N such that y ∈ Bi1 . Similarly, since y ∈ Bi1 \A, there exists i2 ∈ N such
that y ∈ Bi1∧i2 . Continuing in this way, there exists a sequence (ij)j∈N such that for all n ∈ N y ∈ Bi1∧i2∧···∧in .
Note that it follows that Fi1∧i2∧···∧in 6= ∅. Let xn ∈ Fi1∧i2∧···∧in . The sequence (xn)n is Cauchy and therefore
convergent to, say, x ∈ X. Since f is continuous and d(y, f(xn)) < 2−n, we have that y = f(x).
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Lecture 33: Brief introduction to ergodic theory

Definition 122. Let (X,A, µ) be a standard Borel probability space. A measurable map T : X → X is called
measure preserving if ∀A ∈ A, µ(T−1(A)) = µ(A). A set A ∈ A is called invariant if T−1(A) = A. The system
(X,A, µ, T ) is called ergodic if every invariant set is either null or co-null.

Example 123. X = {0, 1}N and µ as defined in Lecture 5. Let T : X → X be the ‘left shift’, that is,
T (x)(n) = x(n+ 1). The map T is measure preserving and the system is ergodic.

Poincaré Recurrence Lemma. Let (A,A, µ) be a standard Borel probability space, T : X → X a measure
preserving map, and A ∈ A such that µ(A) 6= 0. Then for almost all x ∈ A, ∃n ∈ N such that Tn(x) ∈ A.

Proof. For n > 0 define An = {x ∈ X | Tn(x) ∈ A and ∀k > n T k(x) /∈ A}. Note that

An ∈ A since An = T−n(A) ∩
(
∪k>nT−k(A)

)c
T−1(An) = An+1

An = T−n(A0)

µ(An) = µ(A0)

Am ∩An = ∅ if m 6= n

As the measure is finite, we conclude that µ(A0) = 0.
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Lecture 34: Maximal ergodic theorem

Define

f∗(x) = sup
n∈N

1

n

n−1∑
k=1

f ◦ T k(x)

E = {x ∈ X | f∗(x) > 0}

Maximal Ergodic Theorem. Let f ∈ L 1(X,A, µ) and define f∗ and E as above. Then∫
E

f dµ > 0

Proof. Done in lecture, and only with the assumption that T is injective.

Corollary 124. Let α ∈ R and define Eα = {x ∈ X | f∗ > α}. Then∫
f dµ > αµ(Eα)

Proof. Apply the theorem to the function f − α.
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Lecture 35: Pointwise ergodic theorem

Our main goal in this introduction to ergodic theory has been to prove the following theorem (also known as
Birkhoff’s Ergodic Theorem).

Pointwise Ergodic Theorem. Let (X,A, µ) be a standard Borel probability space, T : X → X a measure
preserving function, and f ∈ L 1(X,A, µ). Then

1) lim
n→∞

1

n

n−1∑
k=0

f ◦ T k(x) exists for µ-almost all x ∈ X.

2) If T is ergodic, then

lim
n→∞

1

n

n−1∑
k=0

f ◦ T k(x) =

∫
f dµ

Proof. Given α, β ∈ R with α < β define

Eα,β = {x ∈ X | lim inf
1

n

n−1∑
k=0

f ◦ T k(x) < α < β < lim sup
1

n

n−1∑
k=0

f ◦ T k(x)}

We show that µ(Eα,β) = 0.

Note that T (Eα,β) ⊂ Eα,β . Restricting T to Eα,β and applying Corollary 124 gives∫
Eα,β

f dµ > βµ(Eα,β)

Applying the some reasoning to −f we obtain∫
Eα,β

−f dµ > (−α)µ(Eα,β)

Combining the two inequalities above gives µ(Eα,β) = 0.

Now for the second part. It suffices to establish the result for positive f . Since T is ergodic, there exists α ∈ R
such that 1

n

∑n−1
k=0 f ◦ T k(x)→ α for µ-almost all x ∈ X. We want to show that α =

∫
f dµ. Note first that

0 6
∫

1

n

n−1∑
k=0

f ◦ T k dµ =

∫
f dµ (T is measure preserving)

Therefore

α = lim
1

n

n−1∑
k=0

f ◦ T k(x)

=

∫
lim

1

n

n−1∑
k=0

f ◦ T k(x) dµ

6 lim inf

∫
1

n

n−1∑
k=0

f ◦ T k(x) dµ (Fatou)

=

∫
f dµ

We claim that it is also the case that
∫
f dµ 6 α. Let ε > 0. We show that

∫
f dµ < α+ ε.

Let g : X → R be measurable and bounded such that g 6 f and
∫
|f − g| dµ < ε. From the first part of the

current theorem ∃γ ∈ R such that 1
n

∑n−1
k=0 g ◦ T k(x) → γ for almoset all x. Since g is bounded ∃β such that

1
n

∑n−1
k=0 g ◦ T k(x) < β. By the Dominated Convergence Theorem

lim

∫
1

n

n−1∑
k=0

g ◦ T k dµ =

∫
lim

1

n

n−1∑
k=0

g ◦ T k dµ =

∫
γ dµ = γ
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On the other hand, since T is measure preserving∫
1

n

n−1∑
k=0

g ◦ T k dµ =
1

n

n−1∑
k=0

∫
g ◦ T k dµ =

1

n

n−1∑
k=0

∫
g dµ =

∫
g dµ

Therefore
∫
g dµ = γ. Further, ∫

1

n

n−1∑
k=0

g ◦ T k dµ 6
∫

1

n

n−1∑
k=0

f ◦ T k dµ

Taking limits gives γ 6 α and therefore∫
f dµ <

∫
g dµ+ ε = γ + ε 6 α+ ε
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