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Reading mathematics is not like reading novels or history. You need to think slowly about every
sentence. Usually, you will need to reread the same material later, often more than one rereading.

From “The art of proof” by Beck and Geoghegan

You have probably never had a laboratory course in mathematics. Mathematics is not considered
to be an experimental science, whereas physics, chemistry, and biology are. Research for a chemist
can consist of a laboratory experiment designed to validate a conjecture, to suggest a conjecture,
or simply to see what happens. There is little comparable activity in mathematics.

The main business of mathematics is proving theorems.

From “A first course in abstract algebra” by J. B. Fraleigh
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LECTURE 1

Sets and functions

Before beginning with the linear algebra content proper we revise some important general concepts
and notations. Sets and functions are fundamental to linear algebra (and to modern mathematics in
general).

1.1 Sets

A set is a collection of objects called elements (or members) of that set.a The notation x ∈ A means
that x is an element of the set A. The notation x /∈ A is used to mean that x is not a member of A.

Let A and B be sets. We say that A is a subset of (or is contained in B), written A ⊆ B, if every
element of A is also an element of B (i.e., x ∈ A implies x ∈ B). Two sets are equal if they have the
same members. Thus A = B exactly when both A ⊆ B and B ⊆ A. If A ⊆ B and A 6= B then we say
that A is a proper subset of B and sometimes write A ( B.

Sets are often defined either by listing their elements, as in A = {0, 2, 3}, or by giving a rule or
condition which determines membership in the set, as in A = {x ∈ R | x3 − 5x2 + 6x = 0}.

Here are some familiar (mostly mathematical) sets:

� natural numbers: N = {1, 2, 3, 4, . . .}

� integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

� rational numbers: Q = { xy | x, y ∈ Z, y 6= 0}

� real numbers:b R

� (1, 3] = {x ∈ R | 1 < x 6 3}

� Greek alphabet (lower case): {α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ, σ, τ, υ, ϕ, χ, ψ, ω}

In these examples we have the following containment relations: N ⊂ Z ⊂ Q ⊂ R and (1, 3] ⊂ R. Note
that (1, 3] 6⊆ Q because the interval (1, 3] contains real numbers that are not rational. For example,√

2 ∈ (1, 3] but
√

2 /∈ Q.

Example 1.1. Let A = {5m + 1 | m ∈ Z} and B = {5m − 4 | m ∈ Z}. It is clear that A ⊆ Z and
B ⊆ Z. We show that A = B. Suppose that a ∈ A. Then a = 5m + 1 for some m ∈ Z. But then
a = 5(m + 1) − 4, which, since m + 1 ∈ Z, implies that a ∈ B. Therefore A ⊆ B. For the reverse
inclusion, let b ∈ B. Then b = 5m − 4 for some m ∈ Z. But then b = 5(m − 1) + 1, which, since
m− 1 ∈ Z, implies that b ∈ A. Therefore B ⊆ A. Having shown that A ⊆ B and B ⊆ A we conclude
that A = B.

As indicated above, the notation {. . .} is used for set formation. Sets are themselves mathematical
objects and so can be members of other sets. For instance, the set {3, 5} consists of two elements,

aIn fact, more care is needed in the definition of a set. In general one must place some restriction on set formation. For
example, trying to form {x | x is a set} or {x | x /∈ x} can lead to logical paradoxes (Russell’s paradox). This can be dealt
with or excluded in a more formal or axiomatic treatment of set theory. We will be careful to avoid situations where this
difficulty arises.

bIt’s a bit more difficult to define the real numbers precisely, but one can think of them either as the points on the real
line or as (infinite) decimal expansions. In this subject we will be using some standard properties of R, but we will not give
a construction.
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namely the numbers 3 and 5. The set {{3, 5}, {3, 7}, {7}, 3} consists of 4 elements, namely the sets
{3, 5},{3, 7}, {7} and the integer 3. Note that 7 /∈ {{3, 5}, {3, 7}, {7}, 3}. Observe that {7} is the set
whose only element is the number 7. We have that 7 ∈ {7} but 7 6⊆ {7}.

The empty set, denoted by ∅, is the set that has no elements, that is, x ∈ ∅ is never true.

Lemma 1.2

The empty set is a subset of every set.

Proof. Let A be a set. We need to show that the following statement is true:

if a ∈ ∅, then a ∈ A (*)

Let’s suppose that (*) were not true. Then there would be an element a such that a ∈ ∅ is true and
a ∈ A is false. However, since a ∈ ∅ is never true, no such a exists and we conclude that (*) must in
fact be true.

Note that ∅ ∈ {∅} and ∅ ⊆ {∅} but ∅ /∈ ∅.

1.1.1 Operations on sets

The intersection of two sets A and B is the set

A ∩B = {x | x ∈ A and x ∈ B}

The union of A and B is the set

A ∪B = {x | x ∈ A or x ∈ B}

Example 1.3.

1) {2m+ 5 | m ∈ Z} ∪ {2m | m ∈ Z} = Z

2) {2m+ 5 | m ∈ Z} ∩ {2m | m ∈ Z} = ∅

3) {n ∈ N | n is prime} ∩ {2n | n ∈ N} = {2}

The set difference of two sets A and B is the set

A \B = {x | x ∈ A and x /∈ B}

If B ⊆ A, then A \B is called the complement of B in A. If the larger set A is clear from the context,
we sometimes write Bc for the complement of B in A.

Example 1.4.

1) Z \ N = {. . . ,−2,−1, 0}

2) N \ Z = ∅

3) [0, 2] \ N = [0, 1) ∪ (1, 2)

4) N \ [0, 2] = {3, 4, . . . }

Proposition 1.5: De Morgan’s Laws

Let A,B ⊆ X be two sets. Then

1. A ⊆ B if and only if Bc ⊆ Ac

2. (A ∩B)c = Ac ∪Bc

3. (A ∪B)c = Ac ∩Bc

© University of Melbourne 2023
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Given a set A, the power set of A is the set containing all subsets of A. It is denoted P(A).

Example 1.6. For A = {α, β, γ}we have P(A) = {∅, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, {α, β, γ}}.

Let A and B be two sets. We define a set, called the Cartesian product of A and B, by

A×B = {(a, b) | a ∈ A and b ∈ B}

Each element (a, b) of the set A×B is called an ordered pair.

Remark. 1. (a, b) = (a′, b′) precisely when a = a′ and b = b′.

2. If A 6= B, then A×B 6= B ×A.

3. If A = B, we often write A2 in place of A×A.

1.2 Functions

The concept of a function is fundamental in mathematics. Functions on the real numbers are often
described using some sort of a formula (e.g., f(x) = sin(x)), but we want to define the notion of
function in a way that makes sense more generally. The idea is to make a definition out of what is
sometimes called the graph of a function.

Definition 1.7

Let A and B be sets. A function from A to B is a subset f of A × B such that for each a ∈ A
there is exactly one element of f whose first entry is a. We write f(a) = b to mean (a, b) ∈ f . We
write f : A → B to mean that f is a function from A to B. The set A is called the domain of the
function and B is called the codomain of the function.

Remark. 1. Functions are often (but not always!) given by a formula such as f : R→ R, f(x) = x2.
When written in this way, the subset of A×B is understood to be {(a, f(a)) | a ∈ A}.

2. The domain and codomain are part of the defining data of a function. The following two functi-
ons are not the same:

f : R→ R, f(x) = x2

g : [0,∞)→ R, g(x) = x2

Definition 1.8

Let f : A→ B be a function.

1. We say that f is injective if f(a1) = f(a2) implies a1 = a2.

2. We say that f is surjective if for all b ∈ B there exists a ∈ A with f(a) = b.

3. We say that f is bijective if it is both injective and surjective.

Example 1.9.

1) The function f : R→ R, f(x) = x2 is neither injective nor surjective.

© University of Melbourne 2023



1-4 MAST10022 Linear Algebra: Advanced, 2023

2) The function g : [0,∞)→ R, g(x) = x2 is injective but not surjective.

3) The function h : R→ [0,∞), h(x) = x2 is surjective but not injective.

4) The function k : [0,∞)→ [0,∞), k(x) = x2 is bijective.

Example 1.10.
1) f : N× N→ N, f(m,n) = 2m3n is injective (but not surjective).

2) g : N→ Z, g(n) =

{
n
2 if n is even
1−n
2 if n is odd

is bijective.

Let f : A → B and g : B → C be two functions. The composition of f and g is the function
g ◦ f : A → C given by g ◦ f(a) = g(f(a)). Given a set A, the identity function on A is the function
IdA : A → A, IdA(a) = a. If f : A → B is a bijection, then there is a well-defined inverse function
f−1 : B → A having the property that f ◦ f−1 = IdB and f−1 ◦ f = IdA. Indeed, if we think of
functions as sets of ordered pairs and f is a bijection, then the ordered pairs of f−1 are just the pairs
of f in reverse order.

Example 1.11. Consider the function f : N→ Z>2, f(n) = n+1. The corresponding subset of N×Z>2

is
{(1, 2), (2, 3), (3, 4), . . . }

The function f is a bijection. Its inverse is f−1 : Z>2 → N, f−1(n) = n−1 which as a subset of Z>2×N
is

{(2, 1), (3, 2), (4, 3), . . . }

In mathematics one often needs functions of several variables, for example the operation of addition
of real numbers is a function of two variables which assigns to each pair of real numbers (x, y) their
sum x+ y. Thus addition is a function from R2 to R. More generally, a function of n variables from
A to B (or an n-ary function f from A to B) is just a function of the form f : An → B.

1.3 Exercises

1. List five elements belonging to each of the following sets:

(a) {n ∈ N | n is divisible by 5}
(b) P({1, 2, 3, 4, 5})
(c) {n ∈ N | n+ 1 is a prime }

(d) {2n | n ∈ N}
(e) {r ∈ Q | 0 < r < 1}

2. Determine which of the following sets are nonempty and list their elements:

(a) {n ∈ N | n2 = 3}
(b) {n ∈ Z | 3 < |n| < 7}
(c) {x ∈ R | x < 1 and x > 2}

(d) {3n+ 1 | n ∈ N and n 6 6}
(e) {n ∈ N | n is a prime and n 6 15}

3. Consider the sets

A = {n ∈ N | n is odd }
B = {n ∈ N | n is a prime }

C = {4n+ 3 | n ∈ N}
D = {x ∈ R | x2 − 8x+ 15 = 0}

Which are subsets of which? Consider all sixteen possibilities.

4. Consider the sets

© University of Melbourne 2023
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A = {n ∈ N | n ≤ 11}
B = {n ∈ N | n is even and n ≤ 20}

E = {n ∈ N | n is even}

Determine each of the following sets:

(a) A ∪B
(b) A ∩B

(c) A \B
(d) B \A

(e) E ∩B
(f) B \ E

(g) E \B
(h) N \ E

5. Prove (directly from the definitions of the operations) that (A ∪B) ∩Ac ⊆ B.

6. Prove or disprove each of the following: (A proof needs to be a general argument. A single
counterexample is enough to disprove an assertion.)

(a) A ∩B = A ∩ C implies B = C

(b) A ∪B = A ∪ C implies B = C

(c) (A ∩B = A ∩ C and A ∪B = A ∪ C) implies B = C

7. Let S = {0, 1, 2, 3, 4} and T = {0, 2, 4}.

(a) How many elements are there in S × T ? How many in T × S?
(b) List the elements in {(m,n) ∈ S × T |m < n}.
(c) List the elements in {(m,n) ∈ T × S |m < n}.
(d) List the elements in {(m,n) ∈ S × T |m+ n ≥ 3}.
(e) List the elements in {(m,n) ∈ T × S |mn ≥ 4}.
(f) List the elements in {(m,n) ∈ S × S |m+ n = 10}.

8. Let S = {1, 2, 3, 4, 5} and T = {a, b, c, d}. For each question below: if the answer is “yes” give
an example; if the answer is “no” explain briefly.

(a) Are there any injective functions from S to T ?
(b) Are there any injective functions from T to S?
(c) Are there any surjective functions from S to T ?
(d) Are there any surjective functions from T to S?
(e) Are there any bijective functions from S and T ?

9. Let S = {1, 2, 3, 4, 5} and consider the following functions from S to S: 1S(n) = n, f(n) = 6−n,
g(n) = max{3, n} and h(n) = max{1, n− 1}.

(a) Write each of these functions as a set of ordered pairs.
(b) Which of these functions are injective and which are surjective?

10. Consider the two functions from N2 to N defined by f(m,n) = 2m3n and g(m,n) = 2m4n. Show
that f is injective but that g is not injective. Is f surjective? Explain. (You may use that every
n ∈ N with n > 2 has a unique prime factorisation.)

11. Show that if f : A→ B and g : B → C are injective functions, then g ◦ f is injective.

12. Show that composition of functions is associative, that is, h ◦ (g ◦ f) = (h ◦ g) ◦ f.

13. Here are two ‘shift functions’ mapping N to N:

R : N→ N, R(n) = n+ 1

L : N→ N, L(n) = max{1, n− 1}

(a) Show that R is injective but not surjective.
(b) Show that L is surjective but not injective.
(c) Show that L ◦R = IdN but that R ◦ L 6= IdN .

© University of Melbourne 2023



1-6 MAST10022 Linear Algebra: Advanced, 2023

Further reading for lecture 1

The extra material at the end of a lecture can include extra theory or references. It is NOT required!
It is just for those who would like to know more.

� Some references for introductory set theory:

The Art of Proof by Beck and Geoghegan, chapter 5.

Naive Set Theory by Halmos.

Zermelo-Fraenkel set theory on Wikipedia.

Russell’s paradox on Wikipedia.

� The axiomatic definition of the real numbers R and their construction from Q will be covered
in the subject MAST20033 Real Analysis: Advanced (amongst others). An important difference
between Q and R is that every bounded subset of R has a least upper bound. A standard
construction of R from Q is via “Dedekind cuts” which, roughly speaking, carefully adds least
upper bounds to Q.

The Art of Proof by Beck and Geoghegan, chapter 8.

Principles of Mathematical Analysis by Rudin, chapter 1.

� Bijections are used in the definition of the cardinality (or size) of a set. Two sets are said to
have the same cardinality if there exists a bijection from one to the other. The two sets {1, 2, 3}
and {Julia, Ada, Xav} have the same cardinality. It starts to get interesting when we consider
infinite sets. Not all infinite sets have the same cardinality. The sets N, Z, and Q all have the
same cardinality, but R does not. In particular, there is a bijection from N to Q. That there is no
bijection from N to R can be shown with an elegant argument known as ‘Cantor diagonalisa-
tion’.

The Art of Proof by Beck and Geoghegan, chapter 13.

� Terminology: theorem, proposition, lemma, corollary,... what’s the difference?

These are all statements of results that are proven to be true. The difference is a little subjective,
and the choice usually reflects the author’s view of how important or interesting the result is.
Theorems are results that are considered important. Propositions are less important but still
interesting. Lemmas are usually shorter often technical results that are used in proving other
statements. A corollary is a statement that follows easily from a previously proven theorem or
proposition.

© University of Melbourne 2023
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LECTURE 2

Mathematical induction and logic

We continue with some background material on logic and proof by induction that we will need later
when constructing proofs.

2.1 Some useful notation from logic

2.1.1 Propositions

We will be concerned with statements that are either true or false. They are called propositions
(alternatively statements).

Example 2.1.

Propositions:

� 1 + 1 = 2

� 1 + 1 = 3

� For all integers z ∈ Z, if z2 is even then z is even.

� All maths lecturers are named Lawrence.

� Every even integer greater than 2 can be written as the
sum of two primes.

Not propositions:

� 28

� z is even

� ‘potato’

2.1.2 Operations on propositions (connectives)

Given two propositions p and q, we can combine them to form new propositions. The conjunction
(‘and’) of p and q is denoted p ∧ q and is defined to be true if both p and q are true, and false in all
other cases. The disjunction (‘or’) of p and q is denoted p ∨ q and is defined to be false if both p and
q are false, and true in all other cases. For each, the four possible cases can be listed in a truth table.

conjunction
p q p ∧ q
T T T
T F F
F T F
F F F

disjunction
p q p ∨ q
T T T
T F T
F T T
F F F

implication
p q p =⇒ q

T T T
T F F
F T T
F F T

equivalence
p q p ⇐⇒ q

T T T
T F F
F T F
F F T

A statement of the form “if p then q" is called an implication (or a conditional statement). It is
written as p =⇒ q. It is defined by the truth table above. Notice that if p is false, then p =⇒ q is
true whatever the truth value of q. The proof of Lemma 1.2 illustrates why this is the correct choice
of definition to make.

A statement of the form “p if and only if q" is called an equivalence. It is written as p ⇐⇒ q and is
defined by the truth table above.

Given a single proposition p, its negation, denoted ¬p (or∼p) is the statement that is false if p is true
and is true if p is false.



2-2 MAST10022 Linear Algebra: Advanced, 2023

Example 2.2. Let’s construct a truth table for the pro-
position¬p∨q. Compare the last column
with that for p =⇒ q.

p q ¬p ¬p ∨ q
T T F T
T F F F
F T T T
F F T T

We say that two statements p and q are logically equivalent if p is true precisely when q is true.a This
is written p ≡ q.

Example 2.3. We observed in the previous example that (p =⇒ q) ≡ (¬p∨q). To show this explicitly,
we construct a truth table for (p =⇒ q) ⇐⇒ (¬p ∨ q) and observe that the equivalence has value T
for all possible values of p and q.

p q p =⇒ q ¬p ∨ q (p =⇒ q) ⇐⇒ (¬p ∨ q)
T T T T T
T F F F T
F T T T T
F F T T T

The following can be established using truth tables.

Lemma 2.4: De Morgan

Let p and q be two statements. Then

1. ¬(p ∨ q) ≡ (¬p) ∧ (¬q) 2. ¬(p ∧ q) ≡ (¬p) ∨ (¬q)

2.1.3 Quantifiers

The symbol ∀ means ‘for all’ (or ‘for each’ or ‘for every’). It is called the universal quantifier. The
general form of a proposition formed using the universal quantifier is

∀x ∈ A, p(x)

where, for a given x, p(x) is a statement.

The symbol ∃means ‘there exist’ (or ‘for some’). It is called the existential quantifier. The statement

∃x ∈ A, p(x)

is true if there is at least one element x in A such that the statement p(x) is true.

Example 2.5. Here are some statements constructed using these quantifiers.

1. ∀x ∈ R, x2 > 0 (which is true)

2. ∀x ∈ R, (x2 ∈ Q =⇒ x ∈ Q) (which is false)

3. ∃x ∈ R, x2 < 0 (which is false)

4. ∀x ∈ R ∃ y ∈ R, x+ y = 0 (which is true)

5. ∃ y ∈ R ∀ x ∈ R, x+ y = 0 (which is false)

Notice the difference between the final two examples above. Example 4 says that every real number
has an additive inverse. For example, given x = π we can take y = (−1) × π. Example 5 says that
there exists one real number that is the additive inverse of every real number.

aThis is the same as saying that the statement p ⇐⇒ q is always true (i.e., is a tautology).

© University of Melbourne 2023
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Lemma 2.6: Negation of statements involving quantifiers

1. ¬(∀x ∈ A, p(x)) ≡ ∃x ∈ A,¬p(x)

2. ¬(∃x ∈ A, p(x)) ≡ ∀x ∈ A,¬p(x)

Example 2.7.

statement negation

∀x ∈ R, x2 > 0 ∃x ∈ R, x2 < 0

∃ y ∈ R ∀x ∈ R, x+ y = 0 ∀ y ∈ R ∃x ∈ R, x+ y 6= 0

∀x ∈ U, x ∈ ∅ =⇒ x ∈ A ∃x ∈ U, (x ∈ ∅ ∧ x /∈ A)

All maths lecturers are named Lawrence There exists a maths lecturer whose name is not
Lawrence

All flying pigs are purple There exists a flying pig that is not purple

Which one of the two statements in the final row is true?

2.2 Induction

In this subject we will be assuming some standard properties of N such as the distributive law. An
important property that we will use in many proofs is given in the following.

Theorem 2.8: Principle of mathematical induction

Let P (n) be a (true or false) statement that depends on a natural number n ∈ N. In order to prove
that P (n) is true for all values of n ∈ N it is sufficient to prove the following:

1) P (1) is true (‘base case’)

2) ∀n ∈ N, P (n) =⇒ P (n+ 1) (‘induction step’)

To give a proof of this theorem we would need to consider the definition and construction of the
natural numbers. It is equivalent to the so-called ‘well ordering’ property of N. We will not give a
proof, but shall regard the above as a fundamental property of N (and Z).

Here are some examples of using mathematical induction as a method of proof.

Example 2.9.

1) Claim. For all n ∈ N, the number n4 − 6n3 + 11n2 − 6n is divisible by 4.

Proof. Let P (n) be the statement ‘n4 − 6n3 + 11n2 − 6n is divisible by 4’.b We check that both
conditions of the above theorem are satisfied.

Base case: P (1) is the statement ‘1− 6 + 11− 6 is divisible by 4’. Since 1− 6 + 11− 6 = 0 and 0 is
divisible by 4,c the statement P (1) is true.

Induction step: Let n ∈ N and suppose that P (n) is true. That P (n) is true means that there exists
a k ∈ Z such that n4 − 6n3 + 11n2 − 6n = 4k. To show that P (n+ 1) is true we need to show that
(n+ 1)4 − 6(n+ 1)3 + 11(n+ 1)2 − 6(n+ 1) is divisible by 4. Note that

bNotice that P (n) is a statement that is either true or false. It is not a polynomial, nor is it an integer. It would be an
error to write something such as P (n) = n4 − 6n3 + 11n2 − 6n

cEvery integer m ∈ Z divides 0 since 0 = m× 0

© University of Melbourne 2023
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(n+ 1)4 − 6(n+ 1)3 + 11(n+ 1)2 − 6(n+ 1) = (n4 + 4n3 + 6n2 + 4n+ 1)− 6(n3 + 3n2 + 3n+ 1)

+ 11(n2 + 2n+ 1)− 6(n+ 1)

= n4 − 2n3 − n2 + 2n

= (n4 − 6n3 + 11n2 − 6n) + 4n3 − 12n2 + 8n

= 4k + 4(n3 − 3n2 + 2n)

= 4(k + n3 − 3n2 + 2n)

Therefore P (n+ 1) is true. It follows from the principle of mathematical induction (Theorem 2.8)
that P (n) is true for all n ∈ N.

2) Claim. For all n > 4 we have n! > 2n

Proof. Notice that the claim is that the inequality holds for all n > 4. In order to apply Theorem
2.8 in exactly the form given, we define P (n) to be the statement that (n+ 3)! > 2n+3. If we show
that P (n) is true for all n ∈ N, we will have established the claim.

Base case: P (1) is the statement that 4! > 24. Since 4! = 24 > 16 = 24, the statement P (1) is true.

Induction step: Let n ∈ N and suppose that P (n) is true, that is that (n + 3)! > 2n+3. We need to
show that P (n+ 1) is true, that is that ((n+ 1) + 3)! > 2(n+1)+3. We have

((n+ 1) + 3)! = (n+ 4)! =(n+ 4)(n+ 3)!

> (n+ 4)2n+3 (since (n+ 3)! > 2n+3)

> 2× 2n+3 (since n+ 4 > 2)

= 2n+4 = 2(n+1)+3

Therefore P (n+ 1) is true. It follows from the principle of mathematical induction (Theorem 2.8)
that P (n) is true for all n ∈ N.

Here is another version of the induction statement in which the induction step is, in principle, easier
to prove.

Theorem 2.10: ‘complete induction’

Let P (n) be a (true or false) statement that depends on a natural number n ∈ N. In order to prove
that P (n) is true for all values of n ∈ N it is sufficient to prove the following:

1) P (1) is true (‘base case’)

2) ∀n ∈ N, (P (1) ∧ · · · ∧ P (n)) =⇒ P (n+ 1) (‘induction step’)

(i.e., ∀n ∈ N, if P (k) is true for all k 6 n, then P (n+ 1) is true)

Proof. We will show that this theorem follows from Theorem 2.8.d

Let P (n) be as in the statement of the current theorem and assume that both (1) and (2) hold. We
need to show that P (n) is true for all n ∈ N. Let Q(n) be the statement that ‘P(k) is true for all k 6 n’.
We want to check that the statements Q(n) satisfy the conditions stated in Theorem 2.8.

Base case: Since Q(1) is simply the statement that P (1) is true, and were are assuming that (1) holds,
we have that Q(1) is true.

dThe converse is also true: Theorem 2.10 implies Theorem 2.8.
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Induction step: We need to show that if Q(n) is true, then Q(n+ 1) is true. Assume then that Q(n) is
true. That is, that P (1) is true, and P (2) is true, and P (3) is true,. . . , and P (n) is true. In particular, we
have that P (n) is true. Therefore, since we are assuming that (2) (from the current theorem) holds,
we have that P (n+ 1) is true. Therefore, P (1) is true, and P (2) is true, and P (3) is true,. . . , and P (n)
is true, and P (n+ 1) is true. That is, Q(n+ 1) is true.

It follows from the principle of mathematical induction (Theorem 2.8) that Q(n) is true for all n ∈ N.
Therefore, P (n) is true for all n ∈ N.

Example 2.11. Complete induction can be used to prove that every natural number n ∈ N>2 can be
written as a product of primes.

2.3 Exercises

14. Translate the following into mathematical notation.

(a) The square of 10 is 50 and the cube of 5 is 12.

(b) If 7 is an integer, then 6 is not an integer.

15. Construct truth tables for the following statements.

(a) (p ∧ q) ∨ (¬p ∧ ¬q) (b) (¬q ∧ (p =⇒ q)) =⇒ ¬p

16. Translate the following into mathematical notation.

(a) All rational numbers are larger than 6.

(b) There is a real-number solution to x2 + 3x− 7 = 0.

(c) There is a natural number whose cube is 8.

(d) The set of all integers that aren’t multiples of 7.

17. Find the negation of the following propositions.

(a) ∀x ∈ R, x2 = 10

(b) ∃y ∈ N, y < 0

(c) ∃a ∈ N, ∀x ∈ R, ax = 4

(d) ∀y ∈ Q, ∃x ∈ R, xy = 30

18. Let A =

[
1 1
0 1

]
. Use induction to prove that An =

[
1 n
0 1

]
for all n ∈ N.

19. Use induction to show that k4 − 6k3 + 11k2 − 6k is divisible by 4 for all k ∈ N.
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Further reading for lecture 2 (for interest)

� More on induction and well-ordering of N

The Art of Proof by Beck and Geoghegan, chapter 2.

� Introductory logic

The Art of Proof by Beck and Geoghegan, chapter 3.

� Here is a useful minor reformulation of Theorem 2.8. The difference is that we start at any
integer as the base case (in place of 1).

Theorem. Let P (n) be a (true or false) statement that depends on an integer n ∈ Z and let n0 ∈ Z. In
order to prove that P (n) is true for all values of n > n0 it is sufficient to prove the following:

1) P (n0) is true (‘base case’)

2) ∀n ∈ Z>n0 , P (n) =⇒ P (n+ 1) (‘induction step’)

Proof. We proof that this theorem is implied by Theorem 2.8.

Let P (n) and n0 be as in the statement of the current theorem and suppose that (1) and (2) both
hold. For any n ∈ N, define Q(n) to be the statement P (n0 + n− 1). Note that n0 + n− 1 > n0,
since n > 1. We will use Theorem 2.8 to show that Q(n) holds for all n ∈ N.

Base case: Q(1) is the statement P (n0), which is true by condition (1).

Induction step: Suppose that Q(n) is true for some n ∈ N. Then P (n + n0 − 1) is true, and
therefore P (n+ n0) is true by condition (2). Therefore Q(n+ 1) is true.

It follows from the principle of mathematical induction (Theorem 2.8) that Q(n) is true for all
n ∈ N. Therefore P (n) is true for all n > n0.
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LECTURE 3

Matrices

Matrices are a central tool in linear algebra. We recall some definitions including the usual arithmetic
binary operations and the unary operation of transposition

Definition 3.1: Matrix

Let m,n ∈ N. A matrix of size m× n is a rectangular array of numbers having m (horizontal)
rows and n (vertical) columns. The numbers in the array are called the entries of the matrix.
For the moment, the entries are from Z or R or C, but later we will allow other types of entries.

For a matrix A of size m× n, we denote by Aij the entry in the i-th row and j-th column of A

A =


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

 or A = [Aij ]

We denote byMm,n(R) the set of all matrices of size m× n having real entries.
The notationsMm,n(C),Mm,n(Q), and simplyMm,n are used similarly. For the moment, when
F is used it represents one of: Q, R or C. However, all results (and proofs) remain valid for any
fielda.

aWe will see the definition of a field in Lecture 10

Example 3.2. A =

[
π 3.1 0
−1

2 4 2i

]
∈M2,3(C), A12 = 3.1, A21 = −1

2

Definition 3.3

We fix some terminology and notation for particular kinds of matrices.

� A matrix with the same number of rows as columns is called a square matrix

� A matrix with only one row is called a row matrix

� A matrix with only one column is called a column matrix

� A matrix with all elements equal to zero is a zero matrix, eg., [ 0 0
0 0 ], [ 0 0 0

0 0 0 ]
It is often denoted simply by 0 when the size is clear from context.

� A matrix A with Aij = 0 if i 6= j is called a diagonal matrix eg.,
[
2 0 0
0 −1 0
0 0 5

]
� A square matrixA satisfyingAij =

{
1 if i = j

0 if i 6= j
is called an identity matrix. The identity

matrix of size n× n is denoted In. For example, I2 = [ 1 0
0 1 ], I3 =

[
1 0 0
0 1 0
0 0 1

]
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3.1 Operations on matrices

Definition 3.4: matrix addition

Given two matrices of the same sizeA,B ∈Mm,n(F) we defineA+B ∈Mm,n(F) by (A+B)ij =
Aij +Bij . That is, A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

+

 B11 B12 . . . B1n

B21 B22 . . . B2n

...
...

. . .
...

Bm1 Bm2 . . . Bmn

 =

 A11 +B11 A12 +B12 . . . A1n +B1n

A21 +B21 A22 +B22 . . . A2n +B2n

...
...

. . .
...

Am1 +Bm1 Am2 +Bm2 . . . Amn +Bmn


Note. 1. Only matrices of the same size can be added together!

2. The addition Aij +Bij is in the field F.

Example 3.5.
[
π 3.1 0
−1

2 4 2i

]
+

[
0 0 6
2 3 8

]
=

[
π 3.1 6
3
2 7 8 + 2i

]

Definition 3.6: scalar multiplication for matrices

Given a matrix A ∈ Mm,n(F) and k ∈ F, define a matrix kA ∈ Mm,n(F) by (kA)ij = k × Aij .
That is,

k


A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

. . .
...

Am1 Am2 . . . Amn

 =


kA11 kA12 . . . kA1n

kA21 kA22 . . . kA2n

...
...

. . .
...

kAm1 kAm2 . . . kAmn



Example 3.7. 2

[
π 3.1 0
−1

2 4 2i

]
=

[
2π 6.2 0
−1 8 4i

]
Remark. We write A−B to mean A+ (−1)B

There are other useful operations with matrices.

Definition 3.8: matrix multiplication

Given matrices A ∈ Mm,n(F) and B ∈ Mn,p(F) we define their product, AB, to be the matrix in
Mm,p(F) given by

(AB)ij =
n∑
k=1

AikBkj

Note. Two matrices A and B can only be multiplied together (in that order) if the number of columns
of A is equal to the number of rows of B.

Exercise 20. Using the definition of matrix multiplication, show that for any matrix A ∈ Mm,n(F),
B ∈Mn,m(F), and k ∈ F we have:

(a) AIn = A and ImA = A

(b) A(kB) = k(AB)

Example 3.9. 1.
[
π 3.1 0
−1

2 4 2i

]2 5
0 6
7 2

 =

[
2π 5π + 18.6

−1 + 14i 43
2 + 4i

]
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2.

2 5
0 6
7 2

[ π 3.1 0
−1

2 4 2i

]
=

2π − 5
2 26.2 10i

−3 24 12i
7π − 1 29.7 4i


3.
[

1 1
−1 −1

] [
1 −1
−1 1

]
=

[
0 0
0 0

]
Remark. 1. Matrix multiplication is not commutative!

The order matters. For two matrices A and B it’s possible that AB is defined, but that BA is
not. Even when both AB and BA are defined, they are not necessarily equal.

2. Matrix multiplication is associative.
For any A ∈ Mm,n(F), B ∈ Mn,p(F), and C ∈ Mp,q(F) we have (AB)C = A(BC). This can be
proved directly from the definition of matrix multiplication.

Definition 3.10: transpose

Given a matrix A ∈ Mm,n(F) we define its transpose to be the matrix AT ∈ Mn,m(F) given by
(AT )ij = Aji. That is, AT is obtained from A by interchanging the rows and columns of A.

Example 3.11. A =

[
π 3.1 0
−1

2 4 2

]
, AT =

 π −1
2

3.1 4
0 2


Exercise 21. Using the definitions of matrix addition and transpose prove that for allA,B ∈Mm,n(F),
(A+B)T = AT +BT .

Lemma 3.12

Let A ∈Mm,n(F) and B ∈Mn,p(F). Then (AB)T = BTAT .

Proof. Note first that (AB)T and BTAT are both of size p×n. To show that they are equal we need to
show that

∀i ∈ {1, . . . , p} ∀j ∈ {1, . . . , n}, ((AB)T )ij = (BTAT )ij

Let i ∈ {1, . . . , p} and j ∈ {1, . . . , n}. Then

((AB)T )ij = (AB)ji (definition of transpose)

=
n∑
k=1

AjkBki (definition of multiplication)

=
n∑
k=1

BkiAjk (multiplication in F is commutative)

=

n∑
k=1

(BT )ik(A
T )kj (definition of transpose)

= (BTAT )ij (definition of multiplication)
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3.2 Exercises

22. Suppose that A, B, C, and D are matrices with sizes given by:
A ∈M2,3, B ∈M1,3, C ∈M2,2, D ∈M2,1.

Determine which of the following expressions are defined. For those which are defined, give
the size of the resulting matrix.

(a) CA

(b) BD

(c) DB

(d) CDAT
(e) CA+DB

(f) ABTDT + C

23. Give examples of matrices A ∈M3,3(C) such that A is:

(a) a diagonal matrix; that is, Aij = 0 if i 6= j

(b) a scalar matrix; that is, A is a diagonal matrix with Aii = Ajj for all i, j

(c) a symmetric matrix; that is, Aij = Aji for all i, j

(d) an upper triangular matrix; that is, Aij = 0 if i > j

24. Let

A =

 −1 0 1
2 −1 3
0 1 −2

 B =

 0 4 −2
3 1 2
−1 0 1


Find

(a) A+B

(b) 2A− 3B

(c) A− λI (λ ∈ R)

(d) AT
(e) AB

(f) BA

25. Calculate AB, BC, ATCT and (CA)T given that

A =
[

1 3 1
]

B =

 1 2
0 1
3 4

 C =

[
3
1

]

26. Evaluate the following matrix products:

(a)

 3 4 2
1 3 6
7 −1 0

 1 2
0 −1
−1 0


(b)

[
2 2
1 −1

] [
−1 −2

]

(c)
[

7 + i 6 −4 + 3i
]  0

1− i
1



(d)

 0
1
1

 [ 7 6 −4
]

(e)

 3 −6 0
0 2 −2
1 −1 −1

 2
1
1


(f)

 4 3
6 6
8 9

[ 1
2
1
3

]

27. Consider the following matrices:

A =

 2 0 1
3 1 −1
−1 2 1

 B =

 5 0 0
2 3 −1
−2 3 4

 C =

 1 1 −2
2 3 5
0 1 2


Verify that
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(a) A(BC) = (AB)C

(b) (AB)T = BTAT
(c) A(B + C) = AB +AC

28. Find examples of the following:

(a) a non-zero matrix A ∈M2,2(R) with A2 = 0

(b) a matrix B ∈M2,2(R) with B2 = −I2
(c) matrices C,D ∈M2,2(R) with no zero entries but with CD = 0

29. (a) Show that if the matrix productsAB andBA are both defined, thenAB andBA are square
matrices.

(b) Show that if A is an m× n matrix and A(BA) is defined, then B is an n×m matrix.

30. Verify, using appropriate trigonometric identities, that[
cos (θ1) − sin (θ1)
sin (θ1) cos (θ1)

] [
cos (θ2) − sin (θ2)
sin (θ2) cos (θ2)

]
=

[
cos (θ1 + θ2) − sin (θ1 + θ2)
sin (θ1 + θ2) cos (θ1 + θ2)

]

31. Suppose that a 2 by 2 matrix A ∈M2,2(C) satisfies AB = BA for every 2 by 2 matrix B. That is
A satisfies

∀B ∈M2,2(C), AB = BA

In this exercise we show that A must be equal to zI2 for some z ∈ C.

Let A =
[
a b
c d

]
. By considering the two cases B = [ 1 0

0 0 ] and B = [ 0 1
0 0 ], show that a = d and

b = c = 0.

32. Consider the following matrices:

C =

[
1 −1
5 −4

]
D =

1 0 0
0 2 0
0 0 3


By setting up and solving appropriate simultaneous equations, find:

(a) all matrices A ∈M2,2(C) that satisfy AC = CA

(b) all matrices A ∈M3,3(C) that satisfy AD = DA

33. Let A,B ∈Mn,n(C). Suppose that A2 = A. Show that (AB −ABA)2 = 0.
(Note we may not assume that n = 2 nor that AB = BA.)

34. Let A,B ∈Mm,n(C). Suppose that AC = BC for all C ∈Mn,1(C). Show that A = B.
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Further material for lecture 3

� Matrices

Elementary Linear Algebra by Anton and Rorres, §1.3

Linear Algebra Done Right by Axler, §3.C

� Some histrory

Matrices and determinants on MacTutor

� Adjacency matrix of a graph
Given a finite graph with vertices v1, . . . , vn we define a matrix A ∈Mn,n(R) by

Ai,j =

{
1 if the vertices vi and vj are connected by an edge
0 if the vertices vi and vj are not connected by an edge

v3 v2

v1v4

v5
A =


0 1 0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 0
1 1 0 0 0

 A3 =


2 6 1 5 4
6 2 5 1 4
1 5 0 4 2
5 1 4 0 2
4 4 2 2 2



Note. Given any k ∈ N, the i,j-th entry of Ak gives the number of edge paths of length k from
vi to vj . (If you’re feeling adventurous, you could try proving this using induction on k.) For
example, there are six edge paths of length three from v1 to v2 in the above graph.

� A matrix A ∈Mm,n(F) determines (and is determined by) a function

f : {1, . . . ,m} × {1, . . . , n} → F, f(i, j) = Ai,j

The only difference is notation.
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LECTURE 4

Matrix inverses and linear systems

4.1 Inverse of a matrix

Matrices follow many of the algebraic properties that we are familiar with from the real numbers
(such as the distributive law). It’s natural to think about "dividing by a matrix" in the sense of multi-
plying by the multiplicative inverse.

An important property of the real numbers is that every non-zero real number has a multiplicative
inverse, that is, ∀ a ∈ R \ {0} ∃ b ∈ R, ab = 1. Some, but not all, non-zero square matrices have a
multiplicative inverse in the same sense.

Definition 4.1: Matrix inverse

A square matrix A ∈ Mn,n(F) is called invertible if there exists a matrix B ∈ Mn,n(F) such that
AB = In and BA = In. The matrix B is called the inverse of A and is denoted A−1. If A is not
invertible, we say that A is singular.

Remark. Calling B the inverse of A needs some justification. It’s possible to show that there can be at
most one matrix that satisfies the above property. That is, if B,C ∈ Mn,n(F) are such that AB = In
and BA = In and AC = In and CA = In, then B = C.

Example 4.2. 1.
[
2 i
i −1

]−1
=

[
1 i
i −2

]

2.
[

1 1
−1 −1

]
is singular

3.

 0 −3 −2
1 −4 −2
−3 4 1

−1 =

 4 −5 −2
5 −6 −2
−8 9 3



It’s easy to check that the given inverses are correct by simply multiplying and verifying that the
result is the identity matrix. We will describe a method for calculating the inverse of a matrix in a
later section.

Remark. Notice that it follows immediately from the definition that:

1. For A to be invertible it must be square

2. (If it exists) A−1 has the same size as A

3. If A is invertible, then A−1 is invertible and (A−1)−1 = A

4. I−1n = In

We note some other useful results about invertibility.

Lemma 4.3: Product of invertible matrices is invertible

If A and C are invertible matrices of the same size, then AC is invertible and

(AC)−1 = C−1A−1
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Proof. Let A,C ∈ Mn,n(F) be two invertible matrices. We need to verify that C−1A−1 satisfies the
conditions given in the definition of the matrix inverse.

(AC)(C−1A−1) = A(CC−1)A−1 (associativity)

= AInA
−1 (since CC−1 = In)

= AA−1 (since AIn = A)
= In

and, similarly

(C−1A−1)(AC) = C−1(A−1A)C = C−1InC = C−1C = In

Exercise 35. Let A ∈Mn,n(F). For k ∈ N we define Ak to be the product of k copies of A, that is,

Ak = A×A× · · · ×A︸ ︷︷ ︸
k copies

Suppose that A ∈Mn,n(F) is invertible. Show that

(a) (Ak)−1 = (A−1)k for all k ∈ N.

(b) If a ∈ F with a 6= 0, then aA is invertible and (aA)−1 = 1
aA
−1.

(c) AT is invertible and (AT )−1 = (A−1)T .

We will use the following result later.

Lemma 4.4

If a square matrix has a row consisting entirely of zeros, then it is singular.

Proof. Let A ∈ Mn,n(F) be a square matrix with all entries in the i-th row of A equal to zero. That is,
∀j ∈ {1, . . . , n}, Aij = 0. Let B ∈Mn,n(F). For the same fixed i, we have (for all j)

(AB)ij =
n∑
k=1

AikBkj =
n∑
k=1

0×Bkj =
n∑
k=1

0 = 0

Therefore, the i-th row of AB has all entries equal to zero. In particular, (AB)ii 6= 1 and hence
AB 6= In. Therefore, no matrix B can satisfy the properties needed to be the inverse of A.

4.2 Linear Systems

We would like to have an efficient method to solve simultaneous linear equations. Suppose that we
have n vairiables x1, . . . , xn and m linear equations that they should simultaneously satisfy.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
... (∗)

am1x1 + am2x2 + · · ·+ amnxn = bm

This is sometimes called a linear system.
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Letting

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 X =


x1
x2
...
xn

 B =


b1
b2
...
bm


the linear system (∗) can be written as

AX = B (†)

Example 4.5. The linear system below

x+ (1 + i)y + 7z = 1− i
ix+ 2y − z = 2 + i

can be written as[
1 1 + i 7
i 2 −1

]xy
z

 =

[
1− i
2 + i

]

Given A ∈Mm,n(F) and B ∈Mm,1(F) we would like to find all X ∈Mn,1(F) such that the equation
AX = B is satisfied. Thinking about our experience with solving simple equations of the form
2x = 7, our first thought might be to multiply on both sides by A−1. The problem is that A need
not be invertible (or even square). However, if A does happen to be invertible, then we have the
following.

Proposition 4.6

Let A ∈ Mm,m(F) and B ∈ Mm,1(F). If A is invertible, then the equation AX = B has a unique
solution and it is given by X = A−1B.

Proof. First note that A−1B is a solution since AA−1B = ImB = B. Now suppose that X is any
solution. Then we have

AX = B =⇒ A−1AX = A−1B =⇒ ImX = A−1B =⇒ X = A−1B

Therefore, X = A−1B is the only solution.

The general case of a linear system (in which A is not necessarily invertible) is discussed in the next
section. The technique will rest on the following observation. Suppose we have A ∈ Mm,n(F) and
B ∈ Mm,1(F) and an invertible matrix E ∈ Mm,m(F). Define A′ = EA and B′ = EB. Then for all
X ∈Mn,1(F) we have

AX = B ⇐⇒ A′X = B′

The goal will be to arrange for the new linear system A′X = B′ to be as simple as possible.

4.3 Exercises

36. Let a, b, c, d ∈ C.

(a) Suppose that ad − bc 6= 0. Show (using the definition of inverse) that the inverse of the
matrix

[
a b
c d

]
∈M2,2(C) is the matrix

1

ad− bc

[
d −b
−c a

]
∈M2,2(C)

(b) Suppose now that ad− bc = 0.
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i) Show that
[
a b
c d

] [
d −b
−c a

]
= [ 0 0

0 0 ]

ii) Use the above observation to show that the matrix
[
a b
c d

]
has no inverse.

37. Let A ∈ Mn,n(C). Suppose that there exists B ∈ Mn,k(C) such that AB = 0 and B 6= 0. Show
that A is not invertible. (Be careful, A need not be equal to 0.)

38. (a) Show that if a square matrix A satisfies A2 − 4A+ 3I = 0 then A−1 = 1
3(4I −A).

(b) Veify these relations in the case that A = [ 2 1
1 2 ]

39. Let

A =

 1 0 1
2 3 4
−1 0 −2


Show that A−1 = −1

3(A2 − 2A− 4I).

40. Write the following systems of linear equations in the formAX = B. Then, by using the inverse
of A, solve the system (i.e., find X).

(a)
2x− 3y = 3
3x− 5y = 1

(b)

x+ z = −1

2x+ 3y + 4z = 3

−x− 2z = 3

(Your answer to the previous exercise will be useful here.)

41. Suppose A,B, P ∈Mn,n(F) are such that P is invertible and A = PBP−1. Show that

Ak = PBkP−1

(for all k ∈ N).
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Extra material for lecture 4

� Matrix inverse

Elementary Linear Algebra by Anton and Rorres, §1.3

Linear Algebra Done Right by Axler, §3.C

� Uniqueness of matrix inverse

Suppose that B,C ∈Mn,n(F) are such that AB = In and BA = In and AC = In and CA = In.

We would then have AB = AC and

AB = AC =⇒ B(AB) = B(AC) (multiplying on the left by B)
=⇒ (BA)B = (BA)C (associativity)
=⇒ InB = InC (since BA = I)
=⇒ B = C

Therefore, if a matrix does have an inverse, it is unique.

� Linear systems

Elementary Linear Algebra by Anton and Rorres, §1.1
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LECTURE 5

Row operations and elementary matrices

5.1 Row operations

For a linear systemAX = B in which the matrixA is not invertible Proposition 4.6 does not apply. To
handle the general case we introduce the notion of elementary row operations and the corresponding
elementary matrices. They will turn out to be useful in other contexts, including when calculating
the inverse of a matrix.

Given a linear system there are certain operations that can be carried out without changing the set
of solutions. For example, changing the order in which the equations are listed does not alter the set
of solutions. Similarly, multiplying one of the equations by a (non-zero) constant does change the
solutions. This leads us to define the following operations on matrices.

Definition 5.1: Elementary row operations

An elementary row operation on a matrix A ∈Mm,n(F) is one of the following:

1. Interchanging two rows.

2. Multiplying a row by a non-zero element of F.

3. Adding a multiple of one row to another.

Note that applying one of the above row operations does not change the size of the matrix. We
say that two matrices are row equivalentaif one can be obtained from the other by a sequence
of row operations. If A,B ∈Mm,n(F) are row equivalent, we write A ∼ B.

Example 5.2.
[
0 i 2
1 3 −2

]
∼
[
1 0 −2 + 6i
0 1 −2i

]
since one can be obtained from the other as follows

[
0 i 2
1 3 −2i

]
R1↔R2−−−−−→

[
1 3 −2
0 i 2

]
(−i)×R2−−−−−→

[
1 3 −2
0 1 −2i

]
R1−3R2−−−−−→

[
1 0 −2 + 6i
0 1 −2i

]

Definition 5.3

An elementary matrix is a matrix obtained from an identity matrix In by performing a single
elementary row operation.

It follows from the definition that elementary matrices are always square.

Example 5.4. The matrices
[
0 1
1 0

]
,
[
1 0
0 −i

]
, and

[
1 −3
0 1

]
are elementary matrices. To justify this

note that[
1 0
0 1

]
R1↔R2−−−−−→

[
0 1
1 0

]
,

[
1 0
0 1

]
(−i)×R2−−−−−→

[
1 0
0 −i

]
,

[
1 0
0 1

]
R1−3R2−−−−−→

[
1 −3
0 1

]
aRow equivalence is an example of what is called an equivalence relation.
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The connection between elementary matrices and elementary row operations is given by the follo-
wing result.

Lemma 5.5

Let A,B ∈Mm,n(F). Suppose that B is obtained from A by applying a single row operation and
let E ∈ Mm,m(F) be the elementary matrix obtained by applying the same row operation to Im.
Then B = EA.

Proof. We consider the three kinds of row operation separately.

Suppose first that the row operation swaps rows p and q. Then

Eij =


1 if i = j and i /∈ {p, q}
1 if i 6= j and {i, j} = {p, q}
0 otherwise

(EA)ij =

m∑
k=1

EikAkj =


Aij i /∈ {p, q}
Aqj i = p

Apj i = q

Therefore EA = B because this says that EA is obtained from A by swapping rows p and q.

Suppose now that the row operation is to multiply the p-th row by λ ∈ F \ {0}. Then

Eij =


1 if i = j and i 6= p

λ if i = j and i = p

0 otherwise

(EA)ij =

m∑
k=1

EikAkj =

{
Aij i 6= p

λAij i = p

Therefore EA = B in this case also.

Finally, suppose that the row operation replaces row p by itself plus λ ∈ F times row q. Then

Eij =


1 if i = j

λ if i = p and j = q

0 otherwise

(EA)ij =

m∑
k=1

EikAkj =

{
Aij i 6= p

Aij + λAqj i = p

Again, this shows that EA = B.

Corollary 5.6

Elementary matrices are invertible.

Proof. Given any row operation ρ there is a row operation ρ′ which undoes the effect of ρ. Let the
corresponding elementary matrices be E and E′. Then applying the lemma with A = I we have
E′EI = I and EE′I = I . Hence EE′ = I and E′E = I . Therefore E is invertible and E−1 = E′.
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Example 5.7. Considering the row operations and corresponding elementary matrices from Exam-
ples 5.2 and 5.4 we have:

row operation A
ρ−→ B elementary matrix E EA = B[

0 i 2
1 3 −2i

]
R1↔R2−−−−−→

[
1 3 −2
0 i 2

]
E1 =

[
0 1
1 0

] [
0 1
1 0

] [
0 i 2
1 3 −2i

]
=

[
1 3 −2
0 i 2

]
[
1 3 −2
0 i 2

]
(−i)×R2−−−−−−→

[
1 3 −2
0 1 −2i

]
E2 =

[
1 0
0 −i

] [
1 0
0 −i

] [
1 3 −2
0 i 2

]
=

[
1 3 −2
0 1 −2i

]
[
1 3 −2
0 1 −2i

]
R1−3R2−−−−−→

[
1 0 −2 + 6i
0 1 −2i

]
E3 =

[
1 −3
0 1

] [
1 −3
0 1

] [
1 3 −2
0 1 −2i

]
=

[
1 0 −2 + 6i
0 1 −2i

]

Notice that

E3E2E1

[
0 i 2
1 3 −2i

]
= E3E2

[
1 3 −2
0 i 2

]
= E3

[
1 3 −2
0 1 −2i

]
=

[
1 0 −2 + 6i
0 1 −2i

]
The order in which the Ei have been multiplied is important!

Exercise 42. For each of the row operations ρi in Example 5.7 write down a row operation ρ′i that
undoes the effect of ρi. Write down the elementary matrix E′i that corresponds to ρ′. Verify that
EiE

′
i = I2.

Lemma 5.8

Let A,B ∈ Mm,n(F). If A and B are row equivalent, then there exists an invertible matrix
E ∈Mm,m(F) such that B = EA.

Proof. SinceA andB are row equivalent, there is a sequence of elementary row operations that trans-
forms A to B

A
ρ1−→ A1

ρ2−→ A2
ρ3−→ · · · ρk−→ Ak = B

LetEi be the elementary matrix corresponding to the row operation ρi and defineE = EkEk−1 . . . E2E1.
Applying Lemma 5.5 we have

B = EkEk−1 . . . E2E1A = EA

Since each Ei is invertible (Corollary 5.6), E is invertible (Lemma 4.3.)

5.2 Row echelon form

We now define the first version of a "simplified" matrix that will be useful for solving linear systems
and for other applications (such as finding bases and calculating rank).

Definition 5.9: Row echelon form (REF)

The leftmost non-zero entry in a row is called the leading entry of that row.

A matrix is in row echelon form if it satisfies the following conditions:

1. All elements below a leading entry (and in the same column) are zero.

2. For any two non-zero rows, the leading entry of the lower row is further to the right than
the leading entry in the higher row.

3. Any row that consists entirely of zeros is lower than every non-zero row.

© University of Melbourne 2023



5-4 MAST10022 Linear Algebra: Advanced, 2023

Note. Some authors add the condition that to be in row echelon form all leading entries should be
equal to 1. We are not including this requirement for what we call row echelon form. The extra step
is not needed for any of our applications.

Examples 5.10.

[
0 1 −2 3 4

]
and

 2 0 2 3
0 4 1 2
0 0 0 3

 are in row echelon form


0 0 0 2 4
0 0 3 1 6
0 0 0 0 0
2 −3 6 −4 9

 and

 1 0 0 3
0 0 0 3
0 4 1 2

 are not in row echelon form

5.3 Exercises

43. For each of the following row operations find the corresponding elementary matrix.

(a)
[

1 2
3 4

]
R2−3R1−−−−−→

[
1 2
0 −2

]
(b)

[
1 2 5
3 4 6

]
R2−3R1−−−−−→

[
1 2 5
0 −2 −9

]

(c)

1 2
3 4
5 6

 R2↔R3−−−−−→

1 2
5 6
3 4


(d)

3 1 4
1 5 9
2 6 5

 R2×(−2)−−−−−→

 3 1 4
−2 −10 −18

2 6 5


44. Let A ∈ M3,5(C). Suppose that B is obtained from A by the following sequence of row opera-

tions in the given order.

1) R1 ↔ R2 2) R3 − 2R1 3) R1 × 3

Find a single matrix E such that B = EA.

45. Which of the following matrices are in row echelon form?

(a)


0 0 0 0
1 0 2 1
0 0 1 2
0 0 0 1


(b)

 1 2 3 4
0 1 1 1
0 0 1 1



(c)

 2 4 1 0
0 0 2 1
0 0 0 3



(d)

 1 0 0
0 1 1
0 0 0



(e)
[

1 0 3 1
0 1 2 4

]

(f)


1 3 0 2 0
0 0 2 2 0
0 0 0 0 0
0 0 0 1 4


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Extra material for lecture 5

� row operations, row echelon form

Elementary Linear Algebra by Anton and Rorres, §1.1, §1.5

� equivalence relations

The Art of Proof by Beck and Geoghegan, §6.1.

� column operations

Elementary column operations can be defined in way analogous to row operations. The ele-
mentary matrices corresponding to column operations are multiplied on the right rather than
on the left. Here’s an example to illustrate.[

2 1 3
5 4 6

]
C1↔C2−−−−−→

[
1 2 3
4 5 6

]
C2−2C1−−−−−→
C3−3C1

[
1 0 0
4 −3 −6

]
C3−2C2−−−−−→

[
1 0 0
4 −3 0

]
[
2 1 3
5 4 6

]0 1 0
1 0 0
0 0 1

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1

 =

[
1 0 0
4 −3 0

]
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LECTURE 6

Gaussian elimination and types of solution set

We look at how to solve a linear system using ‘Gaussian elimination’ to put a corresponding matrix
into row echelon form. We also look at how to determine if a linear system has no solutions, a unique
solution, or more than one solution.

6.1 Gaussian elimination

Any matrix can be put into row echelon form by performing a sequence of row operations as follows.

Algorithm 6.1: Gaussian eliminationa(To put a matrix into REF)

1. Consider the first column that is not all zeros. Interchange rows (if necessary) to bring a
non-zero entry to the top of that column. (The ‘leading entry’.)

2. Add suitable multiples of the top row to lower rows so that all entries below the leading
entry are zero.

3. Start again with Step 1 applied to the matrix without the first row.
(stop if there are no more rows)

Example 6.2. Here’s an example of applying the above procedure. It’s a good idea to record the row
operations being used at each step.

3 2 −1 −15
1 1 −4 −30
3 1 3 11
3 3 −5 −41

 R2− 1
3R1

−−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

3 1 3 11
3 3 −5 −41

 R3−R1−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

0 −1 4 26
3 3 −5 −41

 R4−R1−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

0 −1 4 26
0 1 −4 −26


R3+3R2−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

0 0 −7 −49
0 1 −4 −26

 R4−3R2−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

0 0 −7 −49
0 0 7 49


R4+R3−−−−−→


3 2 −1 −15
0 1

3
−11
3 −25

0 0 −7 −49
0 0 0 0



The final matrix is in row echelon form. All matrices above are row equivalent to one another.

6.2 Using Gaussian elimination to solve a linear system

Given A ∈ Mm,n(F) and B ∈ Mm,1(F), to solve the linear system AX = B, we can proceed as
follows.

1. Form a matrix [A|B] ∈Mm,n+1(F) by adjoining B as an extra (final) column to A.
(This matrix [A|B] is sometimes called an augmented matrix.)

aNamed after the 19th century German mathematician Carl Friedrich Gauss. The technique had been previously disco-
vered by Chinese mathematicians during the Han dynasty (206 BCE – 220 CE).
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2. Apply Gaussian elimination starting with [A|B] to obtain a row echelon matrix [A′|B′].

3. Solve the new, simplified set of equationsA′X = B′ starting from the last equation and working
up. (This is sometimes called back substitution)

Remark. Why does this work? We know that [A′|B′] = E[A|B] for some invertible matrix E by
Lemma 5.8. Therefore A′ = EA and B′ = EB. Therefore AX = B and A′X = B′ have the same set
of solutions (see the comment at the end of section 4.2).

Example 6.3. Let’s use this technique to find all solutions to the following linear system.

3x+ 2y − z = −15
x+ y − 4z = −30

3x+ y + 3z = 11
3x+ 3y − 5z = −41

(∗)

Let A =


3 2 −1
1 1 −4
3 1 3
3 3 −5

, B =


−15
−30
11
−41

.

Then

[A|B] =


3 2 −1 −15
1 1 −4 −30
3 1 3 11
3 3 −5 −41

 ∼


3 2 −1 −15
0 1

3
−11
3 −25

0 0 −7 −49
0 0 0 0

 (as shown in Example 6.2 )

The new linear system is
3x+ 2y − z = −15

1
3y −

11
3 z = −25
−7z = −49

We then get

z = 7 (from the last equation)
y = 11z − 75 (from the second last equation)

= 2 (since z = 7)
x = −2

3 y + 1
3z − 5 (from the first equation)

= −4 (since y = 2 and z = 7)

So the original linear system (∗) has a unique solution and it is given by (x, y, z) = (−4, 2, 7).

6.3 Inconsistent linear systems

Definition 6.4

A linear system is called inconsistent if it has no solutions.

Example 6.5. Find all solutions of the system

x− y + z = 3
x− 7y + 3z = −11

2x+ y + z = 16
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We form the matrix [A|B] and reduce to row echelon form.

[A|B] =

1 −1 1 3
1 −7 3 −11
2 1 1 16

 R2−R1−−−−−→
R3−2R1

1 −1 1 3
0 −6 2 −14
0 3 −1 10

 R3+ 1
2
R2

−−−−−→

1 −1 1 3
0 −6 2 −14
0 0 0 3

 = [A′|B′]

The new linear system is
x− y + z = 3
− 6y + 2z = −14

0 = 3

This system is clearly never satisfied no matter what values of x, y, z we take!
The linear system is inconsistent.

Note. As we saw in the above example, a linear system is inconsistent if there is a row of the form
[0 · · · 0 | k] (with k 6= 0) in the row echelon form. Given the way in which row echelon form is defined,
such a row occurs precisely when there is a leading entry in the final column of the row echelon form
matrix [A′|B′]. We shall see in the next section that this is the only situation in which a linear system
is inconsistent.

6.4 Consistent linear systems

Definition 6.6

A linear system is called consistent if it has at least one solution.

In Example 6.3 we saw a consistent linear system for which there was a unique solution. Here is an
example in which there turns out to be more than one solution.

Example 6.7. Find all solutions of the system

x+ y + z = 4
2x+ y + 2z = 9
3x+ 2y + 3z = 13

[A|B] =

1 1 1 4
2 1 2 9
3 2 3 13

 R2−2R1−−−−−→
R3−3R1

1 1 1 4
0 −1 0 1
0 −1 0 1

 R3−R2−−−−→

1 1 1 4
0 −1 0 1
0 0 0 0


The new system is

x+ y + z = 4
− y = 1

From which we get

y = −1 (from the last (non -trivial) equation)
x = 4− y − z (from the first equation)

= 5− z

For any value of z, we get a solution by taking y = −1 and x− 5− z. That is, the set of all solutions is

S = {(5− z,−1, z) | z ∈ F}

© University of Melbourne 2023



6-4 MAST10022 Linear Algebra: Advanced, 2023

Lemma 6.8

Let A ∈ Mm,n(F) and B ∈ Mm,1(F). Suppose that [A|B] ∼ [A′|B′] and that [A′|B′] is in row
echelon form. Define r ∈ N ∪ {0} to be the number of non-zero rows in [A′|B′].

1. The systemAX = B is consistent if and only if there is no leading entry in the final column
of [A′|B′].

Suppose now that the system is consistent.

2. Then r 6 n and the full solution will require n− r parameters.

Sketch of proof. We have already noted above that if there is a leading entry in the final column, then
the system is inconsistent. If there is no leading entry in the final column, then a solution can always
be found using back substitution as above. The linear system A′X = B′ yields r (non-trivial) equa-
tions. For each equation we can write the variable xi, that corresponds to the leading entry, in terms
of the xj having j > i. The n− r variables that do not correspond to leading entries can be chosen as
parameters.

Note. 1. If r = n (as in Example 6.3), the solution requires no parameters. That is, there is a unique
solution.

2. If r < n, then there will be more than one solution. If F is infinite (eg, Q, R or C), there will be
infinitely many solutions.

6.5 Exercises

46. Use Gaussian elimination to put the following matrices into row echelon form.

(a)

 1 1 −8 −14
3 −4 −3 0
2 −1 −7 −10

 (b)

 0 1 2 3 4
0 0 5 7 6
0 0 5 2 4


47. Solve the linear system whose augmented matrix can be reduced to the following row echelon

form. 
1 −3 4 7
0 1 2 2
0 0 1 5
0 0 0 0


48. Use Gaussian elimination to solve the following linear systems of equations:

(a) x+ z = 0
x+ y = 0
y + z = 0

(b) 2x+ 3y = 1
x+ y = 1

(c) x− y + z = 1
2x+ y − z = 3
3x+ 2y − 3z = 2

49. Solve the systems of linear equations whose augmented matrices can be reduced to the follo-
wing row echelon forms.

(a)

 1 −3 7 1
0 1 4 0
0 0 0 1

 (b)
[

1 2 3 4
0 0 0 0

]

50. Use Gaussian elimination to solve the following linear systems of equations:
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(a) 4x− 2y = 5
−6x+ 3y = 1

(b) x− 4y = 1
−2x+ 8y = −2

(c) x1 + x2 + x3 + x4 = 1
2x1 + 3x2 + 3x3 = 1
−x1 − 2x2 − 2x3 + x4 = 0

− x2 − x3 + 2x4 = 1

51. Determine the conditions on a, b, c ∈ C so that the system is consistent:

(a) x+ 2y − 3z = a
3x− y + 2z = b
x− 5y + 8z = c

(b) x+ 2y + 4z = a
2x+ 3y − z = b
3x+ y + 2z = c

52. Determine the values of the constant k ∈ C for which the system has

(i) no solutions,

(ii) a unique solution,

(iii) an infinite number of solutions.

Find the solutions when they exist.

(a) 2x+ 3y + z = 11
x+ y + z = 6

5x− y + 11z = k

(b) x1 + x3 = 1
x2 + x3 = 2

2x2 + kx3 = k

(c) x+ y + 2z = 9
x− y + z = 2

4x+ 2y + (k − 22)z = k

53. Determine the values for a, b and c for which the parabola y = ax2 + bx+ c passes through the
points:

(a) (0,−3), (1, 0) and (2, 5) (b) (−1, 1), (1, 9) and (2, 16)
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Extra material for lecture 6

� Gaussian elimination

Elementary Linear Algebra by Anton and Rorres, §1.2

� A homogeneous linear system is a system of linear equations where each equation is
equal to 0. Otherwise, the system is called non-homogeneous. We explore the relations-
hip between the solution set of a non-homogeneous linear system and the solution set of
the associated homogeneous linear system.
Let A ∈Mm,n(F) and B ∈Mm,1(F). Define

Shom = {X ∈Mn,1(F) | AX = 0} and Sinhom = {X ∈Mn,1(F) | AX = B}

Let Xp ∈ Sinhom be a fixed solution of the non-homogeneous system. Show that

Sinhom = Xp + Shom

(Notation: Xp + Shom = {Xp +X | X ∈ Shom})
For example, the following linear system is homogeneous.

x+ y + 3z = 2

x− y + 7z = 4

A particular solution is (x, y, z) = (3,−1, 0)

The corresponding homogeneous system is

x+ y + 3z = 0

x− y + 7z = 0

The general solution to the homogeneous system is:

(x, y, z) = t(−5, 2, 1) t ∈ R

The general solution to the inhomogeneous system is:

(x, y, z) = (3,−1, 0) + t(−5, 2, 1) t ∈ R
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LECTURE 7

Reduced row echelon form and matrix inverses

7.1 Reduced row echelon form

We further refine the simplified form of a matrix. For linear systems this corresponds to performing
back substitution while still in matrix form. The new form has the advantage of being uniquely
determined by the original matrix.

Definition 7.1: Reduced row echelon form (RREF)

A matrix is in reduced row echelon form if the following three conditions are satisfied.

1. It is in row echelon form.

2. Each leading entry is equal to 1 (sometimes called a leading 1).

3. In each column containing a leading 1, all other entries are zero.

Example 7.2. 1)
[

1 −2 3 −4 5
]
,

[
1 2 + i 0
0 0 1

]
,

[
0 1 2 + i 0
0 0 0 1

]
are in RREF

2)

 1 0 1− i 3
0 1 1 2
0 0 0 i

 ,


1 0 0 2 4
0 1 0 1 6
0 0 0 0 0
0 0 1 −4 9

 are not in RREF

Any matrix can be put into reduced row echelon form as follows.

Algorithm 7.3: Gauss-Jordan elimination (To put a matrix into RREF)

1. First use Gaussian elimination (Algorithm 6.1) to put the matrix in row echelon form.

2. Multiply rows by appropriate numbers (type 2 row ops) to create the leading 1’s.

3. Working from the bottom row upward, use row operations of type 3 to create zeros above
the leading entries.

Example 7.4.
−2 0 6 8 14
1 0 −5 −8 −13
2 0 −2 0 −2
2 0 −5 −6 −11

 R2+ 1
2
R1

−−−−−→
R3 +R2

R4 +R1


−2 0 6 8 14
0 0 −2 −4 −6
0 0 4 8 12
0 0 1 2 3

 R3+2R2−−−−−→
R4+ 1

2
R2


−2 0 6 8 14
0 0 −2 −4 −6
0 0 0 0 0
0 0 0 0 0


− 1

2
R1

−−−−→
− 1

2
R2


1 0 −3 −4 −7
0 0 1 2 3
0 0 0 0 0
0 0 0 0 0

 R1+3R2−−−−−→


1 0 0 2 2
0 0 1 2 3
0 0 0 0 0
0 0 0 0 0


The final matrix is in reduced row echelon form.
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Consider the linear system

−2x1 + 6x3 + 8x4 = 14

x1 − 5x3 − 8x4 = −13

2x1 − 2x3 = −2

2x1 − 5x3 − 6x4 = −11

The above row operations tell us that the set of solutions is the same as that for the system

x1 + 2x4 = 14

x3 + 2x4 = 3

This gives

x1 = −2x4 + 14

x3 = −2x4 + 3

We choose s = x2 and t = x4 as parameters (since the corresponding columns have no leading entry).
The set of solutions is given by

{(−2t+ 14, s,−2t+ 3, t) | s, t ∈ F}

7.2 Using row operations to find the inverse of a matrix

Our method for finding the inverse of a matrix is based on the following result.

Theorem 7.5

Let A ∈Mn,n(F). Then A is invertible if and only if A ∼ In.

Proof. Suppose first that A ∼ In. By Lemma 5.8 there is an invertible matrix E ∈ Mn,n(F) such that
EA = In. Since E is invertible we have

EA = In =⇒ E−1EA = E−1In =⇒ A = E−1

Therefore A is invertible (since E−1 is invertible).

Now suppose that A is invertible. We want to show that A ∼ In. Let R ∈ Mn,n(F ) be a matrix in
reduced row echelon form such that A ∼ R (existence is ensured by Algorithm 7.3). By Lemma 5.8
there is an invertible matrix E ∈ Mn,n(F ) such that EA = R. Since both E and A are invertible, R
is invertible (Lemma 4.3). Since R is invertible it does not have a zero row (Lemma 4.4). A square
matrix that is in reduced row echelon form and does not have a zero row must be the identity matrix.
Therefore, R = In and hence A ∼ In.

Corollary 7.6

If A ∈Mn,n(F) is invertible, then it can be written as a product of elementary matrices.

Exercise 54. Suppose that A,B ∈ Mn,n(F) are such that AB = In. Show that A is invertible and that
A−1 = B. (Hint: As in the above proof, let E ∈Mn,n(F) be invertible such that R = EA is in reduced
row echelon form. Show that RB = E and that therefore R does not have a row of zeros. Deduce
that R = In.)
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Using the idea of the above theorem (and its proof) we have a way of finding the inverse of a square
matrix A ∈ Mn,n(F). First we use row operations to put A into reduced row echelon form R. If
R 6= In, then A is not invertible. If R = In, then A is invertible and its inverse is the matrix E. A
convenient way of doing this is the following.

Algorithm 7.7: Finding the inverse of a square matrix (if it exists)

Let A ∈Mn,n(F).

1. Form the matrix [A|In] ∈Mn,2n(F)

2. Use row operations to put the matrix into reduced row echelon form

[A | In] ∼ [R |B]

(where R,B ∈Mn.n(F))

3. If R 6= In, then A in not invertible.
If R = In, then A is invertible and A−1 = B

Remark. If we have row operations ρi (with corresponding elementary matrices Ei) such that

[A|In]
ρ1−→ [A1|B1]

ρ2−→ [A2|B2]
ρ3−→ · · · ρk−→ [In|B]

then we have A−1 = B = Ek . . . E2E1.

Example 7.8. Let’s find the inverse of the matrix A =

 1 2 1
−1 −1 1
0 1 3

 ∈M3,3(C).

[A|I3] =

 1 2 1 1 0 0
−1 −1 1 0 1 0
0 1 3 0 0 1

 R2+R1−−−−→

1 2 1 1 0 0
0 1 2 1 1 0
0 1 3 0 0 1


R3−R2−−−−→

1 2 1 1 0 0
0 1 2 1 1 0
0 0 1 −1 −1 1

 At this point we know
that the matrix A is in-
vertible.

R1−R3−−−−−→
R2−2R3

1 2 0 2 1 −1
0 1 0 3 3 −2
0 0 1 −1 −1 1


R1−2R2−−−−−→

1 0 0 −4 −5 3
0 1 0 3 3 −2
0 0 1 −1 −1 1



Therefore A−1 =

−4 −5 3
3 3 −2
−1 −1 1

. In addition, from the row operations used we have that

−4 −5 3
3 3 −2
−1 −1 1

 =

1 −2 0
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1

1 0 −1
0 1 0
0 0 1

1 0 0
0 1 0
0 −1 1

1 0 0
1 1 0
0 0 1



7.3 Exercises

55. For each of the following linear systems, use row reduction to decide whether the system has
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(i) no solution, (ii) a unique solution, (iii) more than one solution.

Solve the systems where possible.

(a) 3x− 2y + 4z = 3
x− y + z = 7

4x− 3y + 5z = 1

(b) x+ 2y − z = −1
2x+ 7y − z = 3
−3x− 12y + z = 0

(c) 3x− 4y + z = 2
−5x+ 6y + 10z = 7

8x− 10y − 9z = −5

(d) 2x− 3y + 5z = 10
4x+ 7y − 2z = −5
2x− 4y + 25z = 31

56. Using row reduction, find the set of solutions to the following system of equations:

2x1 + x2 + 3x3 + x4 = 3
x1 + x2 + x3 − x4 = 6
x1 − x2 + 3x3 + 5x4 = −12

4x1 + x2 + 7x3 + 5x4 = −3

57. Determine the values of k ∈ C for which the system of equations has

(i) no solution,

(ii) a unique solution,

(iii) more than one solution.

(a) kx+ y + z = 1
x+ ky + z = 1
x+ y + kz = 1

(b) 2x+ (k − 4)y + (3− k)z = 1
2y + (k − 3)z = 2

x− 2y + z = 1

(c) x+ 2y + kz = 1
2x+ ky + 8z = 3

(d) x − 3z = −3
2x+ ky − z = −2
x+ 2y + kz = 1

Find the solutions when they exist.

58. Determine the conditions on a, b, c ∈ C so that the system has a solution:

(a) x+ 2y − 3z = a
3x− y + 2z = b
x− 5y + 8z = c

(b) x− 2y + 4z = a
2x+ 3y − z = b
3x+ y + 2z = c

Find the solutions when they exist.

59. The equation of an arbitrary circle in the x-y plane can be written in the form

x2 + y2 + ax+ by + c = 0

where a, b, c are real constants. Find the equation of the unique circle that passes through the
three points (−2, 7), (−4, 5), (4,−3).

60. A traveller who just returned from Europe spent the following amounts.

For housing: $30/day in England, $20/day in France, $20/day in Spain

For food: $20/day in England, $30/day in France, $20/day in Spain

For incidental expenses: $10/day in each country.

The traveller’s records of the trip indicate a total of $340 spent for housing, $320 for food, $140
for incidental expenses while travelling in these countries. Calculate the number of days spent
in each country or show that the records must be incorrect.
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61. Frank’s, Dave’s and Phil’s ages are not known, but are related as follows. The sum of Dave’s
and Phil’s ages is 13 more than Frank’s. Frank’s age plus Phil’s age is 19 more than Dave’s age.
If the sum of their ages is 71, how old are Frank, Dave and Phil?

62. Consider a triangle with vertices x, y and z as shown. Show that there
exist unique points cx, cy, cz (on the sides indicated) with the property
that:
d(x, cy) = d(x, cz) and d(y, cx) = d(y, cz) and d(z, cx) = d(z, cy).

x y

z

cz

cy
cx

63. Consider the traffic flow diagram on the right. The
number of cars x1, x2, x3 and x4 entering an inter-
section must equal the number of cars leaving the
intersection.
Determine the smallest nonnegative values of
x1, x2, x3 and x4.

64. Following the algorithm described in lectures, reduce the following matrices to reduced row
echelon form. Keep a record of the elementary row operations you use.

(a)

 4 −8 16
1 −3 6
2 1 1


(b)

[
2 + i 2 + i 5 6 + i
1− 2i 1− 2i −2 + i 2− i

]

(c)


1 2
−1 1

2 2
0 2



(d)

 0 2 1 4
0 0 2 6
1 0 −3 2


(e)

 1 2 0 1
2 4 1 1
3 6 1 1



(f)


0 0 2 7
1 −1 1 1
−1 1 −4 5
−2 2 −5 4


65. For each of the following matrices, decide whether or not the matrix is invertible and, if it is,

find the inverse.

(a)
[

2 0
−3 1

]
(b)

1 2 −1
0 1 2
0 0 1

 (c)

 1 −1 0
−1 1 1
0 −1 1

 (d)


1 0 1 0
0 1 0 1
0 0 1 1
1 1 0 0


66. Consider the matrix A =

[
1 0
−5 2

]
.

(a) Write A−1 as a product of two elementary matrices.

(b) Write A as a product of two elementary matrices.

67. (a) Find the inverse of the matrix

A =


2 1 1 1
2 3 2 2
4 2 4 3
6 3 3 5


(b) Check your answer by matrix multiplication.
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(c) Write A as a product of elementary matrices.

(d) Use your answer to part (a) to solve the system

2x+ y + z + w = 3

2x+ 3y + 2z + 2w = 5

4x+ 2y + 4z + 3w = 6

6x+ 3y + 3z + 5w = 9
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Extra material for lecture 7

� reduced row echelon form

Elementary Linear Algebra by Anton and Rorres, §1.2, §1.5

� calculating matrix inverses

Elementary Linear Algebra by Anton and Rorres, §1.5
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LECTURE 8

Rank and determinant of a matrix

8.1 Uniqueness of the reduced row echelon form

Proposition 8.1

The reduced row echelon form of a matrix is unique.

The proof is presented (for completeness) in an appendix at the end of this lecture.

Note that this is the same as saying that if R and S are two matrices each in RREF and if R ∼ S, then
we must have R = S.

8.2 Rank of a matrix

Knowing that the reduced row echelon form of A is unique enables us to make the following defini-
tion.

Definition 8.2

The rank of a matrix is the number of non-zero rows in its reduced row echelon form. We denote
the rank of a matrix A by rank(A).

Remark. 1. Although the row echelon form is not unique, it has the same number of non-zero rows
as its reduced row echelon form.

2. If two matrices are row equivalent, then they have the same rank.

3. If A has m rows, then rank(A) 6 m.

4. If a square matrix R ∈Mn,n(F) has rank n and is in reduced row echelon form, then R = In.

Proposition 8.3

Let A ∈Mn,n(F). Then A is invertible if and only if rank(A) = n.

Proof. Assume first thatA is invertible. ThenA ∼ In by Theorem 7.5. Therefore rank(A) = rank(In) =
n.

For the converse, assume now that rank(A) = n. Let R be the reduced row echelon form of A. Then
rank(R) = rank(A) = n. Therefore R is an n × n matrix, it is in reduced row echelon form and has
no zero rows (since it has rank n). It must be the case that R = In because In is the only n× n matrix
that is in RREF and has rank n. Therefore A is invertible by Theorem 7.5.

8.3 Determinant

Recall that for a 2 × 2 matrix
[
a b
c d

]
the quantity ad − bc can be used to determine whether or not

the matrix is invertible. It is also equal to the area of the parallelogram defined by the vectors
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(a, b), (c, d) ∈ R2. The determinant is a generalisation of this quantity to n× n matrices.

The determinant is a number (i.e., element of F) associated to a square matrix (inMn,n(F)). It gives
a lot of information about the matrix. For example, a square matrix is invertible precisely when its
determinant is non-zero.

Rather than beginning with an explicit formula for the determinant, we list its important properties.
The first three of which are, in fact, enough to specify the value of the determinant.

Properties of determinants

Given a matrix A ∈Mn,n(F), the determinant of A is a number det(A) ∈ F that satisfies:

1. det(In) = 1

2. If B is obtained from A by swapping two rows, then det(B) = −det(A).

3. The determinant depends linearly on the first row, that is:

(a) det


kA11 kA12 · · · kA1n

A21 A22 · · · A2n

...
An1 An2 · · · Ann

 = k det


A11 A12 · · · A1n

A21 A22 · · · A2n

...
An1 An2 · · · Ann



(b) det


A11 +A′11 A12 +A′12 · · · A1n +A′1n

A21 A22 · · · A2n

...
An1 An2 · · · Ann

 = det


A11 A12 · · · A1n

A21 A22 · · · A2n

...
An1 An2 · · · Ann

+det


A′11 A′12 · · · A′1n
A21 A22 · · · A2n

...
An1 An2 · · · Ann



The properties above can be used to calculate determinants.

Example 8.4.

det

2 0 0
0 0 3
0 1 0

 = 2 det

1 0 0
0 0 3
0 1 0

 = −2 det

0 0 3
1 0 0
0 1 0

 = −6 det

0 0 1
1 0 0
0 1 0


= 6 det

1 0 0
0 0 1
0 1 0

 = −6 det

1 0 0
0 1 0
0 0 1

 = −6

The following properties can all be derived from the first three.

Properties of determinants

4. If two rows are equal, then the determinant is zero

5. If B is obtained from A by applying a row operation of the third kind (i.e., replacing a row
by itself plus a multiple of another row), then det(B) = det(A)

6. If A has a row of zeros, then det(A) = 0

7. det


d1 ∗ · · · ∗
0 d2 · · · ∗

. . .
0 · · · 0 dn

 = d1d2 . . . dn

8. det(A) = 0 if and only if A is singular
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9. det(AB) = det(A) det(B)

10. det(AT ) = det(A)

Note. Another common notation for the determinant of a matrix A which we will sometimes use is
to write |A| in place of det(A)

Example 8.5. We can use row operations to calculate the determinant of a matrix by putting it into
row echelon form.∣∣∣∣∣∣∣∣

1 2 −2 0
2 3 −4 1
−1 −2 0 2

0 2 5 3

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 2 −2 0
0 −1 0 1
0 0 −2 2
0 2 5 3

∣∣∣∣∣∣∣∣ (property 5: R2 − 2R1, R3 +R1)

=

∣∣∣∣∣∣∣∣
1 2 −2 0
0 −1 0 1
0 0 −2 2
0 0 5 5

∣∣∣∣∣∣∣∣ (property 5: R4 + 2R2)

=

∣∣∣∣∣∣∣∣
1 2 −2 0
0 −1 0 1
0 0 −2 2
0 0 0 10

∣∣∣∣∣∣∣∣ (property 5: R4 +
5

2
R3)

= 1× (−1)× (−2)× 10 = 20 (property 7)

8.4 Exercises

68. Find the rank of the matrices given in Exercise 46.

69. Find the rank of the matrices given in Exercise 64.

70. (a) Determine the rank of the following matrices: (i)
[
1 2 −1
3 −6 2

]
(ii)

 1 0 1
−2 1 1
1 1 2


(b) Determine the rank of the matrix

1 1 k
1 k 1
k 1 1

when: (i) k = 1, (ii) k = −2, (iii) k /∈ {1,−2}.

71. Use row operations to calculate the determinants of the following matrices:

(a)


1 2 3

1 3 7

1 4 13

 (b)


2 1 1

3 0 −1

4 5 2

 (c)


1
3

3
5

2
5

3
8

1
2

1
4

1
3

2
3

1
2


72. Let a, b, c, d, e, f, g, h, i ∈ F be such that ∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣ = 1

Find the following determinants:

(a)

∣∣∣∣∣∣
a b c
g h i
d e f

∣∣∣∣∣∣ (b)

∣∣∣∣∣∣
a −b c
d −e f
g −h i

∣∣∣∣∣∣
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(c)

∣∣∣∣∣∣
d e f
3g 3h 3i
a b c

∣∣∣∣∣∣
(d)

∣∣∣∣∣∣
2a 2b 2c
2d 2e 2f
2g 2h 2i

∣∣∣∣∣∣

(e)

∣∣∣∣∣∣
a b c

d+ a e+ b f + c
g − 2a h− 2b i− 2c

∣∣∣∣∣∣

73. A matrix P is called idempotent if P 2 = P .

(a) Show that if P is idempotent, then either det(P ) = 0 or det(P ) = 1.

(b) Show that if P is idempotent and P 6= I , then det(P ) = 0.

(c) Give an example of an idempotent matrix that is neither a zero matrix nor an identity
matrix.
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Extra material for lecture 8

� Proof of uniqueness of RREF

Proof. We need to show that for any A ∈ Mm,n(F) if A ∼ R1 and A ∼ R2, and both R1 and R2

are in reduced row echelon form, then R1 = R2.

The idea is to show that if R1 6= R2 (and they are both in RREF) then there exists X ∈ Mn,1(F)
such that R1X 6= 0 and R2X = 0. This would establish that R1 6= R2 =⇒ R1 6∼ R2 (as
required).

Suppose, for a contradiction, thatR1 6= R2. Let j ∈ {1, . . . , n} be minimal such that j-th column
of R1 is not equal to the j-th column of R2. Form a new matrix S1 from R1 as follows. Drop all
columns to the right of the j-th column and drop all the columns on its left that do not contain
a leading entry. Define S2 as the matrix similarly obtained from R2. For example

R1 =

1 2 0 2 5
0 0 1 3 6
0 0 0 0 0

 R2 =

1 2 0 3 6
0 0 1 4 7
0 0 0 0 0

 S1 =

1 0 2
0 1 3
0 0 0

 S2 =

1 0 3
0 1 4
0 0 0


Note that S1 and S2 will be in reduced row echelon form and S1 ∼ S2. Suppose first that the
j-th column of R1 (which is the last column of S1) contains a leading entry.
Then we have

S1 =



0

Ik
...
0
1
0

0
...
0


S2 =



b1

Ik
...
bk
0
0

0
...
0


But then S1

[
b1 · · · bk −1

]T 6= 0 whereas S2
[
b1 · · · bk −1

]T
= 0 which is not possible

since S1 ∼ S2. The same argument applies in the case in which the j-th column of R2 contains
a leading entry. If neither the j-th column of R1 nor the j-th column of R2 contains a leading
entry we have

S1 =



a1

Ik
...
ak
0

0
...
0


S2 =



b1

Ik
...
bk
0

0
...
0


Considered as the augmented matrix of a linear system, each has a unique solution. The solutions must
be equal since S1 ∼ S2. Therefore ai = bi for all i. But then S1 = S2, which contradicts the assumption
that their final columns are different.
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LECTURE 9

Determinants (continued)

9.1 Derivation of properties

We claim that each of the properties given for the determinant can be derived from the first 3.

Exercise 74. Show that properties 4,5, and 6 follow from the first three properties. (For property 4
you will need to assume that the field is such that 1 + 1 6= 0.)

We will show that properties 7,8 9, and 10 follow from the first six.

Lemma 9.1

LetA,B ∈Mn,n(F). SupposeB is obtained fromA by a sequence of elementary row operations.
Then there is a k ∈ F \ {0} such that det(B) = k det(A). Moreover, if D is obtained from C using
the same sequence of row operations, then det(D) = k det(C).

Proof. (in lecture)

Lemma 9.2: Property 7

If A ∈Mn,n(F) is in triangular form, then det(A) = A11A22 . . . Ann.

Proof. Suppose that A is in upper triangular form. That is, we have

A =

d1 ∗ ∗

0
. . . ∗

0 0 dn

 ∈Mn,n(F)

If the diagonal entries di are all non-zero, then we have

∣∣A∣∣ =

∣∣∣∣∣∣∣
d1 ∗ ∗

0
. . . ∗

0 0 dn

∣∣∣∣∣∣∣ = d1d2 · · · dn

∣∣∣∣∣∣∣
1 ∗ ∗

0
. . . ∗

0 0 1

∣∣∣∣∣∣∣ (by properties 2, 3a)

= d1d2 · · · dn

∣∣∣∣∣∣∣
1 0 0

0
. . . 0

0 0 1

∣∣∣∣∣∣∣ = d1d2 · · · dn (by properties 5, 1)

If one (or more) of the di is equal to 0, then the REF of A will have a row of zeros and therefore
det(A) = 0.
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Lemma 9.3: Property 8

det(A) = 0 if and only if A is singular

Proof. We first show that det(A) = 0 =⇒ A is singular (by establishing the contrapositive).

A invertible =⇒ A ∼ I (Theorem 7.5)
=⇒ det(A) = k det(I) (some k 6= 0, Lemma 9.1)
=⇒ det(A) 6= 0

For the converse, suppose that A is singular. Let R be the matrix in RREF such that R ∼ A. Because
A is singular, R 6= I (Theorem 7.5 ) and R therefore has a row of zeros. Since R has a row of zeros,
det(R) = 0 and therefore det(A) = 0 (Lemma 9.1).

Lemma 9.4: Property 9

det(AB) = det(A) det(B)

Proof. Let R be the RREF of A. Then det(R) = k det(A) for some k 6= 0. We also have det(RB) =
k det(AB) with the same k.

Assume first that A is invertible. Then R = I and we have

det(A) det(B) = k det(A) det(AB) (since det(B) = k det(AB))
= det(AB) (since k det(A) = 1)

On the other hand, if A is singular, then R has a row of zeros. Therefore RB has a row of zeros, and
so det(RB) = 0. We have

det(AB) =
1

k
det(RB) = 0

and
det(A) det(B) = 0 det(B) = 0

Lemma 9.5: Property 10

det(AT ) = det(A)

Proof. If A is singular, then AT is also singular (Exercise 35) and therefore det(AT ) = 0 = det(A).

We can assume therefore that A is invertible. It is enough to show that det(ET ) = det(E) for all
elementary matrices E since any invertible matrix can be written as a product of elementary matrices
(Corollary 7.6) and we then have

A = E1E2 . . . Ek =⇒ det(A) = det(E1) det(E2) . . . det(Ek)

and

AT = ETk . . . E
T
2 E

T
1 =⇒ det(AT ) = det(ETk ) . . . det(ET2 ) det(ET1 )

= det(Ek) . . . det(E2) det(E1)

= det(E1) det(E2) . . . det(Ek)
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It remains to check that det(ET ) = det(E) for elementary matrices. Note that if E is an elementary
matrix corresponding to a row swap or to multiplying a row by a constant, then E = ET . If E
corresponds to the third kind of row operation, then both E and ET are triangular and have all
diagonal entries equal to one.

9.2 Cofactor expansion

The following gives a version of a (recursive) formula for det(A) that can often be useful.

Lemma 9.6: Cofactor expansion along the i-th row

Let n > 2, A = [aij ] ∈Mn,n(F) and let i ∈ {1, . . . , n}. Then

det(A) =

n∑
j=1

(−1)i+jaij det(A(i, j))

where A(i, j) denotes the (n− 1)× (n− 1) matrix obtained from A by deleting the i-th row and
the j-th column.

Remark. This is often referred to as ‘cofactor expansion along the i-th row’.

Example 9.7.∣∣∣∣∣∣
1 2 −2
2 3 −4
−1 −2 0

∣∣∣∣∣∣ = (−1)4 × (−1)×
∣∣∣∣2 −2
3 −4

∣∣∣∣+ (−1)5 × (−2)×
∣∣∣∣1 −2
2 −4

∣∣∣∣+ (−1)6 × 0×
∣∣∣∣1 2
2 3

∣∣∣∣
= 1× (−1)× (−2) + (−1)× (−2)× 0 + 1× 0× (−1)

= 2

Remark. The value of (−1)i+j is +1 for i = j = 1 (i.e., top left of the matrix) and then alternates
between −1 and +1 as we move one entry vertically or horizontally.

9.3 Exercises

75. Use cofactor expansion to calculate the determinant of the matrix in Example 8.5.

76. Evaluate the determinant of the following matrices using cofactor expansion (Lemma 9.6):

(a)
[

3
]

(b)

[
2 1

3 −1

]

(c)


2 1 1

3 0 −1

4 5 2



(d)


2 4 2

1 5 1

3 −7 3



(e)


2 3 4 5

0 3 4 5

0 0 4 5

0 0 0 5


(f)

[
a ab

b a2 + b2

]
(where a, b ∈ C)

77. Evaluate the determinants of the following matrices. For what values of the variables (x, λ, k ∈
C) are the matrices invertible?
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(a)

 x 2x −3x
x x− 1 −3
0 0 2x− 1



(b)


λ− 1 0 0 0

2 0 λ+ 1 0
1 λ− 2 0 0
2 3 9 λ+ 2


(c)

 k k + 1 k + 2
k + 3 k + 4 k + 5
k + 6 k + 7 k + 8


78. (a) Determine the values of the parameter λ for which det(A− λI) = 0 when

i) A =

[
4 2
−3 −1

]
ii) A =

 2 2 1
2 5 2
1 2 2


(b) Find all solutions X of the linear system

(A− λI)X = 0

for each A and each λ you found in part (a).
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Extra material for lecture 9

� Think about why the properties listed uniquely determine the value of det(A).

� Try to prove that the cofactor expansion satisfies properties 1–3.

� An alternative way of defining (or calculating) the determinant of a matrix A ∈ Mn,n(F) uses
permutations of the set {1, . . . , n}.

det(A) =
∑
σ∈Sn

sign(σ)A1,σ(1)A2,σ(2) . . . An,σ(n)

Here Sn is the set of all bijections σ : {1, . . . , n} → {1, . . . , n}.
See, for example, Axler (Chapter 10).
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LECTURE 10

Fields

Recall that elements of R3 can be added together and multiplied by scalars. For example

(1, 2, 3) + (−2, 3,−7) = (−1, 5,−4)

−7(−2, 3,−7) = (14,−21, 49)

Thinking about the properties of these operations leads to the definition of a vector space, the central
topic of this subject. A vector space is a generalisation of the vector structure of R3 in which we have
a set of ‘vectors’ together with a version of vector addition and scalar multiplication.

The first thing we will look at is what we can use as ‘scalars’.

10.1 Fields
Examples of fields that we alerady know are Q, R, and C. They each have two operations (addition
and multiplication) and the two operations satisfy certain familiar properties. For example, every
non-zero element has a multiplicative inverse. Before listing the defining properties we recall the
meaning of ‘associative’ and ‘commutative’ for binary operations.

Definition 10.1

A binary operation on a set S is a function S × S → S. We often use ‘infix’ notation for binary
operations. For example, we write a+ b rather than +(a, b) for the binary operation of addition.
A binary operation � : S × S → S is called:

1. associative if ∀a, b, c ∈ S, (a � b) � c = a � (b � c)

2. commutative if ∀a, b ∈ S, a � b = b � a

Example 10.2. The binary operations of addition and multiplication on R are associative and commu-
tative. Subtraction gives a binary operation on R that is not associative since, for example, (1−2)−3 6=
1− (2− 3). It is also not commutative since, for example, 1− 2 6= 2− 1. Matrix multiplication gives
a binary operation onM2,2(R) that is associative but not commutative.

Definition 10.3

A field is a set F together with two binary operations, + and × on F satisfying the following
properties:

A1) ∀ a, b ∈ F, a+ b = b+ a (addition is commutative)

A2) ∀ a, b, c ∈ F, a+ (b+ c) = (a+ b) + c (addition is associative)

A3) ∃ 0 ∈ F ∀ a ∈ F, a+ 0 = a (additive identity)

A4) ∀ a ∈ F ∃ (−a) ∈ F, a+ (−a) = 0 (additive inverses)

M1) ∀ a, b ∈ F, a× b = b× a (multiplication is commutative)

M2) ∀ a, b, c ∈ F, a× (b× c) = (a× b)× c (multiplication is associative)
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M3) ∃ 1 ∈ F \ {0} ∀ a ∈ F, a× 1 = a (multiplicative identity)

M4) ∀ a ∈ F \ {0} ∃ (a−1) ∈ F, a× a−1 = 1 (multiplicative inverses)

D) ∀ a, b, c ∈ F, a× (b+ c) = (a× b) + (a× c) (distributivity)

Example 10.4. 1. Q, R, and C (with the usual operations) are fields

2. Z (with the usual operations) is not a field. It fails to satisfy axiom M4.

3. Q[
√

2] = {a+ b
√

2 | a, b ∈ Q} ⊂ R is a field (using the usual operations on R)

4. M2,2(R) with the usual matrix operations is not a field. It fails to satisfy axioms M1 and M4.

Exercise 79. Let F be a field. Show that:
a) ∀x ∈ F, 0× x = 0 b) ∀x ∈ F, (−1)× x = −x

(Justify every step of your proofs using the axioms in the definition of a field.)

Remark. As is common when writing multiplication in R or C, we will often write ab in place of a× b.

Example 10.5. Here are two fields that each have only a finite number of elements.

The field F2 is a field having two elements F2 = {[0], [1]}
with operations given in the tables on the right.

(F2,+)

+ [0] [1]

[0] [0] [1]
[1] [1] [0]

(F2,×)

× [0] [1]

[0] [0] [0]
[1] [0] [1]

The field F3 is defined by F3 = {[0], [1], [2]}
and operations given on the right.

(F3,+)

+ [0] [1] [2]

[0] [0] [1] [2]
[1] [1] [2] [0]
[2] [2] [0] [1]

(F3,×)

× [0] [1] [2]

[0] [0] [0] [0]
[1] [0] [1] [2]
[2] [0] [2] [1]

Given any prime p ∈ N there is a field having p elements. It can be constructed as follows. We label
the elements as [0], [1], . . . , [p− 1], that is, Fp = {[0], [1], . . . , [p− 1]}. The operations are defined by

[a] + [b] = [a+ b]

[a]× [b] = [a× b]

where [a+b] is defined to be the the element [k] ∈ Fp given by the condition that p divides (a+b)−k. In
other words, we add as usual in Z, but then add a multiple of p until the result lies in {1, 2, . . . , p−1}.
Similarly, the element [a×b] is defined to be the element [k] ∈ Fp given by the condition that p divides
(a× b)− k.

Remark. It’s common to write the elements of Fp simply as {0, 1, 2, . . . , p− 1} rather than
{[0], [1], [2], . . . , [p− 1]}. Another notation is {0, 1, 2, . . . , (p− 1)}. Be careful, Fp is not a ‘subfield’ of
R.
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10.2 Exercises

80. Write down the addition and multiplication tables for F5 and F7.

81. Let Z4 = {[0], [1], [2], [3]} equipped
with the addition and multiplica-
tion given.

Show that Z4 is not a field.

(Z4,+)

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

(Z4,×)

× [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

82. Show that {[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
1 1
1 0

]
,

[
0 1
1 1

]}
⊂M2,2(F2)

equipped with the usual matrix operations is a field. That is, check that all the axioms are
satisfied.

83. Let A ∈M3,3(F3) be given by A =

1 1 1
1 2 0
2 0 1

. (Note that the entries are elements of F3.)

(a) Find the reduced row echelon form of A.

(b) Find the determinant of A.

(c) Find the inverse of A, if it exists.

84. Let F be a field. Show that ∀a, b ∈ F, ab = 0 =⇒ (a = 0 ∨ b = 0)

85. Let F be a field and a ∈ F \ {0}. Show that the function L : F → F given by L(x) = ax is a
bijection.

86. Let F = {0, 1, a, b} be a field having four elements. Show that

(a) ab = 1

(b) a2 = b

(c) a3 = 1

(d) 1 + 1 = 0 (This is harder and just for fun. Feel free to skip it.)
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Extra material for lecture 10

� Related algebraic structures

A set equipped with a single operation that satisfies A2, A3, and A4 is called a group. If it also
satisfies A1, it is called an abelian group. You will see groups in the subject MAST20022 Group
Theory and Linear Algebra.

If we drop axiom M4 (but keep all other parts from the definition of a field) we get what is
called a (commutative) ring. Examples of rings that are not fields are: Z and R[X] (where
each is equipped with the usual addition and multiplication). Rings are covered in the subject
MAST30005 Algebra.

� More reading about fields and related structures:

A first course in abstract algebra by John Fraleigh

Algebra by Michael Artin

Concrete abstract algebra : from numbers to Gröbner bases by Niels Lauritzen

© University of Melbourne 2023
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LECTURE 11

Vector spaces

11.1 Vector spaces

Consideration of the fundamental properties of ‘vectors’ leads us to the following definition of a
‘vector space’. It consists of a field (often called the scalars) and another set whose elements will
be called vectors. In addition there are two binary operations: ‘scalar multiplication’ and ‘vector
addition’.a

Definition 11.1: Vector space

Let F be a field. A vector space over F (also called an F-vector space, or just a vector space)
consists of a non-empty set V together with two binary operations:

vector addition: V × V → V (with the image of (u, v) will be denoted u+ v)

scalar multiplication: F× V → V (with the image of (α, v) being denoted αv).

These are required to satisfy the following axioms:

1) ∀u, v, w ∈ V , u+(v+w) = (u+v)+w

2) ∀u, v ∈ V , u+ v = v + u

3) ∃ ⇀
0 ∈ V ∀v ∈ V , v +

⇀
0 = v

4) ∀ v ∈ V ∃(−v) ∈ V , (−v) + v =
⇀
0

5) ∀α ∈ F ∀u, v ∈ V , α(u+v) = αu+αv

6) ∀α, β ∈ F ∀ v ∈ V , (α+β)v = αv+βv

7) ∀α, β ∈ F ∀ v ∈ V , (αβ)v = α(βv)

8) ∀ v ∈ V , 1v = v

Remark. 1. It’s important to note that the scalars form part of the vector space structure.

2. The elements of V are called vectors.

3. The symbol ⇀
0 is being used for the zero vector to distinguish it from the zero scalar 0 ∈ F. The

vector ⇀
0 is uniquely determined by the property in axiom 3.

4. The additive inverse −v of a vector v is uniquely determined by the property in axiom 4.

5. A vector space over R is often called a real vector space.
A vector space over C is often called a complex vector space.

Exercise 87. Let V be a vector space over a field F. Show that

(a) ∀v ∈ V , 0v =
⇀
0 (b) ∀v ∈ V , (−1)v = −v

(Each step in your argument should be justified by reference to one of the axioms in the definition.)

Example 11.2. Here are some important examples of vector spaces. Everything we will say about
vector spaces applies to each of these.

1. F = R and V = R2 = {(x, y) | x, y ∈ R}with addition and scalar multiplication defined by:

(x, y) + (a, b) = (x+ a, y + b) and α(x, y) = (αx, αy)
aThese two operations are distinct from the two binary operations in the field of scalars.
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2. F = R and V = Rn = {(x1, . . . , xn) | xi ∈ R}. The operations are given by

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

α(x1, . . . , xn) = (αx1, . . . , αxn)

3. Cn is a vector space over C. (With operations as above for Rn.)

4. (F3)
2 is a vector space over F3. The operations are the same as above for Rn. Here are some

examples of the operations.
(1, 2) + (2, 2) = (0, 1)

2(2, 1) = (1, 2)

5. (Fp)n is a vector space over Fp. (With operations as above.)

6. Vector space of matrices
Let F = R and V =Mm,n(R) (for some fixed m,n ∈ N) and take the usual operations of scalar
multiplication and matrix addition. Each elements of V is both a matrix and a vector! Similarly
Mm,n(F) can be considered a vector space over F for any field F.

7. Sequence spaces
Let F be any field and let V = {(x1, x2, . . . ) | xi ∈ F}.b The operations are given by

(xi)i∈N + (yi)i∈N = (xi + yi)i∈N

α(xi)i∈N = (αxi)i∈N

8. Polynomials of degree at most n
Let F be any field and fix n ∈ N. Let V = Pn(F) = {a0 + a1x+ a2x

2 + · · ·+ anx
n | ai ∈ F}. The

operations are given by the usual operations on polynomials.

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) = ((a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn)

α(a0 + a1x+ · · ·+ anx
n) = (αa0) + (αa1)x+ · · ·+ (αan)xn

9. Polynomials
Let F be any field let V = F[x] = {a0 + a1x+ a2x

2 + · · ·+ anx
n | n ∈ N, ai ∈ F}.. The operations

are given by the usual operations on polynomials.

10. Functions
Let V = F(R,R) be the set of all functions from R to R. We get a vector space over R if we
define operations by

(f + g)(x) = f(x) + g(x)

(αf)(x) = α× f(x)

More generally, given any non-empty set S and any field F we have a vector space V = F(S,F)
whose vectors are functions from S to F and with operations as given above.

11. Continuous functions
Let V = C(R,R) be the set of all continuous functions from R to R. Equipped with the operati-
ons as defined above for F(R,R), this gives a vector space.

bAn element of this set is the same as a function from N to F.
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11.2 Exercises

88. Determine whether or not the given set is a real vector space when equipped with the usual
operations. If it is not a vector space, list all properties that fail to hold.

(a) The set of all 2× 3 matrices whose second column consists of 0’s.
That is, {A ∈M2,3(R) | Ai2 = 0 ∀ i}.

(b) The set of all (real) polynomials with positive coefficients.
That is, {a0 + a1x+ a2x

2 + · · ·+ anx
n | ai ∈ F, ai > 0}.

(c) The set of all (real valued) continuous functions with the property that the function is 0 at
every integer. That is, {f ∈ C(R,R) | f(x) = 0 ∀x ∈ Z}

89. Let V be the set of positive real numbers, that is, V = {x ∈ R | x > 0}. Define the operations of
vector addition ⊕ and scalar multiplication � as follows:

x⊕ y = xy for all x, y ∈ V (the operation on the right is multiplication in R)
α� x = xα for all α ∈ R, and x ∈ V

Show that, equipped with these operations, V forms a real vector space. (What is the zero
vector? What is the (additive) inverse of a vector x ∈ V ?)

90. LetA ∈M2,2(R) and let V = {X ∈M2,1(R) | AX = [ 00 ]}. Show that V is closed under the usual
operations of matrix addition and scalar multiplication. That is, show that ∀u, v ∈ V, u+ v ∈ V
and that ∀u ∈ V ∀α ∈ R, αu ∈ V . Check that V together with these operations forms a vector
space. (We may use standard properties of R.)
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Further reading for lecture 11

� Direct sum of vector spaces

We describe a standard way of combining two vector spaces to produce a third. Fix a field F
and let V and W be vector spaces over F. The direct sum of V and W , denoted V ⊕W , can be
defined as follows. The underlying set is the Cartesian product of V and W

V ⊕W = {(v, w) | v ∈ V,w ∈W}

with the operations defined by

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)

k(v, w) = (kv, kw)

It’s not hard to show that with these operations V ⊕W is a vector space over F.

This and other constructions using vector spaces are covered in the subject MAST20022 Group
Theory and Linear Algebra.

� Modules

What if we were to relax the requirement that the scalars must be a field? For example, could
we allow Z as the scalars, but keep the rest of the definition of a vector space unchanged? This
leads to what is called a module. Many of our considerations about vector spaces continue to
work for modules, but some do not. Modules are covered in the subject MAST30005 Algebra.
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LECTURE 12

Subspaces

Definition 12.1: Subspace

A subspace W of a vector space V is a subset W ⊆ V that is itself a vector space using the
addition and scalar multiplication operations defined on V .

Remark. 1. The operations on W are the restrictions of those on V .

2. W a subspace of V is denoted W 6 V .

3. It’s important to realise that subspaces are vector spaces in their own right. Anything we can
prove about vector spaces applies to subspaces.

Examples 12.2. 1. {(t, 2t, 3t) | t ∈ R} 6 R3

2. {(x, y, z) ∈ R3 | x+ y + z = 0} 6 R3

3. {(x, y, z) ∈ R3 | x+ y + z = 1} is not a subspace of R3

4. {(x, y, z) ∈ R3 | z > 0} is not a subspace of R3

To show that a subset fails to be a subspace it can sometimes be useful to note the following.

Lemma 12.3

Let V be a vector space and W ⊆ V . If W is a subspace, then ⇀
0V ∈W .

(Where ⇀
0V denotes the zero vector in the vector space V .)

Exercise 91. Use Exercise 87 to prove the above lemma.

The following theorem allows us to avoid checking all the vector space axioms when showing that a
subset of V is a subspace.

Theorem 12.4: Subspace theorem

Let V be a vector space over F. A subset W ⊆ V is a subspace of V if and only if

0. W is non-empty

1. ∀u, v ∈W, u+ v ∈W (W is closed under vector addition)

2. ∀a ∈ F ∀u ∈W, au ∈W (W is closed under scalar multiplication)

Proof. Suppose that W is a subspace of V . Then it is a vector space and therefore satisfies the con-
ditions in Definition 11.1. Therefore it is non-empty (by axiom 3) and the the operations of vector
addition and scalar multiplication give functions W ×W → W and F ×W → W and therefore (1)
and (2) are satisfied.

For the converse, suppose that W ⊆ V satisfies (0), (1), and (2). We need to check that W satisfies
Definition 11.1. By (1) and (2), we have that the binary operations of vector addition V × V → V
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and scalar multiplication F× V → V restrict to give functions W ×W → W and F×W → W . That
axioms 1,2,5,6,7,8 of Definition 11.1 are satisfied is immediate (since they hold in V and W ⊆ V ).
SinceW is non empty, there is an element w ∈W . Then by condition (2) and Exercise 87 we have that
⇀
0V = 0w ∈ W . Therefore axiom 3 is satisfied (and ⇀

0W =
⇀
0V ). To see that axiom 4 holds, let v ∈ W .

Appealing to Exercise 87 again we have that −v = (−1)v ∈W .

Exercise 92. Use the Subspace Theorem to show that the first two examples above (in Example 12.2)
are indeed subspaces.

Exercise 93. Let H and K be subspaces of a vector space V . Prove that the intersection H ∩ K is a
subspace of V .

Examples 12.5. 1. {⇀0} is always a subspace of V

2. V is always a subspace of V

3. The set of diagonal matrices


a 0 0

0 b 0
0 0 c

 | a, b, c ∈ C

 is a subspace ofM3,3(C).

4. The subset of continuous functions C(R,R) = {f : R → R | f is continuous} is a subspace of
F(R,R)a

5.
{[
a b
c d

]
| ad− bc = 0

}
is not a subspace ofM2,2(C)

6. {f : [0, 1]→ R | f(0) = 2} is not a subspace of F([0, 1],R)

Lemma 12.6: Solution space of a homogeneous linear system

Let F be a field and A ∈Mm,n(F). The solution space

{X ∈Mn,1(F) | AX = 0}

is a subspace ofMn,1(F).

Proof. LetW = {X ∈Mn,1(F) | AX = 0}. By Theorem 12.4 it is enough to show thatW is non-empty
and closed under vector addition and scalar multiplication.

Note first that 0 ∈W since A0 = 0. Therefore W 6= ∅.

Let X,Y ∈W . Then A(X + Y ) = AX +AY = 0 + 0 = 0. Therefore X + Y ∈W .

Let X ∈W and α ∈ F. Then A(αX) = αAX = α× 0 = 0. Therefore αX ∈W .

Therefore, by the Subspace Theorem, W is a subspace ofMn,1(F).

Example 12.7. Consider the matrix H =

0 0 0 1 1
0 1 1 0 0
1 0 1 0 1

 ∈M3,5(F2).

The set W = {X ∈ M5,1(F2) | HX = 0} is a subspace ofM5,1(F2). Solving the linear system in the
usual way, we get

W = {(0, 0, 0, 0, 0), (1, 1, 1, 0, 0), (1, 0, 0, 1, 1), (0, 1, 1, 1, 1)}

aThis relies on the fact (from calculus) that the sum of two continuous functions is continuous and that a multiple of a
continuous function is continuous.
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12.1 Exercises

94. Sketch each of the following subsets of R2 and determine whether it is

(i) closed under addition,

(ii) closed under scalar multiplication,

(iii) a subspace of R2.

(a) A = {(x, y) | y > 0}
(b) B = {(x, y) | x = y}

(c) C = {(x, y) | x2 + y2 6 1}
(d) D = {(x, y) | xy = 0}

95. Decide which of the following are subspaces of C3. Explain your answers.

(a) A = {(a, b, 0) ∈ C3 | a, b ∈ C}
(b) B = {(a, b, c) ∈ C3 | 2a− 3b+ 5c = 4}

(c) C = {(a, b, c) ∈ C3 | 2a− 3b+ 5c = 0}
(d) D = {(a− b, a+ b, 2a) ∈ C3 | a, b ∈ C}

96. Show that the following sets of vectors are not subspaces of Rn.

(a) The set of all vectors whose first component is 2.

(b) The set of all vectors except the zero vector.

(c) The set of all vectors the sum of whose components is 1.

97. Use the subspace theorem to decide which of the following are real vector spaces with the usual
operations.

(a) The set of real polynomials of degree exactly n (where n ∈ N is fixed).

(b) The set of real polynomials p with p(0) = 0.

(c) The set of real polynomials p with p(0) = 1.

98. Determine whether or not the given set is a subspace ofMn,n(C).

(a) The set of all matrices, the sum of whose entries is zero.

(b) The set of all matrices whose determinant is zero.

(c) The diagonal matrices.

(d) The matrices with trace equal to 0.

99. Decide which of the following are complex vector spaces with the usual matrix operations.

(a) All complex 2× 2 matrices
[
z1 z2
z3 z4

]
with z1 and z2 real.

(b) All complex 2× 2 matrices with z1 + z4 = 0.

100. Let A ∈ Mm,n(F) and B ∈ Mm,1(F). Show that if B 6= 0, then the set of solutions {X ∈
Mn,1(F) | AX = B} is not a subspace ofMn,1(F).

101. Let V = (F2)
3. Show that W = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ⊆ V is a subspace of V .
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Further reading for lecture 12

� References about subspaces

Elementary Linear Algebra by Anton and Rorres, §4.2

Linear Algebra Done Right by Axler, §1.C

© University of Melbourne 2023
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LECTURE 13

Linear combinations

We define and investigate the important notions of linear dependence and span.

13.1 Linear combinations

Definition 13.1: Linear combination

Let V be a vector space over a field F. An expression of the form

α1u1 + · · ·+ αkuk

with u1, . . . uk ∈ V and α1, . . . , αk ∈ F is called a linear combination.

Notice that if W 6 V and u1, . . . uk ∈ W , then the above linear combination gives a vector in W . We
will investigate how to describe subspaces using linear combinations.

13.2 Span

Definition 13.2: The span of a set of vectors

Let V be a vector space with scalars F, and let S ⊆ V be a non-empty subset of V . The span of S
is the set of all linear combinations of vectors from S

span(S) = {α1u1 + · · ·+ αkuk | k ∈ N and u1, . . . , uk ∈ S and α1, . . . , αk ∈ F} ⊆ V

If S = ∅, we define span(S) = {⇀0} ⊆ V .

Remark. 1. The above definition of span(S) does not assume that S is finite.

2. It’s immediate from the definition that S ⊆ span(S).

3. An alternative notation for the span of S is 〈S〉.

Examples 13.3. 1. S = {(1, 1), (−3,−3)} ⊆ R2, span(S) is the line {(x, y) ∈ R2 | y = x}

2. S = {(1, 1), (2, 3)} ⊆ R2, span(S) = R2

3. S = {(1, 1), (2, 3), (4, 5)} ⊆ R2, span(S) = R2

4. S = {(−1, 1, 0), (−1, 0, 1)} ⊆ R3, span(S) is the plane {(x, y, z) | x+ y + z = 0} ⊆ R3

Example 13.4. Let A ∈ M4,4(C) be given by A =

[−2 0 6 8
1 0 −5 −8
2 0 −2 0
2 0 −5 −6

]
. Calculation gives that the reduced
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row echelon form of A is R =

[
1 0 0 2
0 0 1 2
0 0 0 0
0 0 0 0

]
. The solution space of the linear system AX = 0 is given by

{
[
x
y
z
w

]
| x, y, z, w ∈ C, x = −2w, z = −2w} = {

[−2w
y
−2w
w

]
| y, w ∈ C} = {

[
0
y
0
0

]
+

[−2w
0
−2w
w

]
| y, w ∈ C}

= {y
[
0
1
0
0

]
+ w

[−2
0
−2
1

]
| y, w ∈ C} = span{

[
0
1
0
0

]
,

[−2
0
−2
1

]
}

Proposition 13.5

Let V be a vector space with scalars F, and let S ⊆ V be a subset.

1. The span of S, span(S), is a subspace of V .

2. Let W 6 V be a subspace. If S ⊆W , then span(S) 6W .

Proof. Note first that if S = ∅, then both parts are trivially true since span(S) = {⇀0}. We will assume
then that S 6= ∅.

To show that span(S) is a subspace we show that it satisfies the conditions of the Subspace Theorem.
Firstly, span(S) is non-empty since span(S) ⊇ S 6= ∅. Now suppose that u, v ∈ span(S). Then, from
the definition of the span, we have that u =

∑k
i=1 αiui for some αi ∈ F and ui ∈ S and v =

∑k
i=1 βivi

for some βi ∈ F and vi ∈ S. But then

u+ v = α1u1 + · · ·+ αkuk + β1v1 + · · ·βlvl ∈ span(S)

Therefore span(S) is closed under vector addition. Similarly, for any a ∈ F we have that

au = a(α1u1 + · · ·+ αkuk) = (aα1)u1 + · · ·+ (aαk)uk ∈ span(S)

and therefore span(S) is closed under scalar multiplication. It follows from the Subspace Theorem
that span(S) is a subspace of V .

For the second part, suppose that W 6 V and that S ⊆W . We have

u ∈ span(S) =⇒ u = α1u1 + · · ·+ αkuk for some αi ∈ F and ui ∈ S
=⇒ u ∈W (since W is a subspace and ui ∈W )

Remark. The above proposition tells us that span(S) is the ‘smallest’ subspace of V that contains S.
We sometimes say that span(S) is the subspace spanned by S.

Exercise 102. Let V be a vector space and let S, T ⊆ V be two subsets. Show that if S ⊆ T , then
span(S) 6 span(T ).

Definition 13.6

Given a subspace W 6 V of a vector space, we say that a subset S ⊆ V is a spanning set for W
if span(S) = W . We also say that S spans W .

Exercise 103. Show that S ⊆ V is a spanning set for a subspace W 6 V if and only if

(a) S ⊆W and

(b) ∀w ∈W ∃k ∈ N ∃α1, . . . , αk ∈ F ∃u1, . . . , uk ∈ S, w = α1u1 + · · ·+ αkuk
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Example 13.7. We will show that S = {(1, 1), (2, 3), (4, 5)} ⊆ R2 is a spanning set for R2. By Exercise
103 we need to show that given any (a, b) ∈ R2, there exist x, y, z ∈ R such that (a, b) = x(1, 1) +
y(2, 3) + z(4, 5). That is, we need to show that the following linear system is consistent:

x+ 2y + 4z = a

x+ 3y + 5z = b

Forming the augmented matrix of the linear system and row reducing gives:[
1 2 4 a
1 3 5 b

]
R2−R1−−−−→

[
1 2 4 a
0 1 1 b− a

]
Therefore the linear system is consistent (for all a, b ∈ R) and we conclude that S is a spanning set for
R2.

Exercise 104. By setting up an appropriate linear system, show that the set

S = {(1,−1, 1), (3,−2, 3), (1, 0, 1), (1, 1, 1)}

is not a spanning set for R3. Use your working to find a vector u ∈ R3 such that u /∈ span(S).

13.3 Linear independence

Definition 13.8

Let V ba a vector space over a field F. A subset S ⊆ V is called linearly dependent if there are
vectors u1, . . . , uk ∈ S and scalars α1, . . . , αk ∈ F such that

α1u1 + · · ·+ αkuk =
⇀
0

and at least one of the αi is non-zero.

A subset S ⊆ V which is not linearly dependent is called linearly independent.

Note. In other words, a subset S is linearly independent iff ∀k ∈ N ∀u1, . . . , uk ∈ S ∀α1, . . . , αk ∈ F,

k∑
i=1

αiui =
⇀
0 =⇒ ∀i, αi = 0

In any vector space V the empty set ∅ ⊆ V is a linearly independent set.

Example 13.9. We decide whether or not the subset S = {(1, 4, 1), (2, 5, 1), (3, 6, 1)} ⊆ C3 is linearly
dependent. From the definition, the set is linearly independent iff x(1, 4, 1) + y(2, 5, 1) + z(3, 6, 1) =
(0, 0, 0) =⇒ x = y = z = 0 That is, the set is linearly independent iff the following (homogeneous)
linear system has a unique solution

x+ 2y + 3z = 0

4x+ 5y + 6z = 0

x+ y + z = 0

We write down the corresponding matrix A =
[
1 2 3
4 5 6
1 1 1

]
. Reducing to row echelon form gives1 2 3

4 5 6
1 1 1

 R2−4R1−−−−−→
R3−R1

1 2 3
0 −3 −6
0 −1 −2

 R3− 1
3
R2−−−−−→

1 2 3
0 −3 −6
0 0 0


Since the solution set will require one parameter (Lemma 6.8), we know that there are non-trivial
solutions. Therefore the set S is linearly dependent.
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Exercise 105. By solving an appropriate linear system, show that the following subset of P3(C) is
linearly independent:

{2 + 2x− 2x2 + 6x3, 1 + 4x− 4x2 + 9x3,−1− 2x+ 3x2 − 5x3}

Lemma 13.10

A subset S ⊆ V is linearly dependent if and only if ∃u ∈ S, u ∈ span(S \ {u}).

Proof. Suppose that S is linearly dependent. Let u1, . . . , uk ∈ S and α1, . . . , αk ∈ F be such that∑k
i=1 αiui =

⇀
0 and let j ∈ {1, . . . , k} be such that αj 6= 0. We have

α1u1 + · · ·+ αkuk =
⇀
0 =⇒ −αjuj = α1u1 + · · ·+ αj−1uj−1 + αj+1uj+1 + · · ·+ αkuk

=⇒ uj =

(
α1

−αj

)
u1 + · · ·+

(
αj−1
−αj

)
uj−1 +

(
αj
−αj

)
uj+1 + · · ·+

(
αk
−αj

)
uk

where in the last step we have relied on the fact that αj 6= 0.

For the converse, suppose instead that u ∈ S, u1, . . . , uk ∈ S \ {u} and α1, . . . , αk ∈ F are such that
u = α1u1 + · · ·+ αkuk. Rearranging gives

α1u1 + · · ·+ αkuk − u =
⇀
0

and therefore S is linearly dependent.

Remark. The following are particular cases of the lemma above.

1. If S = {u}, then S is linearly dependent iff u =
⇀
0.

2. If If S = {u, v} consists of exactly two vectors, then S is linearly dependent iff one of the two
vectors is a multiple of the other.

3. If S contains at least two vectors, then S is linearly dependent if and only if
∃u ∈ S ∃u1, . . . , uk ∈ S \ {u} ∃α1, . . . , αk ∈ F such that u = α1u1 + · · ·+ αkuk

13.4 Exercises

106. Determine which of the following sets span R3.

(a) {(1, 2, 3), (−1, 0, 1), (0, 1, 2)}
(b) {(−1, 1, 2), (3, 3, 1), (1, 2, 2)}

107. Determine whether the given set spans the given vector space.

(a) V = C2, S = {(i, 2), (3, 4)}
(b) V = P2(R), S = {2 + x2, 3 + x+ 2x2, 1 + x+ x2, 7 + 3x+ 5x2}
(c) V = (F2)

3, S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
(d) V =M2,2(R), S = {[ 2 1

0 0 ] , [ 0 0
2 1 ]

[
3 −1
0 0

]
, [ 0 0

3 1 ]}

108. Find (finite) spanning sets for the following subspaces of R3:

(a) {(2a, b, 0) | a, b ∈ R}
(b) {(a+ c, c− b, 3c) | a, b, c ∈ R}
(c) {(4a+ d, a+ 2b, c− b) | a, b, c, d ∈ R}
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109. Find (finite) spanning sets for the given vector spaces.

(a) {A ∈M2,2(C) | AT = A} 6M2,2(C)

(b) {X ∈M7,1(F2) | HX = 0}where H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ∈M3,7(F2)

(c) C as a vector space over the field C (i.e., V = C and F = C).

(d) C as a vector space over the field R (i.e., V = C and F = R).

110. Determine whether or not the following sets of vectors are linearly independent:

(a) {(1, 2), (0, 2), (1, 0), (−1, 1)} ⊆ R2

(b) {(1, 2), (3,−1)} ⊆ R2

(c) {(1, 0, 1), (−1, 1, 0), (0, 1, 1))} ⊆ R3

(d) {(2, 0, 0, 0), (2, 1, 0, 0), (−1, 3,−2, 0), (1,−2, 4,−3)} ⊆ R4

(e) {(2,−3, 1,−5), (0, 1, 2, 2), (1,−2, 3, 0)} ⊆ R4

(f) {(1, 0, 2,−3), (0,−4, 1, 1), (2, 2, 0,−1), (1,−2,−1, 3)} ⊆ C4

111. By setting up and solving an appropriate linear system, decide whether the vector u is a linear
combination of the vectors in the set S. If so, express u as a linear combination of the vectors in
S.

(a) u = (0, 0, 1) ∈ R3, S = {(1, 2, 3), (2, 3, 1)} ⊆ R3

(b) u = (0, 1, 1, 2) ∈ R4, S = {(1, 0,−2,−1), (−2,−1, 2, 0), (1, 1, 1, 1)} ⊆ R4

112. Which of the following subsets of C3 are linearly independent?

(a) {(1− i, 1, 0), (2, 1 + i, 0), (1 + i, i, 0)}
(b) {(1, 0,−i), (1 + i, 1, 1− 2i), (0, i, 2)}
(c) {(i, 0, 2− i), (0, 1, i), (−i,−1− 4i, 3)}

113. Let a, b, c ∈ C be such that no two of them are equal. Show that the set {(1, a, a2), (1, b, b2), (1, c, c2)} ⊆
C3 is linearly independent.

114. Determine whether or not the given set is linearly dependent. If the set is linearly dependent,
write one of its vectors as a linear combination of the others.

(a) {1, 1 + x, 1 + x+ x2} ⊆ P2(R)

(b) {1 + x2, 1 + x+ 2x2, x+ x2} ⊆ P2(R)

(c)
{[

1 0
0 −1

]
,

[
0 1
0 −1

]
,

[
0 0
1 −1

]
,

[
0 0
0 1

]}
⊆M2,2(R)

(d)


2 0 0

0 −1 0
0 0 1

 ,
−2 0 0

0 −1 0
0 0 −1

 ⊆M3,3(R)

115. Show that a set S ⊆ V is linearly dependent iff ∃u ∈ S such that span(S \ {u}) = span(S).

116. Show that if a subset S ⊆ V contains the zero vector ⇀
0 ∈ V , then S is linearly dependent.

117. Show that any subset of a linearly independent set is itself linearly independent.

118. Let u, v ∈ V and let α, β ∈ F with α 6= 0. Show that {u, v} is linearly independent iff {αu+βv, v}
is linear independent.

119. Let A ∈ Mm,n(F) be a matrix that is in row echelon form. Show that the non-zero rows of A
form a linearly independent subset ofM1,n(F).
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Further material for lecture 13

� alternative definition of span(S)

As an alternative to Definition 13.6 we could have defined the span of a set of vectors S ⊆ V to
be the the intersection of all subspaces of V that contain S. With this version it is not necessary
to treat the case S = ∅ separately. As an exercise you could check that this definition gives the
same thing as Definition 13.6. This version of the definition of span can be readily adapted to
other algebraic structures (e.g., groups, rings, fields, etc).
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LECTURE 14

Bases and dimension

A fundamental concept when working with vector spaces is that of a basis. It is a spanning set
that is as ‘small’ as possible. A basis gives an efficient way of describing and working with vectors.
Choosing a basis allows us to use coordinates to represent vectors. The dimension of a vector space
is defined using bases.

14.1 Definition of basis

Definition 14.1

Let V be a vector space over a field F. A basis for V is a subset B ⊆ V that satisfies:

1. B is linearly independent, and

2. B is a spanning set for V .

Examples 14.2. 1. {(1, 0), (0, 1)} ⊆ R2 is a basis for R2.

2. {(1, 1), (3, 4)} ⊆ R2 is also a basis for R2.

3. {(1, 1), (−3,−3)} ⊆ R2 is not a basis for R2.

4. {(−1, 1, 0), (−1, 0, 1)} is a basis for the plane P = {(x, y, z) ∈ R3 | x+ y + z = 0}

5. {
[−2

1
0
0

]
,

[−1
0
−2
1

]
} is a basis for the solution space of the matrix A = [ 1 2 0 1

1 2 1 3 ],

V = {X ∈M4,1(R) | AX = 0}

6. Let V 6M2,2(C) be the subspace of all matrices having trace equal to 0.
Then {

[
1 0
0 −1

]
, [ 0 1

0 0 ] , [ 0 0
1 0 ]} is a basis for V .

A vector space has many subsets that are bases. The following are the standard bases for some
common vector spaces. If no other basis if specified, these are the assumed choices.

6. The standard basis for Fn is {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 0, 1)}. These vectors
are sometimes denoted as {e1, e2, · · · , en}.

7. The standard basis forMm,n(F) is {Ei,j | i ∈ {1, . . .m}, j ∈ {1, . . . , n}} where Ei,j is the matrix
with a 1 in the (i, j)-th entry and 0 in all other entries.

8. The standard basis for Pn(F) is
{

1, x, x2, . . . , xn
}

.

9. The standard basis for F[x] is {1, x, x2, . . . }.

The following result illustrates why bases are so useful.



14-2 MAST10022 Linear Algebra: Advanced, 2023

Lemma 14.3: Uniqueness of coordinates

Let V be a vector space and B = {b1, . . . , bn} ⊆ V a basis for V . Every vector in u ∈ V can be
written uniquely as a linear combination of elements from B. That is, there exist unique αi ∈ F
such that

u = α1b1 + · · ·+ αnbn

Proof. Since B is a basis, it is a spanning set for V and therefore every element in u ∈ V can be
written as a linear combination u =

∑n
i=1 αibi where αi ∈ F. We will use the fact that B is linearly

independent to show that the αi are uniquely determined by u. Suppose that u =
∑n

i=1 βibi for some
βi ∈ F. Then we have

n∑
i=1

αibi =

n∑
i=1

βibi =⇒
n∑
i=1

αibi −
n∑
i=1

βibi =
⇀
0

=⇒
n∑
i=1

(αi − βi)bi =
⇀
0

=⇒ ∀i, (αi − βi) = 0 (since B is linearly independent)
=⇒ ∀i, βi = αi

14.2 Dimension

Theorem 14.4

Let V be a vector space and let B = {b1, . . . , bn} be a basis for V . Let S ⊆ V be a subset.

1. If S in linearly independent, then it has at most n elements.

2. If S is a spanning set, then it has at least n elements.

3. Every basis of V has n elements.

Proof. Note first that the third part is an immediate consequence of the first two parts, which we now
prove.

1) We prove the contrapositive: if S has more than n elements, then S is linearly dependent.

Suppose that |S| > n, and let {u1, . . . , un+1} ⊆ S be distinct elements of S. Let αij ∈ F be such that
uj = α1jb1 + · · · + αnjbn. Let A ∈ Mn,n+1(F) be given by Aij = αij . To show that S is linearly
dependent we will show that there is a non-trivial linear combination of the ui that gives the zero
vector. For x1, . . . , xn+1 ∈ F we have

n+1∑
j=1

xjuj =
⇀
0 ⇐⇒

n+1∑
j=1

xj

n∑
i=1

αijbi =
⇀
0

⇐⇒
n∑
i=1

n+1∑
j=1

αijxj

 bi =
⇀
0

⇐⇒ ∀i,
n+1∑
j=1

αijxj = 0 (since B is linearly independent)

⇐⇒ AX = 0 where X =

[ x1
x2...
xn+1

]
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The final expression is a homogeneous linear system. The solution space of this linear system will
need (n + 1)− rank(A) parameters (see Lemma 6.8). Since A has n rows, we have rank(A) 6 n, and
therefore (n + 1) − rank(A) > 1. Therefore the linear system more than one solution. In particular,
there is a non-trivial solution.

2) Will will show the contrapositive: if S has fewer than n elements, then it is not a spanning set.
Suppose that S = {u1, . . . , uk} with k < n. Let αij ∈ F be such that uj = α1jb1 + · · · + αnjbn.
Let A ∈ Mn,k(F) be given by Aij = αij . We will show that there exist γ1, . . . , γn ∈ F such that
v = γ1b1 + · · ·+ γnbn is not in span(S).

v ∈ span(S) ⇐⇒ ∃xj ∈ F,
n∑
i=1

γibi =
k∑
j=1

xjuj

⇐⇒ ∃xj ∈ F,
n∑
i=1

γibi =
k∑
j=1

xj

n∑
i=1

αijbi

⇐⇒ ∃xj ∈ F,
n∑
i=1

γibi =

n∑
i=1

 k∑
j=1

αijxj

 bi

⇐⇒ ∃xj ∈ F ∀i, γi =
n∑
j=1

αijxj (Lemma 14.3)

⇐⇒ ∃xj ∈ F, A

[ x1...
xk

]
=

[ γ1...
γn

]

We need to show that there is a choice for the γi such that the linear system AX =

[ γ1...
γn

]
is incon-

sistent. Let E ∈ Mn,n(F) be an invertible matrix such that EA = R is in reduced row echelon
form. Since R ∈ Mn,k(F) has fewer columns than rows, the bottom row of R is all zeros. Now let

en =

[
0...
0
1

]
∈ Mn,1(F) and choose the γi by C =

[ γ1...
γn

]
= E−1en. Then E[A |C] = [R | en]. Since the

bottom row of R is all zeros, the linear system in inconsistent.

Definition 14.5: Dimension

The dimension of a vector space V is size of a basis for V . It is denoted by dim(V ).

We call a vector space finite dimensional if it has a basis with a finite number of elements, and
infinite dimensional otherwise.

Examples 14.6. (cf. Example 14.2)

1. dim(R2) = 2

2. dim(P ) = 2, where P 6 V is the plane P = {(x, y, z) ∈ R3 | x+ y + z = 0}

3. dim(V ) = 3, where V 6M2,2(C) is V = {
[
a b
c d

]
| a+ d = 0}

4. dim(Fn) = n

5. dim(Mm,n(F)) = mn

6. dim(Pn(F)) = n+ 1

7. F[x] is infinite dimensional

8. F(R,R) is infinite dimensional

We finish with an important fact.

© University of Melbourne 2023



14-4 MAST10022 Linear Algebra: Advanced, 2023

Theorem 14.7

Every vector space has a basis.

The full proof is a little too technical to go through here, but the idea of the proof is the following.
Start with a linearly independent set S ⊆ V . If S is not a basis, then there exists u ∈ V such that
S ∪{u} is linearly independent. Therefore a ‘maximal’ linearly independent set must be a basis. That
there is a maximal linearly independent set requires the use of ‘Zorn’s Lemma’.

14.3 Exercises

120. Determine whether or not the given set is a basis for C3.

(a) {(i, 0,−1), (1, 1, 1), (0,−i, i)} (b) {(i, 1, 0), (0, 0, 1)}

121. Which of the following sets of vectors are bases for P2(R)?

(a) {1− 3x+ 2x2, 1 + x+ 4x2, 1− 7x}
(b) {1 + x+ x2, x+ x2, x2}

122. Find a basis for the given vector space:

(a) The subspace ofM2,2(C) consisting of all diagonal 2× 2 matrices.

(b) The subspace ofM2,2(F2) consisting of all 2× 2 matrices whose diagonal entries are zero.

(c) The subspace of P3(R) consisting of all polynomials a0 + a1x+ a2x
2 + a3x

3 with a2 = 0.

123. (a) Show that any set of four polynomials in P2(C) is linearly dependent.

(b) Show that a set consisting of two polynomials cannot span P2(C).

124. Let

A =

 0 1 4
6 1 −8
−9 3 15

 and W =
{

(x, y, z) ∈ R3 : A
[
x y z

]T
= 3

[
x y z

]T}
.

Show that W is a subspace of R3, and find a basis for it.

125. Let V be a finite dimensional vector space and W 6 V a subspace of V .

(a) Show that dim(W ) 6 dim(V ).

(b) Show that if dim(W ) = dim(V ), then W = V .
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Extra material for lecture 14

existence of basis appendix inserted here (pdf cut-paste)
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LECTURE 15

Coordinates relative to a basis

15.1 Coordinates

From Lemma 14.3 we know that every vector in a vector space can be written in exactly one way
as a linear combination of a given basis. The scalars that appear as the coefficients in the linear
combination are called the coordinates. Once we fix a basis for a finite dimensional vector space V ,
there is a one-to-one correspondencea between vectors and their coordinate matrices.

Definition 15.1: Coordinates

Let V be a vector space over a field F. Suppose that B = {b1, . . . , bn} is an ordered basis for V ,
that is, a basis arranged in order: b1 first, b2 second and so on. For v ∈ V we can write

v = α1b1 + · · ·+ αnbn for some scalars α1, . . . , αn ∈ F

The scalars α1, . . . , αn are uniquely determined by v (see Lemma 14.3) and are called the coor-
dinates of v relative to B.

The column matrix

[v]B =

α1
...
αn

 ∈Mn,1(F)

is called the coordinate matrixbof v with respect to B.

Remark. The coordinates depend on the basis chosen. If we change the basis B, the coordinates of a
vector will change.

Example 15.2. 1. V = P3(C), B = {1, x, x2, x3}, v = 1 + 2x2 + 2x3, [v]B =

[
1
0
2
2

]

2. V =M2,2(Q), B = {[ 1 0
0 0 ] , [ 0 1

0 0 ] , [ 0 0
1 0 ] , [ 0 0

0 1 ]}, v = [ 1 0
2 2 ], [v]B =

[
1
0
2
2

]
3. V = R2, B = {(1, 2), (3, 4)}, v = (2, 2), [v]B =

[−1
1

]

Example 15.3. Consider the vector space V = R2. Then S =
{(1, 0), (0, 1)} and C = {(2, 1), (−1, 1)} are bases for V . For
v = (1, 5) ∈ V we have

[v]S =

[
1
5

]
and [v]C =

[
2
3

]

1

5

2

3

ai.e., a bijection
balso called the coordinate vector of v
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Lemma 15.4

Let V be a finite dimensional vector space over a field F and let B be an ordered basis for V .
Let u, v ∈ V and α ∈ F. Then

[u+ v]B = [u]B + [v]B

[αv]B = α[v]B

Proof. Let the ordered basis be B = {b1, . . . , bn} and let αi, βi ∈ F be such that u =
∑n

i=1 αibi and
v =

∑n
i=1 βibi. Then

u+ v =

n∑
i=1

αibi +

n∑
i=1

βibi =

n∑
i=1

(αi + βi)bi

and therefore

[u]B + [v]B =

[ α1...
αn

]
+

[
β1...
βn

]
=

[
α1+β1...
αn+βn

]
and [u+ v]B =

[
α1+β1...
βn+αn

]

The second statement is similar, and left as an exercise.

Exercise 126. Let V be an n-dimensional vector space with scalars F and let B be a basis for V . Show
that the map ϕ : V →Mn,1(F) given by ϕ(v) = [v]B is a bijection.

The following observation often allows us to convert questions about an n-dimensional vector space
to the corresponding questions about Fn.

Lemma 15.5

Let V be an n-dimensional vector space with scalars F and let B be a basis for V . Let S ⊆ V be a
subset of V and define T ⊆Mn,1(F) by T = {[v]B | v ∈ S}. Then

1. S is linearly independent iff T is linearly independent

2. S is a spanning set for V iff T is a spanning set forMn,1(F)

Proof.

S linearly dependent ⇐⇒ ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F (not all zero)
k∑
i=1

αiui =
⇀
0V

⇐⇒ ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F (not all zero)[
k∑
i=1

αiui

]
B

= [
⇀
0V ]B (by Exercise 126)

⇐⇒ ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F (not all zero)
k∑
i=1

αi[ui]B =
⇀
0Mn,1(F ) (by Lemma 15.4)

⇐⇒ T is linearly dependent
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S a spanning set for V ⇐⇒ ∀v ∈ V ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F, v =
k∑
i=1

αiui

⇐⇒ ∀v ∈ V ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F, [v]B =

k∑
i=1

αi[ui]B

⇐⇒ ∀u ∈Mn,1(F ) ∃u1, . . . , uk ∈ S ∃α1, . . . , αk ∈ F, u =

k∑
i=1

αi[ui]B

⇐⇒ T a spanning set forMn,1(F )

Examples 15.6.

1. Consider S = {2− 3x+x2− 5x3, x+ 2x2 + 2x3, 1− 2x+ 3x2} ⊆ P3(R). Taking coordinates with
respect to the standard basis for P3(C) we get {(2,−3, 1,−5), (0, 1, 2, 2), (1,−2, 3, 0)} ⊆ R4.
Since this set is linearly independent (see Exercise 110(e)), the set S is linearly independent.

2. Consider the vector space V 6M2,2(C) of matrices having trace 0. In Example 14.2.6 we saw
that B = {

[
1 0
0 −1

]
, [ 0 1

0 0 ] , [ 0 0
1 0 ]} is a basis for V . Let S = {

[
1 0
1 −1

]
,
[−1 1

0 1

]
, [ 0 1

1 0 ]} ⊆ V . Taking

coordinates with respect to B we get {
[
1
0
1

]
,
[−1

1
0

]
,
[
0
1
1

]
}. Since this set is linearly dependent (see

Exercise 110(c)), we have that S is linearly dependent.

15.2 Exercises

127. (a) Show that the set B = {(−2, 2, 2), (3,−2, 3), (2,−1, 1)} is a basis for R3.

(b) Find the vectors x, y ∈ R3 whose coordinates with respect to B are

[x]B =

2
1
1

 and [y]B =

 1
0
−1


(c) For each of the following vectors find its coordinates with respect to B:

a = (2,−1, 1) b = (1, 0, 5) c = (3,−1, 6)

128. Find the coordinate vector of v with respect to the given basis B for the vector space V .

(a) v = 2− x+ 3x2,B = {1, x, x2, x3}, V = P3(C).

(b) v =

[
1 2 1
−1 1 2

]
,B = {Eij | i = 1, 2; j = 1, 2, 3}, V =M2,3(R).

(Here Eij is the matrix with (i, j) entry equal to 1 and other entries equal to 0.)

(c) v = −2 + (5 + i)x,B = {x+ 1, x− 1}, V = P1(C)

(d) v =

[
−2 0
0 3

]
,B =

{[
i 0
0 0

]
,

[
0 0
0 1

]}
, V is the vector space of all diagonal
2× 2 complex matrices.

129. Use coordinate matrices to decide whether or not the given set is linearly independent. If it is
linearly dependent, express one of the vectors as a linear combination of the others.

(a) {x2 + x− 1, x2 − 2x+ 3, x2 + 4x− 3} ∈ P2(R)

(b)
{[

1 2
−1 0

]
,

[
0 −1
1 1

]
,

[
1 0
1 2

]}
inM2,2(R)

© University of Melbourne 2023



15-4 MAST10022 Linear Algebra: Advanced, 2023

Extra material for lecture 15

� References about bases and coordinates

Elementary Linear Algebra by Anton and Rorres, §4.4

© University of Melbourne 2023

https://cat2.lib.unimelb.edu.au:443/record=b7719858~S30


LECTURE 16

Row and column space of a matrix

16.1 Row and column space of a matrix

We’ve already seen that, given a matrix A ∈ Mm,n(F), its solution space, {X ∈ Mn,1(F) | AX = 0},
is a subspace ofMn,1(F). There are two other spaces we can associate to a matrix.

Definition 16.1

Let A = (aij) ∈Mm,n(F) be a matrix.

1. The row space, rowspace(A), is the subspace ofM1,n(F) spanned by the rows of A.

It will often be identified with a subspace of Fn. Explicitly, we identify the i-th row with
the element ri = (ai1, . . . , ain) ∈ Fn and let rowspace(A) = span{r1, . . . , rm} 6 Fn

2. The column space, colspace(A), is the subspace ofMm,1(F) spanned by the columns of A.

It will often be identified with a subspace of Fm. Explicitly, we identify the j-th column
with the element cj = (a1j , . . . , amj) ∈ Fm and let colspace(A) = span{c1, . . . , cn}

Remark. Observe that

AX =

a11 a12 . . . a1n
...

...
. . .

...
am1 am2 . . . amn

x1...
xn

 = x1

a11...
am1

+ x2

a12...
am2

+ · · ·+ xn

a1n...
amn


Therefore, AX is an element of the column space of A (for any X ∈Mn,1(F)).

Example 16.2. As a concrete example, let A =

[
1 2 3
2 4 6

]
∈M2,3(R). Then

rowspace(A) = span{(1, 2, 3), (2, 4, 6)} 6 R3

colspace(A) = span{(1, 2), (2, 4), (3, 6)} 6 R2

Lemma 16.3

Let A,R ∈Mm,n(F). Suppose that A ∼ R and R is in row echelon form.

1. rowspace(A) = rowspace(R)

2. The non-zero rows of R are a basis for the row space of A.

3. The pivot columnsaof A form a basis for the column space of A.

4. Every non-pivot column of A can be written as a linear combination of the columns to its
left

aThat is, the columns of A such that the corresponding column in R has a leading entry.
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Proof. 1) We show that if two matrices are row equivalent, then they have the same row space. For
that it is enough to show that ifR is obtained fromA by a single row operation, then the the row space
of R is a subset of the row space of A. But this is clear since each row of R is a linear combination of
the rows of A.

2) From the first part, we know that the non-zero rows of R form a spanning set for rowspace(A).
One way to argue that the non-zero rows form a linearly independent set is as follows. Suppose for
a contradiction that r1, . . . , rk are non-zero rows of R (not necessarily all of them) and α1, . . . , αk ∈
F\{0} are such that

∑k
i=1 αiri =

⇀
0. Then, beginning with the matrixR, the sequence of row operations

α1 ×R1 → R1, R1 + α2R2 → R1, . . . , R1 + αkRk → R1

leads to a matrix S that has all zeros in its first row. But then we would have that rank(S) < rank(R).
Since S is row equivalent to R, that is not possible .

3) Since the position of the leading entries will be the same, we can assume that R is in reduced row
echelon form. The pivot columns of R are then linearly independent. Denoting the pivot columns of
A by c1, . . . , ck and those of R by d1, . . . , dk we have that

α1c1 + · · ·+ αkck = 0 ⇐⇒ A

[
α1

...
αk

]
= 0 (see the remark ofter Definition 16.1)

⇐⇒ R

[
α1

...
αk

]
= 0 (A and R are row equivalent)

⇐⇒ α1d1 + · · ·+ αkdk = 0

Therefore, the pivot columns ofA form a linearly independent set. To see that the set of pivot columns
of A forms a spanning set for colspace(A) it is enough to show that each of the non-pivot columns
of A can be written as a linear combination of the pivot columns of A. But this is clearly true for the
columns of R, and therefore for the columns of A by the above calculation.

4) The statement holds for the columns of R since R is in row echelon form. That the same holds for
A then follows from the remark after Definition 16.1 (as in the previous part).

Example 16.4. Let

A =


2 1 3 1 −1
2 1 3 1 −1
2 1 4 3 1
2 1 5 5 3

 and R =


2 1 3 1 −1
0 0 1 2 2
0 0 0 0 0
0 0 0 0 0


Note that A ∼ R and that R is in row echelon form. We have that

� The first two rows of R form a basis for
the row space of A

� The first and third columns of A form a
basis for the column space of A

� The row space of A has dimension 2 � The column space of A has dimension 2

� The first two rows of A do not form a ba-
sis for the row space of A

� The first and third columns of R do not
form a basis for the column space of A

� The row space of A is equal to the row
space of R

� The column space ofA is not equal to the
column space of R

Definition 16.5

The dimension of the row space is called the row rank of a matrix. The dimension of the column
space is called the column rank of a matrix.

From the above lemma we have:
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Corollary 16.6

The rank, row rank and column rank of a matrix are all equal.

16.2 Exercises

130. In each part find a basis for, and the dimension of, the indicated subspace.

(a) The solution space of the homogeneous linear system (over R):

x1 − 2x2 + x3 = 0
x2 − x3 + x4 = 0

x1 − x2 + x4 = 0

(b) The solution space (over C) of

x1 − 3x2 + x3 − x5 = 0
x1 − 2x2 + x3 − x4 = 0
x1 − x2 + x3 − 2x4 + x5 = 0

(c) The subspace of R4 of all vectors of the form (x,−y, x− 2y, 3y).

131. For each of the following real matrices find a basis for the

(i) column space,

(ii) row space,

(iii) solution space.

(a)
[
1 2 1
2 1 −1

]
(b)

[
1 0 −1
−1 0 1

]
(c)


1 −1 3
0 1 1
1 1 0
2 −1 1


132. Find a basis for each of the column space, row space and solution space of the matrix

0 2 1 1
2 0 1 1
1 1 1 1
0 1 2 1

 ∈M4,4(F3)

What is the rank of the matrix?
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Extra material for lecture 16

� References about row and column spaces

Elementary Linear Algebra by Anton and Rorres, §4.7
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LECTURE 17

Some techniques for finite-dimensional vector spaces

We collect here some techniques that result from the theory that we’ve seen so far.

Algorithm 17.1: To decide if a set is linearly independent

Let V be an n-dimensional vector space over a field F and let B be a basis for V .
Let S = {u1, . . . , uk} ⊆ V . To decide if S is linearly independent:

1. Form the matrix A ∈Mn,k(F) given by A = [ [u1]B · · · [uk]B ]

2. Calculate rank(A)

3. S is linearly independent iff rank(A) = k

Remark. It is always the case that rank(A) 6 k.

Example 17.2. Let S = {(2+2i)+2x+2x2−2x3, i+(1+i)x+x2−x3,−1−x2+x3} ⊆ P3(C). Is S linearly
independent? To apply the above technique we first fix a basis for P3(C). Let’s use the standard basis
B = {1, x, x2, x3}. Letting u1 = (2 + 2i) + 2x+ 2x2− 2x3, u2 = i+ (1 + i)x+x2−x3, u3 = −1−x2 +x3

we get

A =
[

[u1]B [u2]B [u3]B
]

=


2 + 2i i −1

2 1 + i 0
2 1 −1
−2 −1 1

 ∼

−2 −1 0
0 i 1
0 0 0
0 0 0


Since the rank is 2 which is strictly less the the number of elements in S, we conclude that S is linearly
dependent.

Remark. Since we know that rank(A) = rank(AT ) (Corol-
lary 16.6), we could have instead calculated the
rank of the matrix AT

AT =

2 + 2i 2 2 −2
i 1 + i 1 −1
−1 0 −1 1



Algorithm 17.3: To decide whether a subset of V is a spanning set for V

Let V be an n-dimensional vector space over a field F and let B be a basis for V .
Let S = {u1, . . . , uk} ⊆ V . To decide if S is a spanning set for V :

1. Form the matrix A ∈Mn,k(F) given by A = [ [u1]B · · · [uk]B ]

2. Calculate rank(A)

3. S is a spanning set for V iff rank(A) = n

Example 17.4. With S ⊆ P3(C) as in Example 17.2, the calculation done there shows that S is not a
spanning set for P3(C) because rank(A) = 2 < 4 = dim(P3(C)).
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Algorithm 17.5: To find a subset of a set S = {u1, . . . , uk} that is a basis for span (S)

Let V be an n-dimensional vector space over a field F and let B be a basis for V .
Let S = {u1, . . . , uk} ⊆ V . To find a subset of S that is a basis for span(S):

1. Form the matrix A ∈Mn,k(F) given by A = [ [u1]B · · · [uk]B ]

2. Reduce A to row echelon form R

3. Locate the pivot columns of A

4. The corresponding elements of S form a basis for span(S). That is, the basis is

{ui | the i-th column of R is a pivot column}

Example 17.6. With S ⊆ P3(C) as in Example 17.2, the calculation done there shows that the set
C = {(2 + 2i) + 2x+ 2x2 − 2x3, i+ (1 + i)x+ x2 − x3} is a basis for span(S).

Remark. Alternatively, to find a basis for span(S) we could consider the matrix

AT =

2 + 2i 2 2 −2
i 1 + i 1 −1
−1 0 −1 1

 ∼
−1 0 −1 1

0 1 −i i
0 0 0 0


The non-zero rows in the row echelon form give a basis {(−1, 0,−1, 1), (0, 1,−i, i)} for rowspace(A)
and hence a basis {−1− x2 + x3, x− ix2 + ix3} for span(A).

Algorithm 17.7: To find a superset of a linearly independent set that is a basis

Let V be an n-dimensional vector space over a field F and let B be a basis for V .
Let W 6 V be a subspace and fix a basis {w1, . . . , wm} for W .

Given a linearly independent subset S = {u1, . . . , uk} ⊆W , to extend S to obtain a basis of W :

1. Form the matrix A = [ [u1]B · · · [uk]B [w1]B · · · [wm]B ] ∈Mn,k+m(F)

2. Reduce to row echelon form

3. Locate the pivot columns of A.a

4. The vectors correspnding to the pivot columns form a basis for W . That is

{u1, . . . , uk} ∪ {wi | the (k + i)-th column of A is a pivot column}

is a basis for W .
aThe first k columns will all be pivot columns since S is linearly independent.

Note. This includes the case in which W = V and B = {w1, . . . , wm}.

Example 17.8. We saw in the previous example that {−1−x2 +x3, x− ix2 + ix3} ⊆ P3(C) is a linearly
independent set. We can extend it to a basis for P3(C) as follows (letting u1 = −1 − x2 + x3, u2 =
x− ix2 + ix3 and using the standard basis B = {1, x, x2, x3} )

[[u1]B [u2]B [1]B [x]B [x2]B [x3]B] =


−1 0 1 0 0 0
0 1 0 1 0 0
−1 −i 0 0 1 0
1 i 0 0 0 1

 ∼ · · · ∼

−1 0 1 0 0 0
0 1 0 1 0 0
0 0 −1 i 1 0
0 0 0 0 1 1


Therefore the set {−1− x2 + x3, x− ix2 + ix3, 1, x2} is a basis for P3(C).
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Algorithm 17.9: To write a vector as a linear combination of a set S

Let V be an n-dimensional vector space over a field F and let B be a basis for V .
Let S = {u1, . . . , uk} ⊆ V and let w ∈ V . To write w as a linear combination of the elements in S:

1. Form the matrix A = [ [u1]B · · · [uk]B [w]B]

2. Reduce to row echelon form

3. If the last column is a pivot column, then w /∈ span(S)

4. Otherwise, continue to reduced row echelon form R. The entries in the last column of R
give the coefficients in the linear combination. (See the example below.)

Example 17.10. Consider the set S = {−1 − x2 + x3, x − ix2 + ix3} ⊆ P3(C). Let’s try to write the
element w = 1 + x+ x2 + x3 as a linear combination of these two elements:

−1 0 1
0 1 1
−1 −i 1
1 i 1

 ∼ · · · ∼

−1 0 1
0 1 1
0 0 i
0 0 0


From which we conclude that w /∈ span(S). If we consider instead the vector v = −1 + ix we get

−1 0 −1
0 1 i
−1 −i 0
1 i 0

 ∼ · · · ∼


1 0 1
0 1 i
0 0 0
0 0 0


and we see that v = u1 + iu2, where u1 = −1− x2 + x3, u2 = x− ix2 + ix3.

17.1 Exercises

133. Let W = span(S) where S = {
[
1 −2
4 1

]
,
[
2 −3
9 −1

]
,
[
1 0
6 −5

]
,
[
2 −5
7 5

]
} ⊆ M2,2(R).

(a) Find a subset T of S that forms a basis for W .

(b) Write each element of S \ T as a linear combination of the elements of T .

(c) Find a basis forM2,2(R) that contains T .

134. (a) Show that B = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} is a basis for R3.

(b) Find the coordinates of (4,−3, 2) ∈ R3 relative to B.

135. (a) Show that the set {(1− i, i), (2,−1 + i)} is linearly dependent in C2

(b) Now consider the vector space V with underlying set C2, but with R as the field of scalars.
Show that the set {(1− i, i), (2,−1 + i)} is linearly independent in V

136. Let A =


1 3 −2 5 4
1 4 1 3 5
1 4 2 4 3
2 7 −3 6 13

 ∈M4,5(R)

(a) Find a basis for the solution space of A (as a subspace of R5).

(b) Extend to a basis of R5.

(c) Find a basis for the column space of A (as a subspace of R4).

137. Which of the following are linear combinations of (0,−2, 2) and (1, 3,−1)?
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(a) (2, 2, 2) (b) (0, 4, 5)

138. Let u = (1, 0,−1) and v = (−2, 1, 1).

(a) Write (−1, 2,−1) as a linear combination of u and v.
(b) Show that (−1, 1, 1) cannot be written as a linear combination of u and v.
(c) For what value of c is the vector (1, 1, c) a linear combination of u and v?

139. Is
[

6 −8
−1 −8

]
a linear combination of the matrices in

{[
4 0
−2 −2

]
,

[
1 −1
2 3

]
,

[
0 2
1 4

]}
?

140. Express the polynomial−9−7x−15x2 as a linear combination of p1 = 2+x+4x2, p2 = 1−x+3x2,
and p3 = 3 + 2x+ 5x2.

141. Show that the vectors (1, a, a2), (1, b, b2), (1, c, c2) are linearly independent if a, b, c are distinct
(i.e., a 6= b, a 6= c and b 6= c).

142. In this question let S = {v1, v2, v3, v4, v5} ⊆ R3 and letA be the 3×5 matrix with the i-th column
given by the vector vi. Suppose that the reduced row echelon form of A is1 2 0 −1 0

0 0 1 3 0
0 0 0 0 1


Are the following sets linearly dependent or independent? If linearly dependent, express one
vector as a linear combination of the others.

(a) {v1, v2, v3} (b) {v1, v3, v4} (c) {v1, v4, v5} (d) {v3, v4, v5}

143. In each part explain why the given statement is true “by inspection.”

(a) The set {(1, 0, 3), (−1, 1, 0), (1, 2, 4), (0,−1,−2)} is linearly dependent.
(b) The set {(1,−1, 2), (0, 1, 1)} does not span R3.
(c) If the set {v1, v2, v3, v4} of vectors in R4 is linearly independent, then it spans R4.
(d) The set {(0, 1,−1, 0), (0,−1, 2, 0)} is linearly independent, and so it spans the subspace of

R4 of all vectors of the form (0, a, b, 0).

144. In each part determine whether or not the given set forms a basis for the indicated subspace.

(a) {(1, 2, 3), (−1, 0, 1), (0, 1, 2)} for R3

(b) {(−1, 1, 2), (3, 3, 1), (1, 2, 2)} for R3

(c) {(1,−1, 0), (0, 1,−1)} for the subspace of R3 consisting of all (x, y, z) such that x+y+z = 0.
(d) {(1, 1, 0), (1, 1, 1)} for the subspace of R3 consisting of all (x, y, z) such that y = x+ z.

145. Which of the following sets of vectors are bases for R3?

(a) {(1, 0, 0), (2, 2, 0), (3, 3, 3)}
(b) {(2,−3, 1), (4, 1, 1), (0,−7, 1)}

146. Find a basis for and the dimension of the subspace of Rn spanned by the following sets.

(a) {(0, 1,−2), (3, 0, 1), (3, 2,−3)} (n = 3)
(b) {(1, 3), (−1, 2), (7, 6)} (n = 2)
(c) {(−1, 2, 0, 4), (3, 1,−1, 2), (−5, 3, 1, 6), (7, 0,−2, 0)} (n = 4)

147. For each of the following sets choose a subset that is a basis for the subspace spanned by the set.
Then express each vector that is not in the basis as a linear combination of the basis vectors.

(a) {(1, 2, 0,−1), (2,−1, 2, 3), (−1,−11, 6, 13), (4, 3, 2, 1)} ⊆ Q4

(b) {(0,−1,−3, 3), (−1,−1,−3, 2), (3, 1, 3, 0), (0,−1,−2, 1)} ⊆ Q4

(c) {(1, 2,−1), (0, 3, 4), (2, 1,−6), (0, 0, 2)} ⊆ Q3
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LECTURE 18

Linear error-correcting codes

When storing or transmitting data (on a disk, over the internet etc) errors are often introduced. Er-
rors might result, for example, from physical damage or radiation. In a memory chip, background
radiation can alter the memory contents. We would like to be able to protect against this, and reduce
the risk of using corrupted data.

How can we encode data in order to detect and perhaps correct errors in transmission or storage?
The study of such problems is known as Coding Theory.

18.1 Codes

A key idea is to build in redundancy before sending or storing the data. A simple way to do this is by
repetition. If we wanted to send the message ‘1011’, we could send each bit twice and send ‘11001111’.
If the message ‘11011111’ were received we would know that there had been some corruption of the
message. In this example the sent message is made up of combinations of 00 and 11.

By repeating each bit three times we would even be able to correct certain errors:

message: 1011 sent: 111000111111 received: 111010111111

We would know that there had been some interference and that the original message was (most
probably) 101, since 010 is ‘closer’ to 000 than to 111.

Definition 18.1

Let A be a finite set. We will refer toA as the alphabet. A code over A is a non-empty subset of
An. The number n is called the length of the code. The elements of a code are called codewords.

Example 18.2. 1. The set {(c, a, t), (d, o, g), (p, i, g), (a, b, c), (l, d, r)} is a code of length 3 over the
alphabet A = {a, b, c, . . . , z}.

2. {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} is a code of length 3 over F2 = {0, 1}

Remark. When considering codes it is convenient to drop the commas and parentheses. So the exam-
ples above would be written as {cat, dog, pig, abc, ldr} and {000, 011, 101, 110}

18.2 Linear codes

Definition 18.3

A linear code of length n and rank k is a k-dimensional subspace of Fnp . (for some prime p ∈ N).
The code is called a binary linear code if p = 2.

Example 18.4. For the above repetition code, our codewords were 000 and 111. These two elements
together form a subspace of F3

2 so it is a linear code.
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Example 18.5. {(a, b, c) | a, b, c ∈ F2 and a+ b+ c = 0} = {000, 011, 101, 110} is a subspace of F3
2, and

so is a binary linear code. This code could be used as follows.

original codeword
00 000
01 101
10 110
11 011

If we receive a word abc we can check whether it is a codeword by calcula-
ting (remembering that entries are in F2) whether

[ 1 1 1 ]
[
a
b
c

]
= 0

If it is a codeword, we know that the intended (original) message was bc.

Definition 18.6

A check matrix for a linear code is a matrix H such that C is the solution space of H .

Example 18.7. (The Hamming CodeH2(3))

Consider the matrix

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ∈M3,7(F2)

We take as codewords all the elements in the solution space of H .

A basis for the solution space is given by




1
1
1
0
0
0
0

 ,


1
0
0
1
1
0
0

 ,


0
1
0
1
0
1
0

 ,


1
1
0
1
0
0
1




We then send abcd ∈ F4
2 using the codeword x1

x2
x3
x4
x5
x6
x7

 = a


1
1
1
0
0
0
0

+ b


1
0
0
1
1
0
0

+ c


0
1
0
1
0
1
0

+ d


1
1
0
1
0
0
1


=


1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

[ abc
d

]
=


a+b+d
a+c+d
a

b+c+d
b
c
d


Taking the transpose gives:[

x1 x2 x3 x4 x5 x6 x7
]

=
[
a b c d

]
G

where

G =

[
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

]
This matrix, which is used to calculate codewords is called a generating matrix

We have 4 parameters (called information bits in this setting) which can be chosen arbitrarily. (In
this case they are the 3rd, 5th, 6th and 7th bits.)

The other 3 bits are called check bits. (The 1st, 2nd and 4th bits.)

If we want to send the message abcd ∈ F4
2, we calculate the codeword

[
a b c d

]
G ∈ F7

2 and send
it. When a message is received, we check that it is a codeword by multiplication by H .

For example, suppose we wanted to send 1011

The codeword for this is 0110011 since
[
1 0 1 1

]
G =

[
0 1 1 0 0 1 1

]
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We send the codeword 0110011

Suppose some interference occurs and the received word is v = 0100011

The receiver knows that an error has occurred because

HvT = H



0
1
0
0
0
1
1


=

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




0
1
0
0
0
1
1


=

0
1
1

 6=
0

0
0



In fact, since

HvT =

0
1
1


the receiver knows that the error occurred in the third bit.

Assuming that a single error has occurred, the (column) matrix HvT is equal to a column (of H). If it
is the nth column, the error occurred in the nth bit.

She therefore knows that to get the intended codeword the third bit should be swapped from 0 to 1
— giving 0110011

The original message is then recovered by dropping the check bits (1st, 2nd and 4th) — giving 1011

So, this code gives a way of correcting a single error.

Exercise 148. Recover the original messages from the received words: 0110001, 1110000, 0000011

18.3 Hamming distance

When an error occurs, we would like to be able to correct the error, by deciding what the original
message was. In the above triple repetition code, when the non codeword 010 was received we
deduced that the (probable) intended codeword was 000, since this is ‘closer’ to 010 than is the other
codeword 111.

Definition 18.8

The Hamming distance between two strings u = a1 · · · an, v = b1 · · · bn ∈ An is the number of
places in which they differ. It is denoted d(u, v).

Example 18.9. So, d(010, 000) = 1 and d(010, 111) = 2

For a code C, an important property is the minimum distance between codewords.

Definition 18.10

The minimum distance of a code C is dmin = min{d(u, v) | u, v ∈ C, u 6= v}
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Lemma 18.11

Let C be a code with minimum distance dmin between codewords. Then C can be used to detect
up to dmin − 1 errors and correct up to bdmin−1

2 c errors.

In correcting an error, we are assuming that the original codeword (before interference) is the code-
word closest to the received word. This is called the nearest neighbour principle.

In general, to find the minimum distance between codewords one needs to calculate the distance be-
tween every pair of codewords (and then take the minimum). However, for linear codes calculating
the minimum distance is simpler than for general codes.

Definition 18.12

The weight w(u) of a word u = a1 · · · an ∈ Fnp is the number of non-zero coordinates, that is,
w(u) = d(u,

⇀
0).

Lemma 18.13

For a linear code, the minimum distance between codewords is equal to the smallest non-zero
weight.

Exercise 149. Write out a proof of the above lemma.

Example 18.14. The linear code {0000, 1011, 0110, 1101} ⊂ F4
2 has minimum weight 2, and hence

minimum distance 2.

Suppose a linear code is defined by a check matrix H . How can we calculate the minimum weight
without having to list all the words in the code?

Lemma 18.15

1. For a binary linear code defined by a check matrix H , the minimum weight is the smallest
number r > 0 such that r columns of H sum to zero.

2. More generally, let H ∈ Mm,n(Fp) be the check matrix for a linear code C. Then the mini-
mum weight of C is equal to the size of the smallest linearly dependent set of columns of
H .

Exercise 150. Prove the above lemma.

18.4 Exercises

151. Determine the minimum distance dmin between codewords for each of the following binary
codes:

(a) {1000, 1011, 0100}

(b) {000000, 101010, 010101, 111001, 011110}

(c) For the code in (b), find the distance of each of the following received words from the
codewords, and hence decode each of the received words using the nearest neighbour
principle: (i) 100010 (ii) 000101 (iii) 000110
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152. What is the smallest minimum distance that a code must have in order to correct two errors?
How many errors will it detect?

153. Determine whether each of the following sets of codewords forms a binary linear code.

(a) {000, 110, 100}
(b) {000, 100, 011, 111}
(c) {00000, 01110, 10111, 11001}

154. Verify that each of the following sets gives a binary linear code, and find the minimum distance.

(a) {00000000, 10101010, 01010101, 11111111}
(b) {00000, 00111, 01011, 01100, 10011, 10100, 11000, 11111}

155. Show that

H =

1 0 0 1 0
0 1 0 1 1
0 0 1 1 0


cannot be used as the check matrix for a single-error-correcting code by

(a) writing down a codeword of weight 2, and

(b) determining two non-zero codewords which are distance 2 apart.

156. Consider the binary linear code with check matrix

H =

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 1


(a) Decode the received words 111001, 110111.

(b) Show that if 111111 is received then more than one error has occurred in transmission.
Find two possible codewords which could have been transmitted with two errors occur-
ring, and a codeword which could have been transmitted with three errors.

157. Let

H =


0 0 0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0

 ∈M4,10(F2).

This check matrix defines a linear code whose information bits (i.e., parameters) are the 3rd,
5th, 6th, 7th, 9th, and 10th.

(a) Encode the information messages (i) 101101, (ii) 001011.

(b) Decode the received words (i) 0001110101, (ii) 0000101100, (iii) 1011110111, giving if pos-
sible the information messages which were sent.

158. Let

H =

0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

 ∈M3,13(F3)

Each codeword has 10 information bits and 3 check bits (1st, 2nd and 5th)

(a) Prove that this code has minimum distance 3.

(b) The word w = 0121002011001 is received. By calculating HwT , show that an error has
occurred.

(c) Assuming that only one error has occurred, find the intended codeword.

(d) What was the original 10-digit message?
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Extra material for lecture 18

� References about codes

Coding Theory : A First Course by San Ling and Chaoping Xing

Mathematics in computing by Gerard O’Regan, Chapter 9.
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LECTURE 19

Linear transformations

We next consider functions between vector spaces that preserve the vector space structure (addition
and scalar multiplication). Such linear transformations arise in many applications and are a central
tool in the study of vector spaces.

19.1 Definition of linear transformation

Definition 19.1: Linear transformation

Let V and W be vector spaces over the same field of scalars F. A linear transformation from V
to W is a function T : V →W that satisfies the following properties:

1. ∀u, v ∈ V , T (u+ v) = T (u) + T (v) (T preserves vector addition)

2. ∀u ∈ V ∀α ∈ F, T (αu) = αT (u) (T preserves scalar multiplication)

Remark.

1. Properties 1 and 2 together are equivalent to the single condition:

∀u, v ∈ V ∀α, β ∈ F, T (αu+ βv) = αT (u) + βT (v)

2. The condition T (αu) = αT (u) implies that ‘lines are mapped to lines (or points)’

Examples 19.2.

1. Let T : R3 → R3 be given by T (x, y, z) = (0, 2x+ z,−y). Then T is a linear transformation, since

T ((a, b, c) + (x, y, z)) = T (a+ x, b+ y, c+ z)

= (0, 2(a+ x) + (c+ z),−(b+ y)) = (0, 2a+ c,−b) + (0, 2x+ z,−y)

= T (a, b, c) + T (x, y, z)

and

T (α(x, y, z)) = T (αx, αy, αz) = (0, 2αx+ αz,−αy) = α(0, 2x+ z,−y) = αT (x, y, z)

2. The map D : P3(C)→ P2(C), D(p(x)) = dp
dx is a linear transformation

3. Many familiar geometric transformations of the plane R2 are linear, such as: reflection across a
line through the origin, rotation about the origin, projection onto a line through the origin.

Exercise 159. Let T : V →W be a linear transformation. Show that

(a) T (
⇀
0V ) =

⇀
0W (b) ∀v ∈ V , T (−v) = −T (v)

Example 19.3 (Translation is not a linear transformation). The function τ : R2 → R2 given by
τ(x, y) = (x + 1, y) is not a linear transformation since τ(

⇀
0) 6= ⇀

0. More generally, let n ∈ N and
t ∈ Rn \ {⇀0}. The function τ : Rn → Rn given by τ(u) = u+ t is not a linear transformation.
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Exercise 160. Let T : V →W be a linear transformation.

(a) Suppose that U 6 V is a subspace of V . Prove that the image of U , T (U) = {T (u) | u ∈ U}, is a
subspace of W .

(b) Suppose that U 6 W is a subspace of W . Prove that the pre-image of U , T−1(U) = {v ∈ V |
T (v) ∈ U}, is a subspace of V .

19.2 The linear transformations determined by a matrix

There is a natural way to use matrices to define linear transformations. In fact, as we will see later, all
linear transformations (between finite-dimensional vector spaces) can be represented by matrices.

Lemma 19.4: linear transformation given by a matrix

Let A ∈Mm,n(F). The function T :Mn,1(F)→Mm,1(F) given by

T


x1...
xn


 = A

x1...
xn


is a linear transformation.

Proof. We need to show that given any u, v ∈ Mn,1(F) and α ∈ F we have T (u + v) = T (u) + T (v)
and T (αu) = αT (u).

T (u+ v) = A(u+ v) = Au+Av (matrix multiplication is distributive)
= T (u) + T (v)

T (αu) = A(αu) = αA(u) (property of matrix multiplication)
= αT (u)

Examples 19.5 (Some ‘geometric’ transformations of the Euclidean plane).

Using coordinates with respect to the standard basis, we identifyM2,1(R) with R2 in the following.

1. The linear transformation R2 → R2

given by the matrix on the right is
reflection across the y-axis.

[
−1 0
0 1

]
(x, y)T (x, y) = (−x, y)

2. The linear transformation R2 → R2

given by the matrix on the right
is rotation by θ radians (anticloc-
kwise) about the origin.

[
cos θ − sin θ
sin θ cos θ

]
(x, y)

T (x, y)

θ

3. The linear transformation R2 → R2

given by the matrix on the right is
dilation by factor k > 0 along the
x-axis.

[
k 0
0 1

]
(x, y) T (x, y) = (kx, y)
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4. The linear transformation R2 → R2

given by the matrix on the right is
orthogonal projection onto the y-
axis.

[
0 0
0 1

]
(x, y)T (x, y) = (0, y)

5. The linear transformation R2 → R2

given by the matrix on the right
is orthogonal projection onto the
line y = x.

1

2

[
1 1
1 1

]
(x, y)

T (x, y) = 1
2 (x+ y, x+ y)

19.3 Linear transformations and bases

Linear transformations are completely determined by their effect on a spanning set.

Proposition 19.6

Let T1, T2 : V →W be two linear transformations and let S ⊆ V be a spanning set for V .

If T1(u) = T2(u) for all u ∈ S, then T1 = T2.

Proof. We need to show that ∀v ∈ V , T1(v) = T2(v). Let v ∈ V . Then, since S is a spanning set for V ,
there exist αi ∈ F and ui ∈ S such that v =

∑k
i=1 αiui. Then we have

T1(v) = T1

(
k∑
i=1

αiui

)

=

k∑
i=1

αiT1(ui) (T1 is a linear transformation)

=

k∑
i=1

αiT2(ui) (T1(ui) = T2(ui))

= T2

(
k∑
i=1

αiui

)
(T2 is a linear transformation)

= T2(v)

The next result says that a linear transformation can be defined by choosing images for the elements
of a basis.

Theorem 19.7

Let V and W be vector spaces over the sane field F. Let B ⊆ V be a basis for V .

Given any function f : B → W , there exists a unique linear transformation T : V → W having
the property that T (b) = f(b) for all b ∈ B.

Proof. We need to show that there exists a linear transformation with the property that T (bi) = f(bi)
for all i, and that if two linear transformations each have this property, then they are equal.

To establish the existence part of the statement we define a function T : V → W as follows. Given
u ∈ V , we have u = α1b1 + · · · + αnbn for uniquely determined αi ∈ F and bi ∈ B (Lemma 14.3).
We define T (u) = α1f(b1) + · · ·+ αnf(bn). To see that this gives a linear transformation, let u, v ∈ V
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and α ∈ F . Then there are b1, . . . , bn ∈ B and αi, βi ∈ F such that u = α1b1 + · · · + αnbn and
v = β1b1 + · · ·+ βnbn. Then

T (u+ v) = T (α1b1 + · · ·+ αnbn + β1b1 + · · ·+ βnbn)

= T ((α1 + β1)b1 + · · ·+ (αn + βn)bn)

= (α1 + β1)f(b1) + · · ·+ (αn + βn)f(bn) (definition of T )
= α1f(b1) + · · ·+ αnf(bn) + β1f(b1) + · · ·+ βnf(bn)

= T (α1b1 + · · ·+ αnbn) + T (β1b1 + · · ·+ βnbn) (definition of T )
= T (u) + T (v)

and

T (αu) = T (α(α1b1 + · · ·+ αnbn))

= T ((αα1)b1 + · · ·+ (ααn)bn)

= (αα1)f(b1) + · · ·+ (ααn)f(bn) (definition of T )
= α(α1f(b1) + · · ·+ αnf(bn))

= αT (α1b1 + · · ·+ αnbn) (definition of T )
= αT (u)

The uniqueness part of the theorem is an immediate consequence of Proposition 19.6

19.4 Exercises

161. Show that each of the following maps is a linear transformation:

(a) S : R2 → R2, S(x, y) = (2x− y, x+ y)

(b) T : R3 →M2,2(R) given by T (x, y, z) =

[
y z
−x 0

]
162. Determine whether or not the given map is a linear transformation, and justify your answer.

(a) F : R3 → R2, F (x, y, z) = (0, 2x+ y)

(b) K : R2 → R3, K(x, y) = (x, sin y, 2x+ y)

163. Let v1, v2, and v3 be vectors in a vector space V and T : V → R3 a linear transformation for
which T (v1) = (1,−1, 2), T (v2) = (0, 3, 2), and T (v3) = (−3, 1, 2). Find T (2v1 − 3v2 + 4v3).

164. For the linear transformations of R2 into R2 given by the following matrices:

(i) Sketch the image of the rectangle with vertices (0, 0), (2, 0), (0, 1), (2, 1).
(ii) Describe the geometric effect of the linear transformation.

(a)
[
0 1
1 0

]
(b)

[
0 0
1 0

] (c)
[
1 1
0 0

]
(d)

[
1 0
a 1

] (e)
[
b 0
0 c

]
(f) 1

5

[
3 −4
4 3

]
165. Show that there is no line through the origin in R2 that is invariant under the transformation

determined by the matrix

A(θ) =

[
cos θ − sin θ
sin θ cos θ

]
when θ is not an integral multiple of π. Give a geometric interpretation of this observation
commenting on the case when θ = kπ for some k ∈ Z.

166. Let V and W be two vector spaces over a field F. Let S ⊆ V be non-empty and linearly in-
dependent. Use Theorem 19.7 to show that for all functions f : S → W , there exists a linear
transformation T : V →W with the property that T (v) = f(v) for all v ∈ S.

© University of Melbourne 2023



MAST10022 Linear Algebra: Advanced, 2023 19-5

Extra material for lecture 19

� The dual space

Let F be a field and V a vector space over F. A linear transformation from V to F (considering
F as a 1-dimensional vector space over itself) is called a linear functional. The set of all such
linear functionals is denoted by V ∗ . We define operations on V ∗ as follows. Given ϕ,ψ ∈ V ∗
and k ∈ F, the functions ϕ+ ψ and kϕ are given by

(ϕ+ ψ)(v) = ϕ(v) + ψ(v) ∀v ∈ V
(kϕ)(v) = kϕ(v) ∀v ∈ V

Equipped with these operations, V ∗ is a vector space over F. It’s called the dual space.

Suppose that V is finite dimensional and let b1, . . . , bn be a basis. For each i ∈ {1, . . . , n} define
b∗i ∈ V ∗ by

b∗i (α1b1 + · · ·+ αnbn) = αi

Show that {b∗1, . . . , b∗n} is a basis for V ∗. It follows that if V is finite dimensional then V ∼= V ∗.

Whether or not V is finite dimensional we have V ∼= V ∗∗. The map f : V → V ∗∗, given by
f(v)(ϕ) = ϕ(v) is an isomorphism.

� Hom(V,W )

Let V and W be vector spaces over the same field F. The set of all linear transformations from
V to W is itself a vector space over F when given the usual pointwise operations.

(S + T )(v) = S(v) + T (v) ∀v ∈ V
(kT )(v) = kT (v) ∀v ∈ V

This vector space is denoted Hom(V,W ). Notice that V ∗ = Hom(V,F)
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LECTURE 20

Matrix representations of linear transformations

We saw in Lemma 19.4 that matrices can be used to define linear transformations. In fact, any linear
transformation can be represented by a matrix. Just as the coordinate matrix of a vector depends on
a choice of basis, the matrix of a linear transformation depends on a choice of basis for each of the
domain and codomain.

20.1 Matrix of a linear transformation

Let V,W be finite dimensional vector spaces with the same scalars F and let T : V → W be a linear
transformation. Let B = {b1, b2, . . . , bn} be an ordered basis for V and C = {c1, c2, . . . , cm} be an
ordered basis for W . Then T (bi) ∈W for each i = 1, . . . ,m and we can therefore write T (bi) uniquely
as a linear combination of the basis vectors in C.

T (b1) = α11c1 + α21c2 + . . . + αm1cm
T (b2) = α12c1 + α22c2 + . . . + αm2cm

...
...

...
...

...
T (bn) = α1nc1 + α2nc2 + . . . + αmncm

Definition 20.1: matrix of a linear transformation

We form a matrix [T ]C,B ∈ Mm,n(F) by defining [T ]C,B = (αij). This matrix is called the matrix
of T with respect to B and C.

Note. The i-th column of [T ]C,B is given by [T (bi)]C . That is,

[T ]C,B = [ [T (b1)]C · · · [T (bn)]C ]

Remark. In the case in which V = W and B = C, we sometimes write [T ]B in place of [T ]B,B.

The way in which this matrix represents the linear transformation is given by the following.

Lemma 20.2

Let V andW be finite dimensional vector spaces with bases B and C respectively. Let T : V →W
be a linear transformation. Then

∀u ∈ V, [T (u)]C = [T ]C,B [u]B

Proof. Let B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cm}. Let u ∈ V . Then u = α1b1 + · · · + αnbn for
some αi ∈ F. We have

u = α1b1 + · · ·+ αmbn

T (u) = α1T (b1) + · · ·+ αnT (bn) (T is linear)
[T (u)]C = α1[T (b1)]C + · · ·+ αn[T (bn)]C (Lemma 15.4) (∗)
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and

[T ]C,B[u]B =
[
[T (b1)]C · · · [T (bn)]C

] α1
...
αn


= α1[T (b1)]C + · · ·+ αn[T (bn)]C (see the remark on page 16-1)
= [T (u)]C (from (∗) above)

In summary, we have

u ∈ V
apply T
−−−−−→ T (u) ∈W

take coords

y ytake coords

[u]B
mult by [T ]C,B−−−−−−−−−→ [T (u)]C

Exercise 167. Suppose that A ∈ Mm,n(F) is such that A[u]B = [T (u)]C for all u ∈ V . Show that
A = [T ]C,B. (Hint: Show that the i-th column of A is equal to [T (bi)]C .)

Example 20.3. Consider the linear transformation T : M2,2(R)→M2,2(R) where T is defined by

T (A) = AT

Let’s calculate the matrix representation of T with respect to the basis S = {[ 1 0
0 0 ] , [ 0 1

0 0 ] , [ 0 0
1 0 ] , [ 0 0

0 1 ]}
(for both domain and codomain).

[T [ 1 0
0 0 ]]S = [[ 1 0

0 0 ]]S =

[
1
0
0
0

]
[T [ 0 1

0 0 ]]S = [[ 0 0
1 0 ]]S =

[
0
0
1
0

]
[T [ 0 0

1 0 ]]S = [[ 0 1
0 0 ]]S =

[
0
1
0
0

]
[T [ 0 0

0 1 ]]S = [[ 0 0
0 1 ]]S =

[
0
0
0
1

]

Therefore [T ]S,S =

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
Exercise 168. With T as above and C = {[ 1 0

0 0 ] , [ 0 1
1 0 ] ,

[
0 1
−1 0

]
, [ 0 0

0 1 ]}, calculate [T ]C,C .

Example 20.4. Let T : R2 → R2 be the linear transformation given by T (x, y) = (x + 4y, x + y). Let
S = {(1, 0), (0, 1)} and B = {(2,−1), (2, 1)}. Then

[T ]S,S = [ 1 4
1 1 ] and [T ]B,B =

[−1 0
0 3

]
and [T ]S,B =

[−2 6
1 3

]
Exercise 169. A linear transformation T : R3 → R2 has matrix [T ] =

[
5 1 0
1 5 −2

]
with respect to the stan-

dard bases of R3 and R2. What is the matrix of T with respect to the basesB = {(1, 1, 0), (1,−1, 0), (1,−1,−2)}
of R3 and C = {(1, 1), (1,−1)} of R2?

Lemma 20.5

Let U, V,W be finite dimensional vector spaces (over the same field), with basesA, B, C respecti-
vely. Let S : U → V and T : V →W be linear transformations. Then

[T ◦ S]C,A = [T ]C,B [S]B,A
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Proof. Let u ∈ U .

[T ◦ S]C,A[u]A = [T ◦ S(u)]C Lemma 20.2
= [T (S(u))]C

= [T ]C,B[S(u)]B Lemma 20.2
= ([T ]C,B[S]B,A)[u]A Lemma 20.2

Since [T ◦S]C,A[u]A = ([T ]C,B[S]B,A)[u]A for all u ∈ U , we must have that [T ◦S]C,A = [T ]C,B[S]B,A

Example 20.6. With the linear transformation T : R2 → R2 and bases S and B of Example 20.4, we
have

[T 2]S,S = [T ]S,S [T ]S,S =

[
1 4
1 1

] [
1 4
1 1

]
=

[
5 8
2 5

]
[T 2]B,B = [T ]B,B[T ]B,B =

[
−1 0
0 3

] [
−1 0
0 3

]
=

[
1 0
0 9

]
[T 2]S,B = [T ]S,S [T ]S,B =

[
1 4
1 1

] [
−2 6
1 3

]
=

[
2 18
−1 9

]

20.2 Kernel and image of a linear transformation

Definition 20.7: Kernel and Image

Let T : V →W be a linear transformation. The kernel (or nullspace) of T is defined to be

ker(T ) = {u ∈ V | T (u) =
⇀
0}

The image of T is defined to be

im(T ) = {w ∈W | w = T (u) for some u ∈ V }

Note. From Exercise 160 we know that ker(T ) 6 V and im(T ) 6W .

Definition 20.8: rank and nullity of a linear transformation

The dimension of ker(T ) is called the nullity of T and is denoted nullity(T ). The dimension of
im(T ) is called the rank of T and is denoted rank(T ).

Example 20.9. Consider the linear transformation T : P3(R)→ P2(R) given by differentiation. Then
ker(T ) = span{1} and im(T ) = P2(R). Hence nullity(T ) = 1 and rank(T ) = 3.

Lemma 20.10

Let T : V →W be a linear transformation. Then T is injective if and only if ker(T ) = {⇀0}.

Proof. Suppose first that T is injective. Then we have

u ∈ ker(T ) ⇐⇒ T (u) =
⇀
0 ⇐⇒ T (u) = T (

⇀
0) ⇐⇒ u =

⇀
0

Therefore ker(T ) = {⇀0}.
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Now, conversely, suppose that ker(T ) = {⇀0}. For u, v ∈ V we have

T (u) = T (v) =⇒ T (u)−T (v) =
⇀
0 =⇒ T (u−v) =

⇀
0 =⇒ u−v ∈ ker(T ) =⇒ u−v =

⇀
0 =⇒ u = v

Therefore T is injective.

Exercise 170. Let T : V →W be a linear transformation.

(a) Let X ⊆ V be a linearly independent subset of the domain. Show that if T is injective, then
T (X) is linearly independent.

(b) Let Y ⊆ V be a spanning set for the domain. Show that T (Y ) is a spanning set for the image
im(T ).

(c) Use parts (a) and (b) to show that if B is a basis for V and T is injective, then T (B) is a basis for
im(T ).

20.3 Rank-nullity theorem

If both the domain and codomain are finite dimensional, the kernel and image of a linear transfor-
mation T can calculated from a matrix representation of T :

u ∈ ker(T ) ⇐⇒ [u]B ∈ Solution space of [T ]C,B

w ∈ im(T ) ⇐⇒ [w]C ∈ colspace([T ]C,B)

Theorem 20.11: Rank-Nullity Theorem

Let T : V →W be a linear transformation. Suppose that V is finite dimensional. Then

rank(T ) + nullity(T ) = dim(V )

Proof. We first prove under the assumption that W is also finite dimensional. Let n = dim(V ) and
m = dim(W ) and let B be a basis for V and C a basis for W . Let A = [T ]C,B ∈Mm,n(F).

nullity(T ) = dim(solution space of A) = number of non-pivot columns of A
rank(T ) = dim(column space of A) = number of pivot columns of A
dim(V ) = n = number of columns of A

Therefore rank(T ) + nullity(T ) = dim(V ).

For the general case (without assuming thatW is finite dimensional) we defineW ′ = im(T ). ThenW ′

is finite dimensional, and we apply the previous part to the linear transformation T ′ : V →W ′ given
by T ′(u) = T (u) to conclude that rank(T ′) + nullity(T ′) = dim(V ). Then note that ker(T ′) = ker(T )
and im(T ′) = im(T ).

Example 20.12. For the linear transformation T : P3(R)→ P2(R) of Example 20.9 we have rank(T ) +
nullity(T ) = 3 + 1 = 4 = dim(P3(R)).
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20.4 Exercises

171. Find the standard matrix of the following linear transformations of R2.

(a) rotation by 3π
4

(b) rotation by −π
2

(c) reflection in the line y = x

(d) reflection in the x−axis

172. In each part, find a single matrix that performs the indicated succession of operations.

(a) Compresses by a factor of 1
2 in the x-direction, then expands by a factor of 5 in the y-

direction.

(b) Reflects about y = x, then rotates about the origin through an angle of π.

(c) Reflects about the y-axis, then expands by a factor of 5 in the x-direction, and then reflects
about y = x.

173. Find the standard matrix (i.e., with respect to the standard basis of R2) of the rotation about the
origin through

(a) π
4 anticlockwise (b) π

174. Consider the following linear transformations:

K : R3 → R3 K(x, y, z) = (x, x+y, x+y+z) L : R3 → R2 L(x, y, z) = (2x− y, x+ 2y)
S : R3 → R3 S(x, y, z) = (z, y, x) T : R2 → R4 T (x, y) = (2x+y, x+y, x−y, x−2y)

Find the matrix that represents each of the following linear transformations (with respect to the
standard bases).

(a) K (b) L (c) S (d) T

175. Find the indicated linear transformation if it is defined. If it is not defined, explain why not.

(a) LK (b) TL (c) S2 (d) K + S (e) T 2

(Where, for example, LK denotes the composition L ◦K.)

176. Find the matrix which represents (with respect to the standard bases) those linear transforma-
tions in question 175 which exist.

177. Let T : P2(R)→ P3(R) be the function defined by multiplication by x. That is, T (a+bx+cx2) =
ax+ bx2 + cx3.

(a) Show that T is a linear transformation.

(b) Find the matrix of T with respect to the standard bases B = {1, x, x2} for P2(R) and C =
{1, x, x2, x3} for P3(R).

178. Let T : P2(R)→ P2(R) be the linear transformation defined by T (p(x)) = p(2x+ 1), that is,

T (a0 + a1x+ a2x
2) = a0 + a1(2x+ 1) + a2(2x+ 1)2

Find [T ]B, where B = {1, x, x2}.

179. Find the matrix that represents the linear transformation T with respect to the bases B and B′.

(a) T : R3 →M2,2(R) given by

T (x, y, z) =

[
y z
−x 0

]
where B = {e1, e2, e3} and B′ = {Eij |i = 1, 2; j = 1, 2} (i.e. the standard bases).
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(b) T : P3(C)→ P3(C) given by

T (a0 + a1x+ a2x
2 + a3x

3) = (a0 + a2)− (a1 + 2a3)x
2

where B = B′ = {1, x, x2, x3}.

180. Consider the linear transformation T : R4 → R3 given by the matrix (wrt the standard bases):

[T ] =

1 2 −1 1
1 0 1 1
2 −4 6 2


(a) Determine whether or not v1 = (−2, 0, 0, 2) and v2 = (−2, 2, 2, 0) are in the kernel of T .

(b) Determine whether or not w1 = (1, 3, 1) and w2 = (−1,−1,−2) are in the image of T .

(c) Find the nullity of T and give a basis for the kernel of T . Is the transformation injective?

(d) Find the rank of T and give a basis for the image of T . Is the transformation surjective?

181. For each of the linear transformations T : Rn → Rm given below find:

(i) its standard matrix (ii) a basis for the kernel (iii) a basis for the image

(a) T
([
x
y

])
=

[
x+ y

3y

]
(b) T

x1x2
x3

 =

[
x1 + x2 − x3

2x1 + x2

]

(c) T
([
x
y

])
=

x+ 2y
−y
x− y

 (d) T

x1x2
x3

 =

 3x1 − x2 − 6x3
−2x1 + x2 + 5x3
3x1 + 3x2 + 6x3


182. Let T :M2,2(R)→ R2 be the map defined by

T

([
a11 a12
a21 a22

])
=
[
2 −1

] [a11 a12
a21 a22

]
=
[
2a11 − a21 2a12 − a22

]
(a) Show that T is a linear transformation.

(b) Find bases for the kernel and image of T . Deduce the rank and nullity of T .

(c) Find the matrix of T with respect to the standard bases ofM2,2(R) and R2.

183. Let S : P2(R) → P3(R) be defined as follows. For each p(x) = a0 + a1x + a2x
2, define S(p) =

a0x + 1
2a1x

2 + 1
3a2x

3. The linear transformation S gives the antiderivative of p(x), with the
constant term equal to zero.

(a) Find the matrix A that represents S with respect to the bases B = {1, x, x2} and B′ =
{1, x, x2, x3}

(b) Use A to find the antiderivative of p(x) = 1− x+ 2x2.

184. Let U, V,W be vector spaces over the same field F with V being fininte dimensional. Consider
linear transformations S : U → V and T : V → W that satisfy T ◦ S = 0. Show that rank(S) +
rank(T ) 6 dim(V ).
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Extra material for lecture 20

� Let V and W be finite dimensional vector spaces over the same field F. Let n = dim(V ) and
m = dim(W ). Choose bases B for V and C for W and define f : Hom(V,W ) → Mm,n(F) by
f(T ) = [T ]C,B. Then f is a linear transformation. It is also a bijection.

� Short exact sequences

A sequence of two linear transformations of the form

U V W
ϕ ψ

is said to be exact at V if im(ϕ) = ker(ψ). A short exact sequence is a sequence of linear
transformations of the form

0 U V W 0
ϕ ψ

(∗)

that is exact at each of U , V , and W .

Show that:

(a) the sequence (∗) is exact at U iff ϕ is injective;

(b) the sequence (∗) is exact at W iff ψ is surjective;

(c) if the sequence (∗) is exact, then dim(V ) = dim(U) + dim(W ).

� Commutative diagrams

A diagram of four linear transformations of the form

U V

U ′ V ′

ϕ

ϕ′

f g

is said to commute if g ◦ ϕ = ψ ◦ f .

Suppose that in the following diagram of linear transformations the rows are exact and the left
square commutes.

0 U V W 0

0 U ′ V ′ W ′ 0

ϕ ψ

ϕ′ ψ′

f g h

Show that

(d) there exists a unique linear transformation h : W → W ′ that makes the right square com-
mute;

(e) if g is surjective, so is h;

(f) if f is surjective and g is injective, then h is injective.
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LECTURE 21

Change of basis

The matrix of linear transformation depends on the bases used for both domain and codomain. We
want to develop a convenient way of relating the different matrices that represent a given linear
transformation. In other words, if we change the bases used, how does the matrix representation
change?

21.1 Invertible linear transformations

Definition 21.1: invertible linear transformation

A linear transformation T : V → W is called invertible if there exists a linear transformation
T−1 : W → V satisfying T ◦ T−1 = IdW and T−1 ◦ T = IdV .

Invertible linear transformations are also called isomorphisms. We say that two vector spaces V
and W are isomorphic if there exists an isomorphism T : V → W . We write V ∼= W to denote
that V and W are isomorphic.

Exercise 185. Show that a linear transformation T : V →W is invertible if and only if T is a bijection.
Note that we are not assuming that V and W are finite dimensional.

Proposition 21.2: Matrix of an invertible linear transformation

Let V and W be finite dimensional vector spaces and let B and C be bases for V and W respecti-
vely. Let T : V →W be a linear transformation.

1. T is inveritble if and only if [T ]C,B is invertible

2. If T is invertible, then [T−1]B.C = ([T ]C,B)−1

Proof. Suppose first that T is invertible. Then T is a bijection and therefore ker(T ) = {⇀0}. Therefore,
by the rank-nullity theorem, dim(im(T )) = dim(V ). But since T is a bijection, im(T ) = W . Therefore
dim(W ) = dim(V ).

T ◦ T−1 = IdW =⇒ [T ◦ T−1]C,C = [IdW ]C,C

=⇒ [T ]C,B [T−1]B,C = [IdW ]C,C Lemma 20.5

=⇒ [T ]C,B [T−1]B,C = In where n = dim(W )

Similarly,

[T−1]B,C [T ]C,B = In where n = dim(V )

It follows that [T−1]B,C is the inverse of [T ]C,B.

Suppose instead thatA = [T ]C,B is invertible. Since it is invertible, it is square and therefore dim(V ) =
dim(W ). Let n = dim(V ) and A = [T ]C,B ∈ Mn,n(F ). Let S : W → V be the linear transformation
defined by [S]B,C = A−1. Then [T ◦ S]C,C = [T ]C,B [S]B,C = AA−1 = In. Therefore T ◦ S = IdW .
Similarly, [S ◦T ]B.B = [S]B,C [T ]C,B = A−1A = In, and therefore S ◦T = IdV . Therefore T is invertible,
and T−1 = S.
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Exercise 186. Let V be an n-dimensional F-vector space and B a basis for V . Show that the map
ϕ : V →Mn,1(F), ϕ(u) = [u]B is an isomorphism. Conclude that V ∼= Fn.

21.2 Change of basis for vectors

How can we convert coordinates with respect to one basis to coordinates with respect to another?

Definition 21.3

Let V be a finite dimensional vector space and let B and C be two bases for V . The transition
matrix from B to C, denoted PC,B, is defined to be

PC,B = [IdV ]C,B

Remark. If B = {b1, . . . , bn}, then PC,B = [ [b1]C · · · [bn]C ]

Exercise 187. Let V be a finite dimensional vector space and letA, B and C be bases for V . Show that

(a) PC,B is invertible and (PC,B)−1 = PB,C

(b) PC,A = PC,B PB,A

Proposition 21.4

Let V be a finite dimensional vector space and let B and C be two bases for V . Then

∀u ∈ V, [u]C = PC,B [u]B

Proof. Follows immediately from Lemma 20.2.

Example 21.5. Consider the following bases for R2: B = {(1, 1), (1,−1)} and S = {(1, 0), (0, 1)}.

Then we have PS,B =

[
1 1
1 −1

]
and PB,S =

[
1 1
1 −1

]−1
= 1

2

[
1 1
1 −1

]
.

If u = (2,−4) ∈ R2, then [u]B = PB,S [u]S = 1
2

[
1 1
1 −1

] [
2
−4

]
=

[
−1
3

]
Example 21.6. Consider the following bases for C2: B = {(1, 1), (1,−1)} and C = {(1+i, 1), (1, 1−i)}.
To find PC,B, we could calculate [(1, 1)]C and [(1,−1)]C . Alternatively, we can proceed as follows:

PC,B = PC,S PS,B = (PS,C)
−1 PS,B =

[
1 + i 1

1 1− i

]−1 [
1 1
1 −1

]
=

[
−i 2− i
i −2− i

]

21.3 Change of basis for linear transformations

We can also use transition matrices to relate two different matrix representations of the same linear
transformation.

Proposition 21.7

Let V and W be finite dimensional vector spaces. Let B1 and B2 be two bases for V and let C1
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and C2 be two bases for W . Let T : V →W be a linear transformation. Then

[T ]C2,B2 = PC2,C1 [T ]C1,B1 PB1,B2

Proof. Let u ∈ V . We have

(PC2,C1 [T ]C1,B1 PB1,B2) [u]B2 = PC2,C1 [T ]C1,B1 (PB1,B2 [u]B2)

= PC2,C1 [T ]C1,B1 [u]B1 (Proposition 21.4)
= PC2,C1 [T (u)]C1 (Lemma 20.2)
= [T (u)]C2 (Proposition 21.4)

It follows that PC2,C1 [T ]C1,B1 PB1,B2 = [T ]C2,B2 (see Exercise 167).

Corollary 21.8

Let V be a finite dimensional vector space and let B and C be two bases for V . Denote P = PC,B.
Let T : V → V be a linear transformation. Then

[T ]C = PC,B [T ]B PB,C = P [T ]B P
−1

Proof. Apply the Proposition with B2 = C2 = C and B1 = C1 = B. Note that PB,C = (PB,C)
−1.

Example 21.9. Let T : R2 → R2 be the linear transformation defined by
T (x, y) = (3x− y,−x+ 3y). Using the standard basis B = {(1, 0), (0, 1)}we find the matrix of f is

[T ]B =

[
3 −1
−1 3

]

Now let’s calculate the matrix with respect to the basis C = {(1, 1), (−1, 1)}.

[T ]C = PC,B [T ]B PB,C =

[
1 −1
1 1

]−1 [
3 −1
−1 3

] [
1 −1
1 1

]
=

[
2 0
0 4

]

(Alternatively, we could calculate [T ]C by finding [(1, 1)]C and [(−1, 1)]C .)

The above corollary motivates the following definition.

Definition 21.10

Let A,B ∈ Mn,n(F ). We say that A and B are similar if there exists an invertible matrix P ∈
Mn,n(F ) such that A = PBP−1. It is denoted A ∼ B.a

aBeware! This is not the same as saying that A and B are row-equivalent.

From Corollary 21.8 we know that [T ]C ∼ [T ]B

Exercise 188. Let A,B ∈ Mn,n(F) and suppose that A ∼ B. Show that there exists a linear transfor-
mation T : Fn → Fn and a basis B of Fn such that A = [T ]S and B = [T ]B (where S is the standard
basis for Fn).
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21.4 Exercises

189. Determine whether or not the given linear transformation is invertible. If it is invertible, com-
pute its inverse.

(a) T : R3 → R3 given by T (x, y, z) = (x+ z, x− y + z, y + 2z)

(b) T : R2 → R2 given by T (x, y) = (3x+ 2y,−6x− 4y)

(c) Tθ : R2 → R2 an anticlockwise rotation around the origin through an angle of θ.

(d) T θ : R2 → R2 a reflection in the line through the origin which forms an angle θ with the
x-axis.

190. Show that the transformation T : R3 → R3 defined by

T

xy
z

 =

x+ y
y + z
z + x


is invertible and find its inverse

191. (a) Find the transition matrix P from B to C, where B, C are the following bases of R3

B = {(1,−2, 1), (0, 3, 2), (1, 0,−1)} and C = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(b) Use P to find [x]B if

i) x = (3,−2, 5) ii) x = (−2, 7, 4)

192. Verify that the given set B is a basis for Rn. Compute the change of basis matrix for each of the
bases, and use it to find the coordinate matrix of v with respect to B.

(a) B = {(1, 2), (1,−2)}, v = (−1, 3)

(b) B = {(1, 1, 1), (1, 0, 1), (−1, 1, 0)}, v = (3,−1, 1)

193. (a) Let T : R2 → R2 be given by [T ]S =
[
1 1
0 −1

]
. Find the matrix [T ]B that represents T with

respect to the basis B of question 192 (a).

(b) Let T : R3 → R3 be given by [T ]S =
[ 2 −1 0
−2 1 2
−1 −1 3

]
. Find the matrix [T ]B that represents T with

respect to the basis B of question 192 (b).

194. Let T : R3 → R3 be given by T (x, y, z) = (4x + y − 4z,−3x − y + 5z, x). Find the matrix [T ]B
that represents T with respect to the basis B of question 192 (b).

195. Let T : R2 → R2 be defined by T (x1, x2) = (x1 − 2x2,−x2), and let B = {u1, u2}, B′ = {v1, v2},
u1 = (1, 0), u2 = (0, 1), where v1 = (2, 1), v2 = (−3, 4).

(a) Write down the matrix [T ]B of T with respect to B.

(b) Compute the matrix [T ]B′ of T with respect to B′.

196. A linear transformation T : R3 → R3 has matrix

[T ]S =

13 −4 −5
15 −4 −6
18 −6 = 7


with respect to the standard basis for R3. Find the matrix [T ]B of T with respect to the basis
B = {(1, 2, 1), (0, 1,−1), (2, 3, 2)}.
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197. Let B = {b1, b2, b3} be a basis for C3. Calculate the nullity and rank of the linear transformation
T : C3 → C3 determined by

T (b1) = b1 − b2
T (b2) = b2 − b3
T (b3) = b1 − b3

198. Calculate the nullity and rank of the linear transformation T : (F7)
3 → (F7)

3 determined by

T (1, 0, 0) = (1, 2, 3)

T (0, 1, 0) = (3, 4, 5)

T (0, 0, 1) = (5, 1, 4)
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Extra material for lecture 21

� Show that the relation of similarity is an equivalence relation onMn,n(F). That is, show that
the relation is reflexive, symmetric and transitive.

� Let V be an n-dimensional F-vector space. Show that every invertible n× n matrix is a change
of basis matrix for V . That is, show that for all invertible P ∈ Mn,n(F) there exist bases B and
B′ for V such that P = [IdV ]B′,B.

� Given a linear transformation T : V → V , show that there exist bases B and B′ for V such that
[T ]B′,B is diagonal and all entries are either 0 or 1. (Hint: start with a basis for the kernel of T .)
It is important here that B and B′ do not have to be the same. We will be investigating later the
special case in which there exists a basis B such that [T ]B,B is diagonal.

© University of Melbourne 2023



LECTURE 22

Eigenvalues and eigenvectors

22.1 Invariant subspaces

To help with understanding and analysing linear transformations, it is useful to identify subspaces
that are mapped to themselves in the following sense.

Definition 22.1

Given a linear transformation T : V → V , a subspace W 6 V is called an invariant subspace if
T (W ) ⊆W .

Example 22.2. Let T : R4 → R4 be the linear transformation having standard matrix representation

[T ]S =


2 0 1 2
1 2 0 −1
−2 1 −1 −1

1 −2 2 1


Let u1 = (−1, 1, 1, 0) and u2 = (0, 0, 1,−1). The subspace U = span{u1, u2} is invariant. To see this it
is enough to note that

[T (u1)]S = [T ]S [u1]S =


−1
1
2
−1

 = [u1]S + [u2]S therefore T (u1) = u1 + u2 ∈ U

[T (u2)]S = [T ]S [u2]S =


−1
1
0
1

 = [u1]S − [u2]S therefore T (u2) = u1 − u2 ∈ U

Exercise 199. Let V be a finite-dimensional F-vector space and let T : V → V be a linear transforma-
tion. Let B = {b1, . . . , bn} be a basis for V and k ∈ {1, 2, . . . , n− 1}. Define W = span{b1, . . . , bk} and
suppose that W is invariant (i.e. T (W ) ⊆W ). Show that

[T ]B =

[
A C

0 B

]
for some A ∈Mk,k(F), C ∈Mk,(n−k) and B ∈M(n−k),(n−k)(F).

22.2 Definition of eigenvalues and eigenvectors

Looking for 1-dimensional invariant subspaces leads to the idea of eigenvectors and eigenvalues.

Exercise 200. Let V be a vector space and let T : V → V be a linear transformation. Suppose u ∈ V
and λ ∈ F are such that T (u) = λu. Show that the subspace W = span{u} 6 V is invariant.
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Definition 22.3: Eigenvalues and eigenvectors of linear transformations

Let V be a vector space with field of scalars F, and let T : V → V be a linear transformation. A
scalar λ ∈ F is called an eigenvalue of T if there is a non-zero vector v ∈ V \ {⇀0} such that

T (v) = λv

Such a vector v ∈ V \ {⇀0} is called an eigenvector of T corresponding to the eigenvalue λ.

The set {v ∈ V | T (v) = λv} is a subspace of V , called the eigenspace of λ.

Exercise 201. Let T : V → V be a linear transformation and suppose that λ is an eigenvalue of T . Let
Wλ = {v ∈ V | T (v) = λv} (i.e., the corresponding eigenspace). Show that

(a) Wλ is a subspace of V . (b) Wλ 6= {
⇀
0} (c) T (Wλ) ⊆Wλ

Example 22.4. Let T : R3 → R3 be the linear transformation whose standard matrix is

[T ]S =

−7 −18 −12
9 20 12
−9 −18 −10


T (2,−1, 0) = (4,−2, 0) = 2(2,−1, 0) and T (6,−5, 3) = (12,−10, 6) = 2(6,−5, 3) since

[T (2,−1, 0)]S = [T ]S [(2,−1, 0)]S =

−7 −18 −12
9 20 12
−9 −18 −10

 2
−1
0

 =

 4
−2
0


[T (6,−5, 3)]S = [T ]S [(6,−5, 3)]S =

−7 −18 −12
9 20 12
−9 −18 −10

 6
−5
3

 =

 12
−10

6


So both (2,−1, 0) and (6,−5, 3) are eigenvectors with eigenvalue 2.

As we’ve seen above, the matrix of a linear transformation is, of course, useful for working with
eigenvectors. We adapt the definition of eigenvalue and eigenvector to matrices in a natural way.

Definition 22.5: Eigenvalues and eigenvectors of a matrix

Let F be a field, and let A ∈ Mn,n(F). A scalar λ ∈ F is an eigenvalue of A if there is a non-zero
column matrix v ∈Mn,1(F) such that

Av = λv

Then v is called an eigenvector of A corresponding to eigenvalue λ.

Lemma 22.6

Let V be a finite-dimensional vector space over a field F and let T : V → V be a linear transfor-
mation. Let B be a basis of V and let λ ∈ F and v ∈ V . Then

v is an eigenvector of T with eigenvalue λ ⇐⇒ [v]B is an eigenvector of [T ]B with eigenvalue λ

Proof. This follows from Lemma 20.2 (and Lemma 15.4):

T (v) = λv ⇐⇒ [T (v)]B = [λv]B ⇐⇒ [T ]B[v]B = λ[v]B

Note also that v =
⇀
0 ⇐⇒ [v]B =

⇀
0.
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22.3 Calculating eigenvalues

We can calculate the eigenvalues of a matrix (and hence a linear transformation) using the following.

Proposition 22.7

Let A ∈Mn,n(F). Then λ ∈ F is an eigenvalue of A if and only if det(A− λIn) = 0.

Proof. Let λ ∈ F and v ∈ V .

Av = λv ⇐⇒ Av − λv =
⇀
0 ⇐⇒ Av − λInv =

⇀
0 ⇐⇒ (A− λIn)v =

⇀
0

Therefore,

λ is an eigenvalue ⇐⇒ (A− λIn) has a non-trivial solution space
⇐⇒ nullity(A− λIn) > 0

⇐⇒ rank(A− λIn) < n Rank-nullity theorem
⇐⇒ det(A− λIn) = 0 Noting that A− λIn is square

Example 22.8. Let’s find the eigenvalues of A =

[
1 4
1 1

]
∈M2,2(R).

det(A− λI2) = det(

[
1 4
1 1

]
−
[
λ 0
0 λ

]
) = det

[
1− λ 4

1 1− λ

]
= λ2 − 2λ− 3 = (λ− 3)(λ+ 1)

The eigenvalues of A are −1 and 3.

Exercise 202. Show that if A ∈ Mn,n(F) is in upper triangular form, then the eigenvalues of A are
exactly the entries on the diagonal of A.

Definition 22.9: Characteristic polynomial

Let A ∈ Mn,n(F). The determinant det(xIn − A) is a polynomial in x called the characteristic
polynomial of A. We will denote it by cA.

cA(x) = det(xIn −A)

The characteristic equation of A is the equation cA(x) = 0

Remark. 1. The characteristic polynomial of A ∈ Mn,n(F) is always monic and of degree exactly
n. That is,

cA(x) = α0 + α1x+ α2x
2 + · · ·+ αn−1x

n−1 + xn

for some α0, . . . , αn−1 ∈ F.

2. For A ∈M2,2(F) we have cA(x) = det(A)− tr(A)x+ x2

3. From Proposition 22.7 we know that the eigenvalues ofA are exactly the roots of the characteris-
tic polynomial. If λ ∈ F is an eigenvalue ofA, then (x−λ) divides the characteristic polynomial
of A.

Definition 22.10: Algebraic multiplicity of eigenvalues

The algebraic multiplicity of an eigenvalue λ is the largest k ∈ N such that (x− λ)k divides the
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characteristic polynomial.

Remark. 1. In general, the sum of the algebraic multiplicities is at most n.

2. In the case in which F = C, there is always at least one eigenvalue.* Further, the sum of the
algebraic multiplicities equals n.

Example 22.11. Let A =

 8 −9 −9
9 −10 −9
−1 2 5

 ∈M3,3(R). The characteristic polynomial of A is given by

∣∣xI3 −A∣∣ =

∣∣∣∣∣∣
x− 8 9 9
−9 x+ 10 9
1 −2 x− 5

∣∣∣∣∣∣ R2−R1=====

∣∣∣∣∣∣
x− 8 9 9
−x− 1 x+ 1 0

1 −2 x− 5

∣∣∣∣∣∣ = (x+ 1)

∣∣∣∣∣∣
x− 8 9 9
−1 1 0
1 −2 x− 5

∣∣∣∣∣∣
C1+C2===== (x+ 1)

∣∣∣∣∣∣
x+ 1 9 9

0 1 0
−1 −2 x− 5

∣∣∣∣∣∣ = (x+ 1)

∣∣∣∣x+ 1 9
−1 x− 5

∣∣∣∣
= (x+ 1)((x+ 1)(x− 5) + 9) = (x+ 1)(x− 2)2

The eigenvalues of A are therefore −1 and 2. The eignevalue −1 has algebraic multiplicity 1 and the
eigenvalue 2 has algebraic multiplicity 2.

Example 22.12. Let A =

[
0 −1
1 0

]
∈M2,2(R). The characteristic polynomial is:

det

[
x 1
−1 x

]
= x2 + 1

This polynomial has no roots in R. Therefore A has no eigenvalues.

Now, use the same matrix, but considered as an element ofM2,2(C). The characteristic polynomial
is the same, but since it does have roots in C, the matrix has eigenvalues. The eigenvalues are i and
−i. Each has algebraic multiplicity 1.

22.4 Exercises

203. Find the eigenvalues (over C) of the following matrices:

(a)
[

7 −2
15 −4

]
(b)

[
3 −2

17 −7

]
(c)

[
1 −1
1 3

]
(d)

[
3 5
−2 −3

]
204. Find, by inspection, the eigenvalues of the given matrix.

(a)

1 2 0
0 3 −1
0 0 4


(b)


1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10


205. Find the eigenvalues (over R) of the following matrices.

(a)

2 −3 6
0 5 −6
0 1 0

 (b)

2 1 0
0 2 0
0 0 −3

 (c)

−5 −8 −12
−6 −10 −12

6 10 13



*By the Fundamental Theorem of Algebra.

© University of Melbourne 2023



MAST10022 Linear Algebra: Advanced, 2023 22-5

(d)

 2 2 2
−1 −1 −2

1 2 3

 (e)

3 1 1
2 4 2
1 1 3

 (f)

1 1 0
0 1 0
0 0 1


206. Let A ∈Mn,n(F).

(a) Prove that if λ ∈ F is an eigenvalue of A, then λ2 is an eigenvalue of A2.

(b) Suppose that A is invertible. Prove that λ is an eigenvalue of A if and only if 1
λ is an

eigenvalue of A−1. What relationship holds between the eigenvectors of A and A−1?

207. Let A ∈Mn,n(F) and let p ∈ F[x]. Show that

p(A) = 0 =⇒ p(λ) = 0 for all eigenvalues λ of A

208. Let A ∈ Mn,n(C). Show that det(A) is equal to the product of the eigenvalues (with multipli-
city) of A .

© University of Melbourne 2023
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Further material for lecture 22

� References for eigenvalues and eigenvectors

Elementary Linear Algebra by Anton and Rorres, §5

The Art of Proof by Beck and Geoghegan, §5

� Let A ∈Mn,n(C). The sum of the eigenvalues (with multiplicity) of A is equal to the trace of A.
The product of the eigenvalues (with multiplicity) is equal to the determinant. Neither of these
is obvious!

© University of Melbourne 2023
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LECTURE 23

Eigenspaces

23.1 Calculating the eigenspaces of a matrix

We saw last lecture the definitions of the eigenvalues and eigenspaces for a linear transformation and
for a matrix. If λ ∈ F is an eigenvalue value of A ∈ Mn,n(F), the corresponding eigenspace is the
solution space of the matrix A− λIn.

Example 23.1. Let A =

2 −3 6
0 5 −6
0 1 0

 ∈M3,3(R).

We find the eigenvalues of A and a basis for each eigenspace.

The characteristic polynomial is given by

∣∣xI3 −A∣∣ =

∣∣∣∣∣∣
x− 2 3 −6

0 x− 5 6
0 −1 x

∣∣∣∣∣∣ = (x− 2)

∣∣∣∣x− 5 6
−1 x

∣∣∣∣ = (x− 2)(x(x− 5) + 6)

= (x− 2)(x2 − 5x+ 6) = (x− 2)2(x− 3)

Therefore the eigenvalues of A are 2 and 3. The eigenvalue 2 has algebraic multiplicity 2 and the
eigenvalue 3 has algebraic multiplicity 1.

To find the eigenspace for eigenvalue 2 we solve for the solution space of A− 2I3.*

A− 2I3 =

0 −3 6
0 3 −6
0 1 −2

 R1↔R3−−−−−→

0 1 −2
0 3 −6
0 −3 6

 R2−3R1−−−−−→
R3+3R1

0 1 −2
0 0 0
0 0 0


Therefore, the eigenspace (for eigenvalue 2) is

{(x, y, z) ∈ R3 | y = 2z} = {x(1, 0, 0) + z(0, 2, 1) | x, z ∈ R} = span{(1, 0, 0), (0, 2, 1)}

The set {(1, 0, 0), (0, 2, 1)} is a basis for the eigenspace.

For eigenvalue 3, the eigenspace is the solution space of A− 3I3.

A− 3I3 =

−1 −3 6
0 2 −6
0 1 −3

 R2↔R3−−−−−→

−1 −3 6
0 1 −3
0 2 −6

 R3−2R2−−−−−→

−1 −3 6
0 1 −3
0 0 0


R1+3R2−−−−−→

−1 0 −3
0 1 −3
0 0 0

 −1×R1−−−−→

1 0 3
0 1 −3
0 0 0


Therefore the set {(−3, 3, 1)} is a basis for the eigenspace.

Definition 23.2: Geometric multiplicity of a eigenvalue

The geometric multiplicity of an eigenvalue is the dimension of the corresponding eigenspace.

*Which is equal to the solution space of 2I3 −A.
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Example 23.3. We saw last lecture (Example 22.11) that the matrix A =
[ 8 −9 −9

9 −10 −9
−1 2 5

]
∈ M3,3(R) has

eigenvalues −1 (with algebraic multiplicity 1) and 2 (with algebraic multiplicity 2). Let’s find the
corresponding eigenspaces.

For eigenvalue −1 we have

A− (−1)I3 =

 9 −9 −9
9 −9 −9
−1 2 6

 ∼ · · · ∼
1 0 4

0 1 5
0 0 0


The eigenspace has basis {(−4,−5, 1)} and geometric multiplicity 1.

For eigenvalue 2 we have

A− 2I3 =

 6 −9 −9
9 −12 −9
−1 2 3

 ∼ · · · ∼
1 0 3

0 1 3
0 0 0


The eigenspace has basis {(−3,−3, 1)} and geometric multiplicity 1. Notice that, for this matrix, the
geometric multiplicity of the eigenvalue 2 is strictly less than its algebraic multiplicity.

23.2 Characteristic polynomial of a linear transformation

We saw in Lemma 22.6 that the eigenvalues of a linear transforamtion T are the same as the eigenva-
lues of any matrix representation [T ]B, and that there is a correspondence between the eigenvectors
of T and the eigenvectors of [T ]B. We now define the characteristic polynomial of T to be the cha-
racteristic polynomial of [T ]B. To see that this is independent of the choice of basis B, we note the
following lemma. Recall that if B and C are two bases, then although [T ]B and [T ]C are not equal, they
are similar in the sense that [T ]B = P [T ]CP

−1 for some invertible matrix P (see Definition 21.10).

Lemma 23.4

Let A,B ∈Mn,n(F). If A and B are similar, then they have the same characteristic polynomial.

Proof. Let P ∈Mn,n be an invertible matrix such that A = PBP−1. Then

det(A− λIn) = det(PBP−1 − λIn) = det(P (BP−1 − λP−1In)) = det(P (B − λP−1InP )P−1)

= det(P (B − λIn)P−1) = det(P ) det(B − λIn) det(P−1) = det(P ) det(P−1) det(B − λIn)

= det(B − λIn)

Definition 23.5: Characteristic polynomial of a linear transformation

Let V be an n-dimensional vector space over F and let T : V → V be a linear transformation.
The characteristic polynomial of T is defined to be the the characteristic polynomial of some
(hence any) matrix representation [T ]B ∈Mn,n(F) of T .

Example 23.6. Consider the linear transformation T : P2(F3)→ P2(F3) given by

T (a+ bx+ cx2) = (2a+ b+ c) + (b+ 2c)x+ bx2

Let’s find the characteristic polynomial of T , then its eigenvalues and eigenspaces. We choose a basis
B = {1, x, x2} for P2(F3).

[T ]B =
[

[T (1)]B [T (x)]B [T (x2)]B
]

=
[

[2]B [1 + x+ x2]B [1 + 2x]B
]

=

2 1 1
0 1 2
0 1 0


© University of Melbourne 2023
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Now we calculate the characteristic polynomial of [T ]B.∣∣∣∣∣∣
x− 2 −1 −1

0 x− 1 −2
0 −1 x

∣∣∣∣∣∣ = (x− 2)

∣∣∣∣x− 1 −2
−1 x

∣∣∣∣ = (x− 2)(x2 − x− 2) = (x− 2)(x− 2)(x+ 1)

= (x+ 1)3

The characteristic polynomial of T is (x+ 1)3.

There is only one eigenvalue, 2 ∈ F3, and it has algebraic multiplicity 3 ∈ N.

Now to calculate the corresponding eigenspace.

[T ]B − 2I3 =

0 1 1
0 2 2
0 1 1

 R2+R1−−−−→
R3−R1

0 1 1
0 0 0
0 0 0


We see that the solution space has dimension 2 and has a basis {(1, 0, 0), (0, 2, 1)} ⊆ F3

3.
The eigenspace of T is therefore the subspace of P2(F3) that has basis {1, 2x+ x2}.
The eigenvalue 2 ∈ F3 has geometric multiplicity 2 ∈ N.

23.3 Algebraic versus geometric multiplicity

In the above examples we saw that the geometric multiplicity was always less than or equal to the
algebraic multiplicity. We prove that this is always the case.

Proposition 23.7

Let V be an n-dimensional vector space over F and let T : V → V be a linear transformation.
Suppose that λ ∈ F is an eigenvalue of T . The geometric multiplicity of λ is less than or equal to
its algebraic multiplicity.

Proof. Let W 6 V be the eigenspace corresponding to λ. Let k = dim(W ) be the geometric multipli-
city of λ. Let {w1, . . . , wk} be a basis for W . Extend to a basis for V , B = {w1, . . . , wk, bk+1, . . . , bn}.
We have

[T ]B =

[
λIk M
0 N

]
for some M ∈Mk,(n−k)(F) and N ∈M(n−k),(n−k)(F)

The characteristic polynomial of T is therefore (x − λ)kcN (x) where cN (x) is the characteristic poly-
nomial of the matrix N . Therefore the algebraic multiplicity is greater than or equal to k.

23.4 Exercises

209. Find bases for the eigenspaces of matrices in Exercise 203. Give the algebraic and geometric
multiplicity of each eigenvalue.

210. Find bases for the eigenspaces of matrices in Exercise 205. Give the algebraic and geometric
multiplicity of each eigenvalue.

211. Find 1-dimensional subspaces of R2 that are invariant under the linear transformations given
by the following matrices:

(a)
[
1 0
2 0

]
(b)

[
1 2
−3 −6

]

© University of Melbourne 2023
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Further material for lecture 23

� Let A ∈ Mn,n(F). Prove that the characteristic polynomial cA(x) = det(xIn − A) has degree n
and is monic.

© University of Melbourne 2023



LECTURE 24

Diagonalisation

We have seen in several examples that, given a linear transformation, there is sometimes a basis
with respect to which the matrix of the linear transformation is diagonal. Having such a basis is is
extremely useful when working with linear transformations. We will give conditions for the existence
of such a basis and see that it is not always possible.

24.1 Diagonalisability

Definition 24.1: diagonalisable linear transformation

Let V be a finite-dimensional vector space. A linear transformation T : V → V is diagonalisable
if there is a basis B for V such that the matrix [T ]B is diagonal.

Example 24.2. Consider the linear transformation T : R3 → R3 with standard matrix given by

[T ]S =

2 −3 6
0 5 −6
0 1 0


In Example 23.1 we saw that this matrix has eigenvalues 2 and 3. Further we calculated a basis
{(1, 0, 0), (0, 2, 1)} for the λ = 2 eigenspace and a basis {(−3, 3, 1)} for the λ = 3 eigenspace. In
particular, letting b1 = (1, 0, 0), b2 = (0, 2, 1) and b3 = (−3, 3, 1) we have

T (b1) = 2b1 T (b2) = 2b2 T (b3) = 3b3

Moreover, B = {b1, b2, b3} is a basis for R3. To see this note

P =

1 0 −3
0 2 3
0 1 1

 R3− 1
2
R2−−−−−→

1 0 −3
0 2 3
0 0 1

2


Then, with respect to the basis B the matrix of T is diagonal:

[T ]B = [ [T (b1)]B [T (b2)]B [T (b3)]B ] = [ [2b1]B [2b2]B [3b3]B ] =

2 0 0
0 2 0
0 0 3


Therefore T is diagonalisable.

Remark. Notice that, in the above example, if we let A = [T ]S , and D = [T ]B, then we have that
A = PDP−1 since

A = [T ]S = PS,B[T ]BPB,S = PDP−1

Definition 24.3: diagonalisable matrix

A matrix A ∈ Mn,n(F) is diagonalisable if there is an invertible matrix P ∈ Mn,n(F) and a
diagonal matrix D ∈Mn,n(F) such that

A = PDP−1
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Exercise 212. Let T : V → V be a linear transformation of a finite-dimensional vector space V , and
let B be any basis of V . Show that T is diagonalisable if and only if [T ]B is diagonalisable.

Theorem 24.4

Let V be a finite-dimensional vector space. A linear transformation T : V → V is diagonalisable
if and only if there is a basis B for V with the property that all elements of B are eigenvectors of
T

Proof. Suppose first that B = {b1, . . . , bn} is a basis for V and that T (bi) = λibi. Then

[T ]B = [ [T (b1)]B · · · [T (bn)]B] = [ [λ1b1]B · · · [λnbn]B] =

[
λ1 0

. . .
0 λn

]

Conversely, suppose that C = {c1, . . . , cn} is a basis of V such that [T ]C is diagonal and let the entries
on the diagonal be µ1, . . . , µn. Then considering the j-th column of [T ]C we have that

[T (cj)]C =



0
...
0
µj

0
...
0

 = [µjcj ]C

and therefore T (cj) = µjcj and cj is an eigenvector of T .

24.2 How to diagonalise a matrix

Algorithm 24.5: Diagonalise a matrix

Given a matrix A ∈ Mn,n(F), to find an invertible P ∈ Mn,n(F) and a diagonal D ∈ Mn,n(F)
such that A = PDP−1 (or conclude that no such exist):

1. Calculate the eigenvalues of A

2. For each eigenvalue, find a basis for the corresponding eigenspace.

3. Let B be the union of the eigenspace bases.

4. � If |B| < n, then A if not diagonalisable.

� Otherwise, A is diagonalisable and A = PDP−1 with the following P,D ∈Mn,n(F):
Label the elements of B as B = {b1, . . . , bn} and let λi ∈ F be such that T (bi) = λibi.
Take

P = [ [b1]S · · · [bn]S ] D =

[
λ1 0

. . .
0 λn

]

Example 24.6. Let A =

[
1 4
1 1

]
∈M2,2(R). The characteristic polynomial of A is given by

cA(x) = det

[
1− x 4

1 1− x

]
= x2 − 2x− 3 = (x− 3)(x+ 1)

© University of Melbourne 2023
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The eigenvalues are: −1 and 3.

For eigenvalue −1 we have

A− (−1)I2 =

[
2 4
1 2

]
R1↔R2−−−−−→

[
1 2
2 4

]
R2−2R1−−−−−→

[
1 2
0 0

]
A basis for the λ = −1 eigenspace is {(−2, 1)}.

For eigenvalue 3 we have

A− 3I2 =

[
−2 4
1 −2

]
R1↔R2−−−−−→

[
1 −2
−2 4

]
R2+2R1−−−−−→

[
1 −2
0 0

]
A basis for the λ = 3 eigenspace is {(2, 1)}.

B = {(−2, 1), (2, 1)} is a basis for R2 and if we define

P =

[
−2 2
1 1

]
and D =

[
−1 0
0 3

]
we then have A = PDP−1.

Example 24.7. Let B =

[
1 4
0 1

]
∈M2,2(R). The characteristic polynomial of B is given by

cB(x) = det

[
1− x 4

0 1− x

]
= (x− 1)(x− 1)

The only eigenvalue is: 1

We have

B − I2 =

[
0 4
0 0

]
1
4
×R1−−−−→

[
0 1
0 0

]
A basis for the λ = −1 eigenspace is {(1, 0)}.

The matrix B is not diagonalisable.

Example 24.8. Let M =

[
6 −5
8 −6

]
∈M2,2(R).

The characteristic polynomial of M is given by

cM (x) = det

[
6− x −5

8 −6− x

]
= x2 + 4

The matrix M has no eigenvalues (in R). The matrix M is not diagonalisable (over R).

Now let N =

[
6 −5
8 −6

]
∈M2,2(C). The characteristic polynomial of N is given by

cN (x) = det

[
6− x −5

8 −6− x

]
= x2 + 4

The eigenvalues of N are: −2i and 2i.

For eigenvalue λ = −2i we have

N − (−2i)I2 =

[
6 + 2i −5

8 −6 + 2i

]
R2− 8

6+2i
R1

−−−−−−−→
[
6 + 2i −5

0 0

] 1
6+2i
×R1

−−−−−−→
[
1 1

4(−3 + i)
0 0

]
A basis for the λ = −2i eigenspace is {(3− i, 4)}.

For eigenvalue λ = 2i we have

N − 2iI2 =

[
6− 2i −5

8 −6− 2i

]
R2− 8

6−2i
R1

−−−−−−−→
[
6− 2i −5

0 0

] 1
6−2i
×R1

−−−−−−→
[
1 1

4(−3− i)
0 0

]
© University of Melbourne 2023
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A basis for the λ = 2i eigenspace is {(3 + i, 4)}.

The matrix N is diagonalisable (over C) and we have

N = PDP−1 with P =

[
3− i 3 + i

4 4

]
and D =

[
−2i 0

0 2i

]

24.3 Exercises

213. Decide which of the matrices A in questions 203 above are diagonalisable and, if possible, find
an invertible matrix P and a diagonal matrix D such that P−1AP = D.

214. Decide which of the matrices A in questions 205 above are diagonalisable and, if possible, find
an invertible matrix P and a diagonal matrix D such that P−1AP = D.

© University of Melbourne 2023
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Further material for lecture 24

� Let V be a finite dimensional vector space over a field F. Although not all linear transformations
T : V → V are diagonalisable, if the field is C then there does always exist a basis such that
[T ]B is upper triangular. Here’s an outline for a proof.

– Use induction on dim(V ). Suppose dim(V ) = n+ 1.

– Since F = C, T has an eigenvalue λ and corresponding eigenvector u ∈ V \ {⇀0}.
– Extend to a basis {u, b1, . . . , bn} for V and let W = span{b1, . . . , bn}.
– Define P : V →W by P (u) =

⇀
0 and P (bi) = bi.

– Let ϕ : W →W be given by ϕ(w) = P ◦ T (w).

– By the induction hypothesis, there is a basis C = {w1, . . . , wn} forW such that [ϕ]C is upper
triangular.

– A = {u,w1, . . . , wn} is a basis for V .

– T (u) ∈ span{u} and T (wi) ∈ span{u,w1, . . . , wi} (because ϕ(wi) ∈ span{w1, . . . , wi})
– Therefore [T ]A is upper triangular.

© University of Melbourne 2023
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LECTURE 25

Diagonalisation II

We look at sufficient conditions for diagonalisability and see why the diagonalisation method given
in the last lecture works.

25.1 Distinct eigenvalues

Lemma 25.1

Let T : V → V be a linear transformation of a vector space V . Suppose that v1, . . . , vk ∈ V are
eigenvectors of V and let λi ∈ F be the corresponding eigenvalues. If the λi are distinct, then the
set {v1, . . . , vk} is linearly independent.

Proof. We use induction on k.

The base case is k = 1. We want to show that {v1} is linearly independent. Since v1 is an eigenvector,
v1 6=

⇀
0 and it follows that {v1} is linearly independent.

For the induction step, assume that the statement is true for k = n ∈ N. We want to show that it holds
for k = n+ 1. So suppose that we have eigenvectors v1, . . . , vn+1 ∈ V \ {

⇀
0}with distinct eigenvalues

λ1, . . . , λn+1 ∈ F. Suppose that α1, . . . , αn+1 ∈ F are such that
∑n+1

i=1 αivi =
⇀
0. We want to show that

αi = 0 for all i ∈ {1, . . . , n+ 1}. We have

n+1∑
i=1

αivi =
⇀
0 (1)

=⇒ T (
n+1∑
i=1

αivi) = T (
⇀
0) =⇒

n+1∑
i=1

αiT (vi) =
⇀
0

=⇒
n+1∑
i=1

αiλivi =
⇀
0 (2)

Multiplying (1) by λn+1 and then subtracting (2) yields

λn+1

(
n+1∑
i=1

αivi

)
−
n+1∑
i=1

αiλivi =
⇀
0

=⇒
n+1∑
i=1

αi(λn+1 − λi)vi =
⇀
0 =⇒

n∑
i=1

αi(λn+1 − λi)vi =
⇀
0

=⇒ ∀i ∈ {1, . . . , n}, αi(λn+1 − λi) = 0 ({v1, . . . , vn} is linearly independent)
=⇒ ∀i ∈ {1, . . . , n}, αi = 0 (since λn+1 6= λi)

Finally, note that we now have, from (1), that αn+1vn+1 =
⇀
0. Since vn+1 6=

⇀
0 this implies that αn+1 = 0

also. Therefore the result holds for k = n+ 1.

Therefore, by mathematical induction, the result holds for all k ∈ N.
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Example 25.2. For the matrix of Example 23.1, (1, 2, 1) is an eigenvector with eigenvalue 2 and
(3,−3,−1) is an eigenvector with eigenvalue 3. The set {(1, 2, 1), (3,−3,−1)} is linearly indepen-
dent.

Exercise 215. Let T : V → V be a linear transformation of a finite dimensional vector space V .
Suppose that λ1 6= λ2 are two eigenvalues of T and let the corresponding eigenspaces be W1 and W2.

(a) Show that W1 ∩W2 = {⇀0}

(b) Let B1 be a basis for W1 and let B2 be a basis for W2. Show that B1 ∪B2 is linearly independent.

The following result justifies the technique given in the last lecture for diagonalising a matrix.

Theorem 25.3

Let T : V → V be a linear transformation of an n-dimensional vector space V . Then T is
diagonalisable if and only if the geometric multiplicities sum to n.

Proof. Let the eigenvalues of T be λ1, . . . , λk. Denote by gi and ai the geometric and algebraic mul-
tiplicities of the eigenvalue λi. We know from Proposition 23.7 that gi 6 ai. We also know that
a1 + · · ·+ ak 6 n.

Suppose that T is diagonalisable. Then there exists a basis B for V with the property that each
element of B is an eigenvector of T . For i ∈ {1, . . . , k} let Bi = {b ∈ B | b has eigenvalue λi}. Note
that B = B1 ∪ B2 ∪ · · · ∪ Bk and that Bi ∩ Bj = ∅ if i 6= i. We have

n = |B| = |B1|+ |B2|+ · · ·+ |Bk| 6 g1 + g2 + · · ·+ gk 6 a1 + a2 + · · ·+ ak 6 n

Therefore g1 + · · ·+ gk = n.

For the converse, suppose now that g1+· · ·+gk = n. Let Ci be a basis for the λi eigenspace. Then |Ci| =
gi. From Exercise 215 we know that Ci ∩ Cj = ∅ if i 6= j. Therefore, if we define C = C1 ∪ C2 ∪ · · · ∪ Ck,
we have

|C| = |C1|+ |C1|+ · · ·+ |Ck| = g1 + g2 + · · ·+ gk = n

All elements of C are eigenvectors. If we show that C is linearly independent we will be done since it
would follow that C is a basis.

Denote the elements of Ci = {ci1, . . . , ci,gi}.

k∑
i=1

gi∑
j=1

αi,jci,j =
⇀
0 =⇒

k∑
i=1

ui =
⇀
0 where we define ui =

gi∑
j=1

αi,jci,j

=⇒ ∀i, ui =
⇀
0 by Lemma 25.1

=⇒ ∀i ∀j, αi,j = 0 since Ci is linearly independent

Corollary 25.4

Let T : V → V be a linear transformation of an n-dimensional vector space V and let λ ∈ F be an
eigenvalue of T . If the geometric multiplicity of λ is strictly less than its algebraic multiplicity,
then T is not diagonalisable.

© University of Melbourne 2023
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25.2 A sufficient condition for diagonalisability

Proposition 25.5

Let V be an n-dimensional vector space over F. Let T : V → V be a linear transformation.
If T has n distinct eigenvalues in F, then T is diagonalisable.

Note. The converse is false! Linear transformations that have repeated eigenvalues can still be diago-
nalisable.

Proof. Suppose that λ1, . . . , λn ∈ F are eigenvalues of T and that λi 6= λj when i 6= j. Let mi be the
geometric multiplicity of the eigenvalue λi. Since mi > 1, we must must that m1 + · · · + mn = n.
Diagonalisability then follows from Theorem 25.3.

Example 25.6. 1.
[
1 2 3 4
0 2 3 4
0 0 3 4
0 0 0 4

]
∈M4,4(F5) is diagonalisable (and we can see that without the need for

any calculations).

2.
[
1−3i 4i
−2i 1+3i

]
∈M2,2(C) has eigenvalues 1 + i, 1− i and is therefore diagonalisable.

25.3 Exercises

216. Give an example of a linear transformation T : R2 → R2 that is diagonalisable and has only one
eigenvalue.

217. Let E =

 4 −2 −1
−2 4 −1
−1 −1 1

 ∈M3,3(C)

(a) Calculate the characteristic polynomial of E.

(b) Find the eigenvalues of E.

(c) Without finding any eigenspaces, explain why E is diagonalisable and write down a dia-
gonal matrix D that is similar to E.

218. (a) Let T : Q2 → Q2 be the linear transformation given by T (x, y) = (x + y, x − y). Find the
eigenvalues of T . Is T diagonalisable? If it is diagonalisable, give a diagonal matrix D
such that [T ]B = D with respect to some basis B. (You are not being asked to find B.)

(b) Let S : R2 → R2 be the linear transformation given by S(x, y) = (x + y, x − y). Find the
eigenvalues of S. Is S diagonalisable? If it is diagonalisable, give a diagonal matrixD such
that [S]B = D with respect to some basis B. (You are not being asked to find B.)
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Further material for lecture 25

� References for diagonalisation

Elementary Linear Algebra by Anton and Rorres, §5.2, p302

The Art of Proof by Beck and Geoghegan, §5.C, p155

© University of Melbourne 2023
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LECTURE 26

Powers of a matrix and the Cayley-Hamilton theorem

26.1 Matrix powers

In applications one often comes across the need to apply a transformation many times. If the trans-
formation can be represented by a diagonalisable matrix A, it’s much easier to compute Ak and thus
the effect of the k-th application of the transformation. The first point to appreciate is that computing
powers of a diagonal matrix D is easy.

Example 26.1. Let D =
[
1 0 0
0 −3 0
0 0 2

]
. Then D2 =

[
1 0 0
0 9 0
0 0 4

]
, D3 =

[
1 0 0
0 −27 0
0 0 8

]
, Dk =

[
1 0 0
0 (−3)k 0

0 0 2k

]
Example 26.2. The matrix A = [ 1 4

1 1 ] ∈ M2,2(R) is diagonalisable and A = PDP−1 with P =
[−2 2

1 1

]
and D =

[−1 0
0 3

]
. Therefore,

Ak = PDkP−1 =
1

4

[
−2 2
1 1

] [
(−1)k 0

0 3k

] [
−1 2
1 2

]
=

1

2

[
(−1)k + 3k 2(−1)k+1 + 3k+1

1
2((−1)k+1 + 3k) (−1)k + 3k

]
Example 26.3. As an application we will investigate a simple model of population movement bet-
ween Victoria and Queensland. Assume that 2% of Victorians move to Queensland each year, 1%
of Queenslanders move to Victoria each year and everybody else stays put. This is an example of a
(discrete-time) ’Markov process’. We investigate what happens in the long term under these assump-
tions.

Let vi be the Victorian population (in millions) after i years and qi be the Queensland population (in
millions) after i years.

vi+1 = 0.98vi + 0.01qi

qi+1 = 0.02vi + 0.99qi

Which we can write as
[
vi+1

qi+1

]
= A

[
vi
qi

]
where A =

1

100

[
98 1
2 99

]

Then
[
vk
qk

]
= Ak

[
v0
q0

]
.

Diagonalisation gives A = PDP−1 with P =

[
1 1
2 −1

]
and D =

[
1 0
0 0.97

]
so

Ak =

[
1 1
2 −1

] [
1 0
0 (0.97)k

] [
1 1
2 −1

]−1

=
1

3

[
1 + 2(0.97)k 1− (0.97)k

2− 2(0.97)k 2 + (0.97)k

] vk =
1

3
(1 + 2(0.97)k)v0 +

1

3
(1− (0.97)k)q0

qk =
1

3
(2− 2(0.97)k)v0 +

1

3
(2 + (0.97)k)q0

Therefore vk → 1
3(vo + q0) and qk → 2

3(v0 + q0).
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26.2 Cayley-Hamilton Theorem

Theorem 26.4: Cayley-Hamilton Theorem

Given a matrix A ∈Mn,n(F) let its characteric polynomial be

cA(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

Then
An + an−1A

n−1 + · · ·+ a1A+ a0In = 0

That is, every square matrix satisfies its own characteristic equation.

Example 26.5. The characteristic polynomial of A = [ 3 2
1 4 ] is cA(x) = x2 − 7x+ 10 and

A2 − 7A+ 10I2 =

[
11 14
7 18

]
− 7

[
3 2
1 4

]
+ 10

[
1 0
0 1

]
=

[
0 0
0 0

]

Proof of Cayley-Hamilton for diagonalisable matrices. First suppose thatD ∈Mn,n(F) is diagonal and let
the entries on the diagonal be λ1 . . . , λn ∈ F. Then cD(x) = (x − λ1)(x − λ2) . . . (x − λn). To see that
(D − λ1I)(D − λ2I) · · · (D − λnI) = 0 note that the entry in the i-th row and i-th column of D − λiI
is equal to zero.

Now suppose that A = PDP−1 for some invertible matrix D and diagonal matrix D. Then cA(x) =
cD(x) by Lemma 23.4. Writing cA(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 we have

An + an−1A
n−1 + · · ·+ a1A+ a0In = PAnP−1 + an−1PA

n−1P−1 + · · ·+ a1PAP
−1 + a0PInP

−1

= P (Dn + an−1D
n−1 + · · ·+ a1D + a0In)P−1

= P0P−1 = 0

Remark. A slightly more involved argument can be used to show that upper triangular matrices
satisfy the statement of the theorem. The full proof (at least for F = C and F = R) is then completed
by showing that all matrices inMn,n(C) are similar to a matrix in upper triangular form.

The Cayley-Hamilton Theorem can be used to show the following.

Corollary 26.6

LetA ∈Mn,n(F). For allm > 0, Am can be expressed as a linear combination of I ,A, . . . , An−1.

If A is invertible, then for all m > 0,
A−m can be expressed as a linear combination of I , A, . . . , An−1

Example 26.7. Given that the matrix

A =

9 18 −24
7 20 −24
7 21 −25

 has characteristic polynomial cA(x) = x3 − 4x2 + x+ 6
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We know that

A3 = 4A2 −A− 6I3

A4 = 4A3 −A2 − 6A = 4(4A2 −A− 6I3)−A2 − 6A = 15A2 − 10A− 24I3

A5 = 4A4 −A3 − 6A2 = 4(15A2 − 10A− 24I3)− (4A2 −A− 6I3)− 6A2

= 50A2 − 39A− 90I3

A−1 =
−1

6
A2 +

2

3
A− 1

6
I3

26.3 Exercises

219. By first diagonalising the matrix, find A5, where A is

(a)
[
3 −2
2 −2

]
(b)

9 18 −24
7 20 −24
7 21 −25


(c) 1

8


8 1 27 5
0 18 14 −6
0 2 −18 −6
0 8 8 −8


[Note: The matrix has eigenvalues 3, 2,−1 in (b), and 1, 2,−1,−2 in (c).]

220. Suppose the nth pass through a manufacturing process is modelled by the linear equations
xn = Anx0, where x0 is the initial state of the system and

A =
1

5

[
3 2
2 3

]
Show that

An =

[
1
2

1
2

1
2

1
2

]
+ (

1

5
)n

[
1
2 −1

2

−1
2

1
2

]

Then, with the initial state x0 =

[
p

1− p

]
, calculate limn→∞ xn.

221. The Fibonacci sequence
0, 1, 1, 2, 3, 5, 8, 13, . . .

is given by the difference equation Fk+2 = Fk+1 + Fk and the initial conditions F0 = 0, F1 = 1.

(a) Letting uk =

[
Fk+1

Fk

]
, show that uk = Aku0 where A =

[
1 1
1 0

]
.

(b) Show that A is diagonalisable, and find P and D such that A = PDP−1.

(c) Use your answer to (b) to calculate Ak.

(d) Use your answer to (c) to show that

Fk =
1√
5

(1 +
√

5

2

)k
−

(
1−
√

5

2

)k
(e) (Bonus question) Show that

lim
k→∞

Fk+1

Fk
=

1 +
√

5

2
(the ‘golden ratio’)

222. Two companies, Lemon and LIME, introduce a new type of computer. At the start, their shares
of the market are 60% and 40%. After a year, Lemon kept 85% of its customers and gained 25%
of LIME’s customers; LIME gained 15% of Lemon’s customers and kept 75% of its customers.
Assume that the total market is constant and that the same fractions shift among the firms every
year.
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(a) Write down the market share shift as a system of linear equations.

(b) Express the shift in matrix form.

(c) Find the market shares after 5 and 10 years.

(d) Show that the market eventually reaches a steady state, and give the limit market shares.

223. Verify the Cayley-Hamilton Theorem for the following matrices.

(a)
[
3 6
1 2

]
(b)

0 1 0
0 0 1
1 −3 3



224. Use the Cayley-Hamilton Theorem to calculate the inverse of the matrix

0 1 0
0 0 1
1 −3 3

 .
225. For each matrix, find a non-zero polynomial satisfied by the matrix.

(a)
[
2 5
1 −3

]
(b)

1 4 −3
0 3 1
0 2 −1


226. (a) Give an example of a matrix A ∈ M3,3(R) and a quadratic polynomial p ∈ R[x] such that

p(A) = 0.

(b) Give an example of a matrix B ∈ M3,3(R) and two different cubic polynomials q, r ∈ R[x]
such that q(A) = r(A) = 0.
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Further material for lecture 26

� Sketch of a proof of the Cayley-Hamilton theorem for upper-triangular matrices

Claim. If A ∈Mn,n(F) is upper-triangular, then A satisfies its own characteristic polynomial

Sketch of proof.

A =

λ1 ∗ ∗

0
. . . ∗

0 0 λn

 cA(x) = (x− λ1)(x− λ2) · · · (x− λn)

Let ei ∈ Mn,1 be the column matrix with a 1 in the i-th row and zeros everywhere else. Define
subspaces V0, V1, . . . , Vn 6Mn,1(F) by V0 = {⇀0} and Vk = span{e1, . . . , ek}for k ∈ {1, 2, . . . , n}.
Note that

∀u ∈ Vk, (A− λkIn)u ⊆ Vk−1
It follows that

∀u ∈Mn,1(F), (A− λ1In) · · · (A− λnIn)u ⊆ V0
Since this holds for all u ∈Mn,1(F), we conclude that (A− λ1In) · · · (A− λnIn) = 0.

� Combining this with the result that all elements ofMn,n(C) are similar to a an upper triangular
matrix gives a proof of Cayley-Hamilton in the case F = C.
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LECTURE 27

Geometry in Euclidean space

We want to be able to consider geometric notions such as length and angle in a vector space. Before
defining the general notion of an inner product space, we consider the familiar context of Rn.

27.1 Dot product in Rn

To work with length, distance, and angle we need more than just the vector space properties of Rn.

Definition 27.1: Dot product

Let u = (u1, . . . , un) ∈ Rn and v = (v1, . . . , vn) ∈ Rn. We define the dot product of u and v to be

u · v = u1v1 + u2v2 + · · ·+ unvn ∈ R

Remark. Denoting the standard basis of Rn by S, we have u · v = [u]TS [v]S

Example 27.2. (3,−1) · (1, 2) = 1, (i + j + k) · (−j + k) = 0

Exercise 227. Use the definition of the dot product to verify the following properties.

For all u, v ∈ Rn and α ∈ R,
(a) u · v = v · u

(b) (αu) · v = α(u.v)

(c) u · (v + w) = u · v + u · w

(d) u · u > 0

(e) u · u = 0 ⇐⇒ u =
⇀
0

Lengths, distances, and angles can be calculated using the dot product.

Definition 27.3: Length and distance

The length (or magnitude or norm) of a vector u = (u1, u2, . . . , un) ∈ Rn is given by

‖u‖ =
√
u · u =

√
u21 + u22 + · · ·+ u2n

A vector u ∈ Rn is called a unit vector if ‖u‖ = 1.

The distance between two vectors u, v ∈ Rn is given by d(u, v) = ‖v − u‖

Example 27.4. ‖(1,−2, 2)‖ = 3, ‖13(1,−2, 2)‖ = 1, 1
3(1,−2, 2) is a unit vector.

Example 27.5. The distance between two points P (1, 3,−1) and Q(2, 1,−1) is the distance between
their position vectors: d(P,Q) = d((1, 3,−1), (2, 1,−1)) = ‖(1, 3,−1)− (2, 1,−1)‖ = ‖(−1, 2, 2)‖ = 3

Definition 27.6: Angle

The angle θ between two non-zero vectors u, v ∈ Rn is given by the expression

u · v = ‖u‖‖v‖ cos θ where 0 ≤ θ ≤ π
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We say that u and v are orthogonal ( or perpendicular) if u · v = 0.
We say that u and v are parallel if one is a scalar multiple of the other.

Example 27.7. We find the angle θ between the vectors u = 2i + j− k ∈ R3 and v = i + 2j + k ∈ R3.

cos θ =
u · v
‖u‖ ‖v‖

=
3√
6
√

6
=

1

2

Therefore θ = arccos(12) = π
3

27.2 Cross product in R3

Definition 27.8: Cross product

Let u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3. The cross product (or vector product) of u and v is
the vector given by

u× v = (u2v3 − u3v2)i + (u3v1 − u1v3) j + (u1v2 − u2v1)k

Remark. A convenient way to remember this is as a “determinant”

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ =

∣∣∣∣u2 u3
v2 v3

∣∣∣∣ i− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ j +

∣∣∣∣u1 u2
v1 v2

∣∣∣∣k
using cofactor expansion along the first row.

Exercise 228 (Properties of the cross product). Show (directly from the definitions) that for any vec-
tors u, v and w ∈ R3, and scalar α ∈ R:

(a) u× v = −(v × u)

(b) u× (v + w) = (u× v) + (u× w)

(c) (αu)× v = α(u× v)

(d) u× u =
⇀
0

(e) u · (u× v) = 0

Example 27.9. We can use the cross product to find a vector perpendicular to both (2, 3, 1) and
(1, 1, 1).

(2, 3, 1)× (1, 1, 1) = (2,−1,−1)

Note that (2,−1,−1) · (2, 3, 1) = 0 and (2,−1,−1) · (1, 1, 1) = 0

Lemma 27.10

The cross product satisfies
u× v = ‖u‖‖v‖ sin(θ) n̂

where
� n̂ is a unit vector perpendicular to both u and v and

points in the direction given by the ‘right-hand rule’

� θ ∈ [0, π] is the angle between u and v u

v
n̂

27.3 Lines in R3

Lines through the origin are exactly the 1-dimensional subspaces of R3. Every line in R3 is a translate
of a 1-dimensional subspace of R3 in the following way.
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span(⇀v)

⇀r0 + span(⇀v)

⇀
0

⇀v

⇀r0

P0

All lines in R3 are of the form

⇀r0 + span(⇀v) = ⇀r0 + {t⇀v | t ∈ R}

for some (not unique) ⇀r0,
⇀v ∈ R3

The vector equation of a line through a point P0 in the di-
rection determined by a vector ⇀v is (where ⇀r0 =

⇀
OP0):

⇀r = ⇀r0 + t⇀v t ∈ R

Letting ⇀r = (x, y, z), ⇀r0 = (x0, y0, z0) and ⇀v = (a, b, c) and
then equating coordinates gives the parametric equations
for the line:

x= x0 + ta

y= y0 + tb t ∈ R
z= z0 + tc

If a 6= 0, b 6= 0 and c 6= 0, we can solve the parametric equa-
tions for t and equate. This gives the cartesian form of the
straight line:

x− x0
a

=
y − y0
b

=
z − z0
c

Example 27.11. Consider the line passing through the points P (−1, 2, 3) and Q(4,−2, 5). It has

vector equation: (x, y, z) = (−1, 2, 3) + t(5,−4, 2), t ∈ R

x = −1 + 5t

parametric equations: y = 2− 4t t ∈ R
z = 3 + 2t

cartesian form:
x+ 1

5
=
y − 2

−4
=
z − 3

2

Definition 27.12

Two lines are said to:

� intersect if there is a point lying in both

� be parallel if their direction vectors are parallel

� be skew if they do not intersect and are not parallel

The angle between two lines is the angle between their direction vectors

Example 27.13. Consider the three lines having parametric equations

L1 :
x = 1 + t
y = 2− 4t
z = 3 + 2t

t ∈ R L2 :
x = −4 + 3t
y = −6 + 2t
z = 3 + t

t ∈ R L3 :
x = 1

2 t
y = 1− 2t
z = 2 + t

t ∈ R

Then L1 and L2 intersect, L1 and L3 are parallel, L2 and L3 are skew.
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Distance between a point and a line

Given a point with position vector ⇀p and a line with vector equation ⇀r = ⇀r0 + t⇀u t ∈ R, the distance
from the point to the line is given by

d =
‖⇀u× (⇀p− ⇀r0)‖

‖⇀u‖

Exercise 229. Use Lemma 27.10 to derive the above expression for the distance between a point and
a line.

Distance between two skew lines

Given two skew lines having vector equations
⇀r = ⇀r1 + t⇀u t ∈ R and ⇀r = ⇀r2 + t⇀v t ∈ R

The distance between them is given by

d =
|(⇀u× ⇀v) · (⇀r2 − ⇀r1)|

‖⇀u× ⇀v‖

27.4 Planes in R3

Planes through the origin are exactly the 2-dimensional subspaces of R3. All planes in R3 are of the
form ⇀r0 +W where W is a 2-dimensional subspace of R3.

The vector equation of a plane through a point P0 and pa-
rallel to both ⇀u,⇀v ∈ R3 is (where ⇀r0 =

⇀
OP0):

⇀r = ⇀r0 + s⇀u+ t⇀v s, t ∈ R

The cartesian form of a plane is:
Where a, b, c, d ∈ R and the vector (a, b, c) is perpendicular
to both ⇀u and ⇀v. Such a vector is called a normal to the plane.

ax+ by + cz = d

Examples 27.14.

1. The plane perpendicular to the direction (1, 2, 3) and through the point (4, 5, 6) is given by
x+ 2y + 3z = d where d = 1× 4 + 2× 5 + 3× 6. That is, x+ 2y + 3z = 32

2. Consider the plane perpendicular to (1, 0,−2) and containing the point (1,−1,−3).

The cartesian equation is: x− 2z = 7
A vector equation is: (x, y, x) = (1,−1,−3) + s(0, 1, 0) + t(2, 0, 1) s, t ∈ R

3. Consider the plane with vector equation

(x, y, z) = (1, 2, 3) + s(2, 3, 1) + t(1, 1, 1), s, t ∈ R

To find a catesian equation for the plane, we need a normal to the plane. For this we can
the fact the (2, 3, 1) × (1, 1, 1) = (2,−1,−1) is orthogonal to both (2, 3, 1) and (1, 1, 1). The
cartesian equation is of the form 2x − y − z = d. Since (1, 2, 3) lies in the plane, we have that
d = 2− 2− 3 = −3. The catesian equation is

2x− y − z = −3

Distance between a point and a plane

Given a point ⇀p and a plane that has normal vector ⇀n and contains a point ⇀r0, the distance from the
point to the plane is given by

d =
|(⇀p− ⇀r0) · ⇀n|
‖⇀n‖
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27.5 Exercises

230. Find the following dot products:

(a) (1, 1, 1) · (2, 1,−3) (b) (2, 1, 1) · (1,−3, 7) (c) (
√

2, π, 1) · (
√

2,−2, 3)

231. Find the angle between the following pairs of vectors in R3:

(a) (1, 0, 0), (0, 0, 4) (b) (1,−1, 0), (0, 1, 1) (c) (2,−2, 2), (−1, 0, 2)

232. Let u = (3,−1, 4), v = −i− 3j + k, w = (−1, 1, 2).
Find (if they exist):

(a) u · v
(b) (3u) · (−2v)

(c) u× v

(d) (v × u) · (−w)

(e) v × 2u

(f) u× (v ·w)

(g) (u× v) ·w
(h) u · (v ·w)

(i) u · (v ×w)

233. Find the values of x such that the following pairs of vectors are (i) orthogonal and (ii) parallel.

(a) (x, 1− 2x, 3) and (1,−x, 3x) (b) (x, x,−1) and (1, x, 6)

234. Write down the equation for the following lines in both vector and cartesian form.

(a) the line passing through P (2, 1,−3) and parallel to v = (1, 2, 2)

(b) the line through P (2,−3, 1) and parallel to the x-axis

(c) the line passing through the points P (2, 0,−2) and Q(1, 4, 2)

(d) the line through P (2, 4, 5) and perpendicular to the plane 5x− 5y − 10z = 2

235. Determine whether the lines L1 and L2 are parallel, intersecting or skew (not parallel or inter-
secting). If they intersect, find the point of intersection. Let the parameters s, t ∈ R.

(a) L1 : x = −6t, y = 1 + 9t, z = −3t and L2 : x = 1 + 2s, y = 4− 3s, z = s

(b) L1 : x = 1 + t, y = 1− t, z = 2t and L2 : x = 2− s, y = s, z = 2

(c) L1 :
x− 4

2
=
y + 5

4
=
z − 1

−3
and L2 : x− 2 =

y + 1

3
=
z

2

236. Find the equations of the following planes in both cartesian and (vector) parametric form:

(a) the plane through the point (1, 4, 5) and perpendicular to the vector (7, 1, 4)

(b) the plane through the point (6, 5,−2) and parallel to the plane x+ y − z + 1 = 0

(c) the plane through the origin and the points (1, 1, 1) and (1, 2, 3)

(d) the plane that passes through the point (1, 6,−4) and contains the line

x = 1 + 2t, y = 2− 3t, z = 3− t where t ∈ R

237. (a) Show that three points A, B and C are collinear if and only if ⇀AB ×⇀
AC = 0. Are the

points A(1, 2, 3), B(3, 1, 0) and C(9,−2,−9) collinear? If yes, find the equation of the line
containing these points.

(b) Show that four points A, B, C and D are coplanar if and only if

⇀
AB · (⇀AC ×⇀AD) = 0.

Are the points A(1, 1, 1), B(2, 1, 3), C(3, 2, 1) and D(4, 2, 3) coplanar? If yes, find the equa-
tion of the plane containing these points.
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238. (a) Find the point of intersection of the line r(t) = (2, 1, 1) + t(−1, 0, 4); t ∈ R with the plane
x− 3y − z = 1.

(b) Find the point of intersection of the line x = 1 + t, y = 2t, z = 3t; t ∈ R with the plane
x+ y + z = 1.

239. Find the angle between:

(a) the lines x− 3 = 2− y, z = 1 and x = 7, y − 2 = z − 5

(b) the planes 2x+ y + 3z = 0 and 3x− 2y + 4z − 4 = 0

(c) the line x = 2t − 7, y = 4t − 6, z = t − 5; t ∈ R and a vector normal to the plane
x+ 2y − 4z = 0

240. Given the line ` determined by the equations 2x − y + z = 0, x + z − 1 = 0, and M the point
(1, 3,−2), find a cartesian equation of the plane:

(a) passing through M and `

(b) passing through M and orthogonal to `

© University of Melbourne 2023



MAST10022 Linear Algebra: Advanced, 2023 27-7

Extra material for lecture 27

� The cross product is not associative. For example

((1, 0, 0)× (0, 1, 0))× (1, 1, 0) = (−1, 1, 0) 6= (0, 1, 0) = (1, 0, 0)× ((0, 1, 0)× (1, 1, 0))

© University of Melbourne 2023
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LECTURE 28

Inner products

An inner product on a vector space is a generalisation of the dot product on Rn seen in the last lecture.
It will be used to define geometric notions such as length and angle.

When dealing with inner products, the field F will always be either R or C. Given an element α ∈ F,
we denote by α its complex conjugate and by |α| its absolute value.

28.1 Definition of inner product

Definition 28.1: Inner product

Let F be one of R or C. Let V be a vector space over F.
An inner product on V is a function V × V → F (with the image of (u, v) being denoted 〈u, v〉)
that satisfies the following conditions. For all u, v, w ∈ V and α ∈ F:

1) 〈u, v〉 = 〈v, u〉

2) α〈u, v〉 = 〈αu, v〉

3) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

4) (a) 〈u, u〉 > 0

(b) 〈u, u〉 = 0⇒ u =
⇀
0

The case in which F = R is sometimes referred to as a real inner product.
The case in which F = C is sometimes referred to as an Hermitian inner product.
A vector space V together with a fixed inner product is called an inner product space.

Note.
� The first condition implies that ∀u ∈ V, 〈u, u〉 ∈ R and therefore the inequality in 4(a) makes

sense.

� The first and second conditions together imply that ∀u, v ∈ V ∀α ∈ F, 〈u, αv〉 = α〈u, v〉.

� It’s possible to have many different inner products on the same vector space.

Exercise 241. Show that ∀v ∈ V , 〈⇀0, v〉 = 0.

Examples 28.2.

1. The dot product on Rn is an inner product

〈(u1, . . . , un), (v1, . . . , vn)〉 = u1v1 + · · ·+ unvn

2. The Hermitian dot product on Cn is

〈(u1, . . . , un), (v1, . . . , vn)〉 = u1v1 + · · ·+ unvn

3. The following is an inner product on R2,

〈(u1, u2), (v1, v2)〉 = u1v1 − u1v2 − u2v1 + 5u2v2

4. V =Mn,n(C), 〈A,B〉 = tr(A(B)t)
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5. V = Pn(R), 〈p, q〉 =
∫ 1
0 p(x)q(x) dx

Examples 28.3.

1. The following is not an inner product on R2,

〈(u1, u2), (v1, v2)〉 = u1v1 − 2u1v2 − 2u2v1 + 3u2v2

2. The following is not an inner product on C2,

〈(u1, u2), (v1, v2)〉 = u1v1 + u2v2

28.2 Length, distance and orthogonality

Definition 28.4: Length and distance

For a vector space with an inner product 〈· , ·〉we define: the length (or norm) of a vector v ∈ V
by

‖v‖ =
√
〈v, v〉

The distance between two vectors u, v ∈ V is defined to be

d(v, u) = ‖v − u‖

A vector u ∈ V with ‖u‖ = 1 is called a unit vector.
Two vectors u, v ∈ V are said to be orthogonal if 〈u, v〉 = 0

Exercise 242. Let V be an inner product space. Show that

∀u ∈ V ∀α ∈ F, ‖αu‖ = |α|‖u‖

Exercise 243. Let u, v be orthogonal vectors in an inner product space V . Show that

‖u+ v‖2 = ‖u‖2 + ‖v‖2

Example 28.5. 〈(u1, u2), (v1, v2)〉 = u1v1 + 2u2v2 defines an inner product on R2

Letting u = (3, 1) and v = (−2, 3), we have

‖v‖2 = 〈(−2, 3), (−2, 3)〉 = (−2)2 + 2× 32 = 22

d(u, v) = ‖u− v‖ = ‖(5,−2)‖ =
√
〈(5,−2), (5,−2)〉 =

√
25 + 8 =

√
33

〈u, v〉 = 〈(3, 1), (−2, 3)〉 = 3× (−2) + 2× 1× 3 = 0

The vectors u and v are orthogonal (with respect to this inner product).

Example 28.6. Consider the real vector space V = C[0, 2π] of all continuous functions f : [0, 2π]→ R.
We equip V with the following inner product

〈f, g〉 =

∫ 2π

0
f(x)g(x)dx

The norms of the functions s, c ∈ V given by s(x) = sin(x) and c(x) = cos(x) are:
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‖s‖2 = 〈s, s〉 =

∫ 2π

0
sin2(x)dx =

∫ 2π

0

1

2
(1− cos(2x))dx =

[
x

2
− 1

4
sin(2x)

]2π
0

= π

So ‖s‖ =
√
π. Similarly, ‖c‖ =

√
π.

The vectors s and c are othogonal since

〈s, c〉 =

∫ 2π

0
sin(x) cos(x)dx =

∫ 2π

0

1

2
sin(2x)dx =

[
−1

4
cos(2x)

]2π
0

= 0

28.3 The Cauchy-Schwartz inequality

We would like to define what should be meant by the angle between two vectors in an inner product
space by using the same expression as in Definition 27.6. To be sure that it makes sense we need the
following result.

Theorem 28.7: Cauchy-Schwarz inequality

Let V be an inner product space. Then for all u, v ∈ V

|〈u, v〉| 6 ‖u‖‖v‖

Further, equality holds if and only if one vector is a multiple of the other.

Proof. Let u, v ∈ V . If v =
⇀
0, the result holds because 〈u, ⇀

0〉 = 0 and ‖⇀0‖ = 0 (see Exercise 241).

We now cinsider the case in which v is non-zero. Let p = 1
‖v‖2 〈u, v〉v. Note that

‖p‖2 = 〈 1

‖v‖2
〈u, v〉v, 1

‖v‖2
〈u, v〉v〉 =

1

‖v‖4
|〈u, v〉|2〈v, v〉 =

1

‖v‖2
|〈u, v〉|2

and that w = u− p is orthogonal to p since

〈p, w〉 = 〈p, u− p〉 = 〈p, u〉 − 〈p, p〉 =
1

‖v‖2
〈u, v〉〈v, u〉 − 1

‖v‖2
|〈u, v〉|2 = 0

Then we have

‖u‖2 = ‖w + p‖2

= ‖w‖2 + ‖p‖2 (by Exercise 243)

> ‖p‖2

=
1

‖v‖2
|〈u, v〉|2

This inequality gives ‖u‖2‖v‖2 > |〈u, v〉|2 and hence ‖u‖‖v‖ > |〈u, v〉|.

The above inequality is an equality iff ‖w‖2 = 0, that is, w =
⇀
0. We have

w =
⇀
0 ⇐⇒ u = p ⇐⇒ u is a multiple of v

Example 28.8. Consider V = P2(R) with inner product given by 〈p, q〉 =
∫ 1
0 p(x)q(x) dx. Let u = −x

and v = x2. Then

〈u, v〉 = −
∫ 1

0
x3 dx = −1

4
‖u‖2 = 〈u, u〉 =

∫ 1

0
x2 dx =

1

3
‖v‖2 = 〈v, v〉 =

∫ 1

0
x4 dx =

1

5

|〈u, v〉| = 1

4
6

1√
15

= ‖u‖‖v‖

© University of Melbourne 2023



28-4 MAST10022 Linear Algebra: Advanced, 2023

Definition 28.9

Let V be a real inner product space. The angle between two vectors u, v ∈ V is defined to be
θ ∈ [0, π] given by

θ = arccos
〈u, v〉
‖u‖ ‖v‖

Example 28.10. With u, v ∈ V as in Example 28.8 we have that the angle between x and x2 is

θ = arccos

(
−1/4

1/
√

15

)
= arccos

(
−
√

15

4

)

Lemma 28.11: Triangle inequality for inner product spaces

Let V be an inner product space. Then ∀u, v ∈ V,

‖u+ v‖ 6 ‖u‖+ ‖v‖

Proof.

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 2<(〈u, v〉) + ‖v‖2 (<(z) denotes the real part of z ∈ C)

6 ‖u‖2 + 2|〈u, v〉|+ ‖v‖2

6 ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 (Cauchy-Schwartz)

= (‖u‖+ ‖v‖)2

28.4 Exercises

244. Given U =

[
u1 u2
u3 u4

]
and V =

[
v1 v2
v3 v4

]
are two 2× 2 matrices, then

〈U, V 〉 = u1v1 + u2v2 + u3v3 + u4v4

defines an inner product onM2,2(R).

(a) Compute 〈U, V 〉when U =

[
3 −2
4 8

]
and V =

[
−1 3
1 1

]
.

(b) Given A =

[
−2 5
3 6

]
, find ‖A‖.

(c) Given A =

[
2 6
9 4

]
and B =

[
−4 7
1 6

]
, find the distance between them d(A,B).

(d) Let A =

[
2 1
−1 3

]
. Which of the following matrices are orthogonal to A?

i)
[
1 1
0 −1

]
ii)
[
2 1
5 2

]
245. Given p = a0 + a1x+ a2x

2 and q = b0 + b1x+ b2x
2 are two vectors in P2(R), then

〈p, q〉 = a0b0 + a1b1 + a2b2

is an inner product on P2(R).
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(a) Compute 〈p, q〉 if p = −2 + x+ 3x2 and q = 4− 7x2.

(b) If p = −2 + 3x+ 2x2, find ‖p‖.
(c) Given p = 3− x+ x2, q = 2 + 5x2 find the distance between them d(p, q).

(d) Show that p = 1− x+ 2x2 and q = 2x+ x2 are orthogonal.

246. For x = (x1, x2).y = (y1, y2) ∈ R2, define 〈x,y〉 = x1y1 + 3x2y2. Show that 〈x,y〉 is an inner
product on R2.

247. In R2, let 〈(x1, x2), (y1, y2)〉 = x1y1 − x2y2. Is this an inner product? If not, why not?

248. Verify that the operation

〈(x1, x2), (y1, y2)〉 = x1y1 − x1y2 − x2y1 + 3x2y2

is an inner product in R2.

249. Decide which of the suggested operations on x = (x1, x2, x3) and y = (y1, y2, y3) in R3 define
an inner product:

(a) 〈x,y〉 = x1y1 + 2x2y2 + x3y3

(b) 〈x,y〉 = x21y
2
1 + x22y

2
2 + x23y

2
3

(c) 〈x,y〉 = x1y1 − x2y2 + x3y3

(d) 〈x,y〉 = x1y1 + x2y2

250. Decide which of the following functions 〈p, q〉 on real polynomials p(x) = a0 + a1x+ a2x
2 and

q(x) = b0 + b1x+ b2x
2 define inner products on P2(R):

(a) 〈p, q〉 = a0b0 + a1b1 + a2b2 (b) 〈p, q〉 = a0b0

251. For the vectors x = (1, 1, 0), y = (0, 1, 0) in R3 compute the norms ‖x‖ and ‖y‖ using the
following inner products.

(a) 〈x,y〉 = x1y1 + x2y2 + x3y3 (b) 〈x,y〉 = x1y1 + 3x2y2 + x3y3

252. In each part determine whether the given vectors are orthogonal with respect to the Euclidean
inner product (i.e., the usual dot product).

(a) u = (−1, 3, 2), v = (4, 2,−1) (b) u = (0, 3,−2, 1), v = (5, 2,−1, 0)

253. Endow R4 have the Euclidean inner product (i.e. the dot product), and let u = (−1, 1, 0, 2).
Determine whether the vector u is orthogonal to the following vectors:

(a) w1 = (0, 0, 0, 0) (b) w2 = (1,−1, 3, 0) (c) w3 = (4, 0, 9, 2)

254. Let u = (1 + i, 3i) and v = (4, 2− i). Use the complex dot product on C2 to compute:

(a) u · v (b) v · u (c) ‖u‖ (d) ‖v‖

255. Let C3 have the complex dot product. If u = (2i, i, 3i) and v = (i, 6i, k), for what values of k ∈ C
are u and v orthogonal?

256. Show that in every real inner product space: v+w is orthogonal to v−w if and only if ‖v‖ = ‖w‖.

257. Prove that the following holds for all vectors x,y in a real inner product space:

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

© University of Melbourne 2023



28-6 MAST10022 Linear Algebra: Advanced, 2023

258. Let A be a real invertible n× n matrix. Show that

〈x,y〉 ≡ [x]TATA[y] = (A[x])TA[y]

defines an inner product in Rn, where [x] and [y] are coordinate matrices with respect to the
standard basis.

Show that it fails to be an inner product if A is not invertible.
(Hint: If A is not invertible, then its kernel is non-trivial.)

259. Verify that the Cauchy-Schwartz inequality holds for the given vectors using the Euclidean
inner product.

(a) u = (−3, 1, 0), v = (2,−1, 3) (b) u = (−4, 2, 1), v = (8,−4,−2)

260. Use the Cauchy-Schwartz inequality (applied to the Euclidean inner product on Rn) to show
that given any a1, a2, . . . , an ∈ R we have that

a1 + · · ·+ an
n

6

√
a21 + · · ·+ a2n

n

261. Consider R2 and R3, each with the Euclidean inner product. In each part find the cosine of the
angle between u and v.

(a) u = (1,−3), v = (2, 4) (b) u = (−1, 5, 2), v = (2, 4,−9)

262. For the vectors x = (1, 1, 0), y = (0, 1, 0) in R3 compute the angle between x and y using the
following inner products.

(a) 〈x,y〉 = x1y1 + x2y2 + x3y3 (b) 〈x,y〉 = x1y1 + 3x2y2 + x3y3
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Extra material for lecture 28

� References about inner products

Elementary Linear Algebra by Anton and Rorres, §6, p345

Linear Algebra Done Right by Axler, §6.A, p164

© University of Melbourne 2023
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LECTURE 29

Orthonormal bases

Some bases for an inner product space fit nicely with the inner product. Before defining the notion
of an orthonormal basis we note that, after choosing a basis, inner products (on finite-dimensional
vector spaces) can be represented by matrices. If the basis is orthonormal, then the corresponding
matrix is particularly simple.

In this lecture, as in the previous, the field F is either R or C.

29.1 Matrix representation of an inner product

Let V be an n-dimensional vector space and let B be a basis for V . Fix a matrix M ∈ Mn,n(F). For
u, v ∈ V define

〈u, v〉 = [u]T M [v] (†)

Where, for legibility, we have written [u] in place of [u]B and [v] in place of [v]B. The right hand side
is a 1× 1 matrix which we identify with an element of F.

What conditions of M ensure that this gives an inner product on V ?

Exercise 263. Show that the function V × V → F defined by (†) satisfies axioms 2 and 3 in the
definition of an inner product.

We need to add a condition on M in order that axiom 1 be satisfied.

〈v, u〉 = [v]TM [u] = [v]
T
M [u]

= ([v]
T
M [u])T (since a 1× 1 matrix is equal to its own transpose)

= [u]TM∗[v] (where M∗ denotes MT )

Therefore axiom 1 is satisfied if and only if M∗ = M .

We fix some terminology.

Definition 29.1

A matrix M ∈Mn,n(R) is called a real symmetric matrix if MT = M .

A matrix M ∈Mn,n(C) is called a Hermitian matrix if M∗ = M .

A matrix M ∈ Mn,n(F) is called positive definite if M∗ = M and the following condition is
satisfied

∀X ∈Mn,1(F) \ {⇀0}, XTMX > 0

Exercise 264. Show that if M is positive definite, then the function V × V → F defined by (†) is
an inner product on V . (Hint: The only thing left to show is that axiom 4 in the definition of inner
product is satisfied.)

Given an inner product on V , there always exists a matrix M ∈ Mn,n(F) such that the inner product
is given by the expression (†).
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Proposition 29.2: matrix representation of an inner product

Let V be a finite-dimensional inner product space and B a basis for V . There exists a matrix
M ∈Mn,n(F) such that

∀u, v ∈ V, 〈u, v〉 = [u]TBM [v]B

Proof. Suppose B = {b1, . . . , bn} and that we have an inner product 〈., .〉 on V . Define M ∈ Mn,n(F)

to be the matrix whose (i, j)-th entry is given byMij = 〈bi, bj〉. That 〈u, v〉 = [u]T M [v] for all u, v ∈ V
can be readily verified.

Exercise 265. Show that, with M defined as above, we have 〈u, v〉 = [u]T M [v] for all u, v ∈ V .

Example 29.3. We saw in a previous example that

〈(u1, u2), (v1, v2))〉 = u1v1 − u1v2 − u2v1 + 5u2v2

defines an inner product on R2. What is the matrix representation of this inner product (with respect
to the standard basis)? Noting that 〈(1, 0), (1, 0)〉 = 1, 〈(1, 0), (0, 1)〉 = −1, 〈(0, 1), (1, 0)〉 = −1 and
〈(0, 1), (0, 1)〉 = 5 we have that

〈(u1, u2), (v1, v2)〉 = [u1u2]

[
1 −1
−1 5

] [
v1
v2

]
Exercise 266. Let M,N ∈Mn,n(F). Show that if

∀X,Y ∈Mn.1(F), XTMY = XTNY

then M = N .

(It follows that the matrix representation (with respect to a fixed basis) of an inner product is unique.)

29.2 Orthogonal sets of vectors

Definition 29.4: Orthogonal set of vectors

Let V be an inner product space. A set of vectors {v1, . . . , vk} ⊆ V is called orthogonal if
〈vi, vj〉 = 0 whenever i 6= j.

Examples 29.5. 1. {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthogonal in R3 with the dot product as inner
product.

2. So is {(1, 1, 1), (1,−1, 0), (1, 1,−2)} ⊆ R3 using the dot product.

3. Consider the inner product space of Example 28.6: V = C[0, 2π] and 〈f, g〉 =
∫ 2π
0 f(x)g(x)dx.

The set {1, sin(x), cos(x)} ⊆ V is orthogonal.

Lemma 29.6

Let V be an inner product space and S ⊆ V \ {⇀0}. If S is orthogonal, then S is linearly indepen-
dent.
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Proof. Suppose that α1, . . . , αk ∈ F and v1, . . . , vk ∈ S are such that α1v1 + · · · + αkvk =
⇀
0. Then for

i ∈ {1, . . . , k}we have

α1v1 + · · ·+ αkvk =
⇀
0 =⇒ 〈α1v1 + · · ·+ αkvk, vi〉 = 0

=⇒ α1〈v1, vi〉+ · · ·+ αk〈vk, vi〉 = 0

=⇒ αi〈vi, vi〉 = 0 (since 〈vj , vi〉 = 0 if j 6= i)

=⇒ αi = 0 (since vi 6=
⇀
0)

Having shown that
α1v1 + · · ·+ αkvk =

⇀
0 =⇒ ∀i, αi = 0

we conclude that the set S is linearly independent.

Example 29.7. 1. The set {(1, 1, 1), (1,−1, 0), (1, 1,−2)} ⊆ R3 is linearly independent.

2. The set {1, sin(x), cos(x)} ⊆ C[0, 2π] is linearly independent.

29.3 Orthonormal bases

Definition 29.8

A set of vectors {v1, . . . , vk} is called orthonormal if it is orthogonal and each vector has length
one. That is,

{v1, . . . , vk} is orthonormal if 〈vi, vj〉 =

{
0 i 6= j

1 i = j

Remark. Any orthogonal set of non-zero vectors can be made orthonormal by dividing each vector
by its length.

Examples 29.9.

1. In R3 with the dot product:

(a) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthonormal

(b) {(1, 1, 1), (1,−1, 0), (1, 1,−2)} is orthogonal but is not orthonormal

(c) { 1√
3
(1, 1, 1), 1√

2
(1,−1, 0), 1√

6
(1, 1,−2)} is orthonormal

2. In P2(R) with the inner product 〈p, q〉 =
∫ 1
0 p(x)q(x) dx:

(a) The set {1, x, x2} is not orthogonal.

(b) The set {1, 2x− 1, 6x2 − 6x+ 1} is orthogonal but not orthonormal.

(c) The set {1,
√

3(2x− 1)},
√

5(6x2 − 6x+ 1)} is orthonormal.

3. In C[0, 2π] with the inner product

〈f, g〉 =

∫ 2π

0
f(x)g(x)dx

(a) The set {1, sin(x), cos(x)} is orthogonal but not orthonormal.

(b) The set { 1√
2π
, 1√

π
sin(x), 1√

π
cos(x)} is orthonormal

(c) The (infinite) set

{ 1√
2π
,

1√
π

sin(x),
1√
π

cos(x),
1√
π

sin(2x),
1√
π

cos(2x), . . . }

is orthonormal.
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Definition 29.10

Let V be an inner product space. An orthonormal basis for V is a basis that is an orthonormal
set.

Examples 29.11.

1. In R3 with the dot product:

(a) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is an orthonormal basis
(b) { 1√

3
(1, 1, 1), 1√

2
(1,−1, 0), 1√

6
(1, 1,−2)} is an orthonormal basis

2. For V = P2(R) with the inner product 〈p, q〉 =
∫ 1
0 p(x)q(x) dx, The set {1,

√
3(2x−1)},

√
5(6x2−

6x+ 1)} is an orthonormal basis.

Bases that are orthonormal are particularly convenient to work with. For example, we have the
following.

Lemma 29.12

Let V be an inner product space and let B = {b1, . . . , bn} be an orthonormal basis for V . Then
for all v ∈ V we have that

v = 〈v, b1〉b1 + · · ·+ 〈v, bn〉bn

Proof. Let v = α1b1 + · · ·+ αnbn. We need to show that αi = 〈v, bi〉. We have

〈v, bi〉 = 〈
n∑
j=1

αjbj , bi〉 =

n∑
j=1

αj〈bj , bi〉 = αi

Example 29.13. Let V = R3 equipped with the dot product and let

B = {b1 =
1√
3

(1, 1, 1), b2 =
1√
2

(1,−1, 0), b3 =
1√
6

(1, 1,−2)}

We saw above that this is an orthonormal basis. To find coordinates with respect to B, we can just
use the inner product. For example

(1, 2, 3) = ((1, 2, 3) · b1)b1 + ((1, 2, 3) · b2)b2 + ((1, 2, 3) · b3)b3 (Lemma 29.12)

=
1√
3

(1, 2, 3) · (1, 1, 1) b1 +
1√
2

(1, 2, 3) · (1,−1, 0) b2 +
1√
6

(1, 2, 3) · (1, 1,−2) b3

= 2
√

3 b1 −
1√
2
b2 −

√
3√
2
b3

That is, [(1, 2, 3)]B = 1√
2

2
√

6
−1

−
√

3


Example 29.14. Let W = {(x, y, z) ∈ R3 | x+y+ z = 0} 6 R3 equipped with the dot product. The set

B = { 1√
2

(−1, 1, 0),
1√
6

(−1,−1, 2)}

is an orthonormal basis for W . For (−1, 0, 1) ∈W we have

(−1, 0, 1) · b1 =
1√
2

(−1, 0, 1) · b2 =

√
3√
2

(−1, 0, 1) =
1√
2
b1 +

√
3√
2
b2 =

1

2
(−1, 1, 0) +

1

2
(−1,−1, 2)
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29.4 Exercises

267. Use Lemma 29.12 to express the given vector as a linear combination of the vectors in the
following orthonormal basis (with respect to the dot product) for R3.

B =
{(

1
3 ,−

2
3 ,

2
3

)
,
(
−2

3 ,
1
3 ,

2
3

)
,
(
2
3 ,

2
3 ,

1
3

)}
(a) (1, 2, 3) (b) (−1, 0, 1)

268. Let V be the be the vector space C[0, 2π] of real-valued continuous functions on the interval
[0, 2π] equipped with the inner product 〈f, g〉 =

∫ 2π
0 f(x)g(x) dx. Show that the set{

1√
2π
,

1√
π

sin(x),
1√
π

cos(x)

}
⊆ V

is an orthonormal set

269. Let 〈x, y〉 be an inner product on a vector space V , and letB = {e1, e2, . . . , en} be an orthonormal
basis for V . Prove that:

(a) 〈α1e1 + α2e2 + · · ·+ αnen, β1e1 + β2e2 + · · ·+ βnen〉 = α1β1 + α2β2 + · · ·+ αnβn

(b) 〈x, y〉 = 〈x, e1〉〈y, e1〉+ · · ·+ 〈x, en〉〈y, en〉
(c) The matrix representation, with respect to B, of the inner product is In.

270. Let V be a finite dimensional inner product space and let B = {b1, . . . , bn} be an orthonormal
basis for V . Let T : V → V be a linear transformation and let A = [T ]B be the matrix of T with
respect to B. Prove that Aij = 〈T (bj), bi〉

© University of Melbourne 2023



29-6 MAST10022 Linear Algebra: Advanced, 2023

Extra material for lecture 29

� Let V be the inner product space of Exercise 268. Show that the infinite set{
1√
2π
, 1√

π
sin(x), 1√

π
cos(x), 1√

π
sin(2x), 1√

π
cos(2x), 1√

π
sin(3x), 1√

π
cos(3x), . . .

}
⊆ V

is an orthonormal set. The set is therefore linearly independent.

� A Hilbert space is an inner product space with the property that the associated metric is com-
plete. That the metric is complete is to say that all Cauchy sequences converge.

An example of an infinite-dimensional Hilbert space is the space of "square summable" sequen-
ces of complex numbers

`2 = { (z1, z2, z3, . . . ) | zi ∈ C,
∞∑
i=1

|zi|2 <∞}

with inner product

〈(x1, . . . ), (y1, . . . )〉 =
∞∑
i=1

xi yi
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LECTURE 30

The Gram-Schmidt orthogonalisation procedure and
orthogonal projection

We have seen how to find a basis for a vector space, but what about finding an orthonormal basis? In
this lecture we discuss a technique, based on the idea contained in Exercise 271 below, for converting
a basis of a finite-dimensional inner product space to an orthonormal basis.

Exercise 271. Let V be an inner product space and let v ∈ V .

a) Let u ∈ V be a unit vector. Show that v − 〈v, u〉u is orthogonal to u.

b) Let {u1, . . . , uk} ⊆ V be an orthonormal set. Show that

v − 〈v, u1〉u1 − 〈v, u2〉u2 − · · · − 〈v, uk〉uk

is orthogonal to every element of span{u1, . . . , uk}.

30.1 Gram-Schmidt orthogonalisation procedure

Let V be an inner product space and let {u1, . . . , uk} ⊆ V be an orthonormal set. Suppose that v ∈ V
is such that v /∈ W = span{u1, . . . , uk}. Defining w = v − 〈v, u1〉u1 − 〈v, u2〉u2 − · · · − 〈v, uk〉uk we
have that w 6= ⇀

0 and w is orthogonal to W . Therefore, if we define uk+1 = w/‖w‖ and add it to the
above orthonormal set, the now larger set {u1, . . . , uk+1} ⊆ V is still orthonormal. Applying this
observation repeatedly allows us to construct an orthonormal basis for V .

Algorithm 30.1: Gram-Schmidt procedure

Let V be a finite-dimensional inner product space and let {b1, . . . , bn} be a basis for V .

We define u1, w2, u2, . . . , wn, un ∈ V as follows:

1) u1 = 1
‖b1‖b1

2) w2 = b2 − 〈b2, u1〉u1 and u2 = 1
‖w2‖w2

3) w3 = b3 − 〈b3, u1〉u1 − 〈b3, u2〉u2 and u3 = 1
‖w3‖w3

...
...

n) wn = bn − 〈bn, u1〉u1 − · · · − 〈bn, uk−1〉uk−1 and un = 1
‖wn‖wn

Then {u1, . . . , un} is an orthonormal basis for V .

Let’s note explicitly the following consequence.

Theorem 30.2

Every finite-dimensional inner product space has an orthonormal basis.
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Example 30.3. We find an orthonormal basis for the subspaceW of R4 (with the dot product) spanned
by {(1, 1, 1, 1), (2, 4, 2, 4), (1, 5,−1, 3)}.

Following the Gram-Schmidt procedure gives:

u1 = (1, 1, 1, 1)/(‖(1, 1, 1, 1)‖) =
1

2
(1, 1, 1, 1)

w2 = (2, 4, 2, 4)− 〈(2, 4, 2, 4), u1〉u1 = (2, 4, 2, 4)− 1

4
〈(2, 4, 2, 4), (1, 1, 1, 1)〉(1, 1, 1, 1)

= (2, 4, 2, 4)− 3(1, 1, 1, 1) = (−1, 1,−1, 1)

u2 = (−1, 1,−1, 1)/‖(−1, 1,−1, 1)‖ =
1

2
(−1, 1,−1, 1)

w3 = (1, 5,−1, 3)− 〈(1, 5,−1, 3), u1〉u1 − 〈(1, 5,−1, 3), u2〉u2
= (1, 5,−1, 3)− 2(1, 1, 1, 1)− 2(−1, 1,−1, 1) = (1, 1,−1,−1)

u3 = (1, 1,−1,−1)/‖(1, 1,−1,−1)‖ =
1

2
(1, 1,−1,−1)

So {12(1, 1, 1, 1), 12(−1, 1,−1, 1), 12(1, 1,−1,−1)} is an orthonormal basis for W .

30.2 Orthogonal projection

Definition 30.4: Orthogonal complement

Let V be an inner product space and let W 6 V be a subspace of V . The orthogonal comple-
ment of W is defined to be

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}

Exercise 272. Let V be an inner product space and let W 6 V be a subspace of V . Note that we are
not assuming that V (or W ) is finite dimensional. Prove the following properties of the orthogonal
complement.

a) W⊥ is a subspace of V b) W ∩W⊥ = {⇀0} c) W ⊆ (W⊥)⊥

Lemma 30.5

Let V be a finite-dimensional inner product space and let W 6 V be a subspace. Every vector
v ∈ V can be written in a unique way as v = w + w′ where w ∈W and w′ ∈W⊥.

Proof. Let v ∈ V . We first need to show that there exist w ∈ W and w′ ∈ W⊥ such that v = w + w′.
Let {w1, . . . , wk} be an orthonormal basis for W . Define

w = 〈v, w1〉w1 + · · ·+ 〈v, wk〉wk

Then clearly w ∈ W . Now define w′ = v − w. We have that v = w + w′. We have to show that
w′ ∈W⊥. For i ∈ {1, . . . , k}we have

〈w,wi〉 = 〈
k∑
j=1

〈v, wj〉wj , wi〉 (definition of w)

=
k∑
j=1

〈v, wj〉〈wj , wi〉 (linearity)

= 〈v, wi〉 ({w1, . . . , wk} is an orthonormal set)
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Therefore 〈w − v, wi〉 = 0 (for all i) and it follows that w′ ∈W⊥.

It remains to show that w and w′ are unique. Suppose that u ∈ W and u′ ∈ W⊥ are such that
v = u+ u′. Then we have

w + w′ = u+ u′

=⇒ w − u = u′ − w′ ∈W ∩W⊥

=⇒ w − u = u′ − w′ = ⇀
0 (Exercise 272)

Definition 30.6: Orthogonal projection

Let V be a finite-dimensional inner product space and W 6 V a subspace. The orthogonal
projection of V onto W is the map

projW : V → V

defined as follows.

Given v ∈ V we have v = w + w′ for some (unique) w ∈W and w′ ∈W⊥. Define projW (v) = w.

The element projW (v) is sometimes called the projection of v to W .

Exercise 273. Show that projW is a linear transformation and that (projW )2 = projW .

From the proof of Lemma 30.5 we have the following.

Lemma 30.7

Let V be a finite-dimensional inner product space and W 6 V a subspace. Let {w1, . . . , wk} be
an orthonormal basis for W . Then for any v ∈ V

projW (v) = 〈v, w1〉w1 + · · ·+ 〈v, wk〉wk

Example 30.8. Consider P2(R) with the inner product 〈f, g〉 =
∫ 1
0 f(x)g(x)dx.

The orthogonal projection of v = 1 + 2x+ 3x2 onto the unit vector u =
√

3x (i.e., the projection onto
the subspace W = span{u}) is

projW (v) = 〈v, u〉u = (3

∫ 1

0
x+ 2x2 + 3x3dx)x =

23

4
x

Example 30.9. Let W = {(x, y, z) | x+ y + z = 0} in V = R3 equipped with the dot product.
The set {b1 = 1√

2
(1,−1, 0), b2 = 1√

6
(1, 1,−2)} is an orthonormal basis for W . For v = (1, 2, 3) we have

projW (v) = 〈v, b1〉b1 + 〈v, b2〉b2 =

(
−1

2

)
(1,−1, 0) +

(
−1

2

)
(1, 1,−2) = (−1, 0, 1)

Note that v − projW (v) = (2, 2, 2) is orthogonal to W .

Lemma 30.10

Let V be an inner product space and W 6 V a subspace. Then, for all v ∈ V projW (v) is the
vector in W that is closest to v. (That is, ∀v ∈ V ∀ w ∈W , ‖v − projW (v)‖ 6 ‖v − w‖)
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Proof. Let p = projW (v) and w ∈W

‖v − w‖2 = 〈v − w, v − w〉 = 〈(v − p) + (p− w), (v − p) + (p− w)〉
= 〈v − p, v − p〉+ 〈v − p, p− w〉+ 〈p− w, v − p〉+ 〈p− w, p− w〉
= ‖v − p‖2 + ‖p− w‖2

> ‖v − p‖2

Example 30.11. LetW 6 R4 be as in Example 30.3, that is,W = span{(1, 1, 1, 1), (2, 4, 2, 4), (1, 5,−1, 3)}.
We saw that {12(1, 1, 1, 1), 12(−1, 1,−1, 1), 12(1, 1,−1,−1)} is an orthonormal basis for W .

Using the orthonormal basis we find the point p ∈ W that is closest to v = (2, 2, 1, 3). From Lemma
30.10 we know that p = projW (v).

p = projW (v) = 〈v, u1〉u1 + 〈v, u2〉u2 + 〈v, u3〉u3 = 2(1, 1, 1, 1) +
1

2
(−1, 1,−1, 1) + 0(1, 1,−1,−1)

=
1

2
(3, 5, 3, 5)

30.3 Exercises

274. Use the Gram-Schmidt procedure to construct orthonormal bases for the subspaces of Rn span-
ned by the following sets of vectors (using the dot product):

(a) (1, 0, 1, 0), (2, 1, 1, 1), (1,−1, 1,−1)

(b) (2, 2,−1, 0), (2, 3, 1,−2), (3, 4, 5,−2)

(c) (1,−2, 1, 3,−1), (0, 6,−2,−6, 0), (4,−2, 2, 6,−4)

275. Let P2(R) be the vector space of polynomials of degree at most two with the inner product

〈p, q〉 =

∫ 1

−1
p(x)q(x) dx

Apply Gram-Schmidt to the basis {1, x, x2} to obtain an orthonormal basis.

276. Find the orthogonal projection of (x, y, z) onto the subspace of R3 spanned by the vectors

(a) {(1, 2, 2), (−2, 2, −1)} (b) {(1, 2, −1), (0, −1, 2)}

277. Consider R3 equipped with the dot product. Let w = (2,−1,−2) and v = (2, 1, 3). Find vectors
v1 and v2 such that v = v1 + v2, v1 is parallel to w, and v2 is perpendicular to w.

278. Find the standard matrices of the transformations T : R3 → R3 which orthogonally project a
point (x, y, z) onto the following subspaces of R3. Use the matrix to show the transformation is
idempotent (i.e., T ◦ T = T ).

(a) The z-axis.
(b) The straight line x = y = 2z.
(c) The plane x+ y + z = 0.

279. Let Π be the plane in R3 given by x+ y + z = 0. Use orthogonal projection to find the point on
Π that is as close as possible to (4, 5, 0).

280. Let V be a finite-dimensional inner product space and let W 6 V be a subspace. Show that
dimW + dimW⊥ = dimV .

281. Let V be a finite-dimensional inner product space and let W 6 V be a subspace. Let P : V → V
be projection onto W . Show that

∀ u, v ∈ V, 〈P (u), v〉 = 〈u, P (v)〉
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Extra material for lecture 30

� What happens if we apply Gram-Schmidt to a linearly dependent set? It can be used to produce
an orthonormal basis for the span of the original set of vectors.

� Not all infinite-dimensional inner product spaces have an orthonormal basis.
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LECTURE 31

Least squares approximation

We give two applications related to the dot product in Rn.

31.1 Least squares line of best fit

Given a set of data points (x1, y1), (x2, y2),. . . , (xn, yn) we
want to find the straight line y = a+ bx which best approxi-
mates the data. A common approach is to minimise the least
squares error:

E = sum of the squares of the vertical errors δi

=
n∑
i=1

δ2i

=
n∑
i=1

(yi − (a+ bxi))
2

y = a+ bxδi

xi

yi

a+ bxi

(xi, yi)

Given (x1, y1),. . . , (xn, yn) we want to find a, b ∈ R that minimise the quantity
∑n

i=1(yi − (a+ bxi))
2

This can be written as

E =
n∑
i=1

(yi − (a+ bxi))
2 = ‖y −Au‖2

where

y =

y1...
yn

 A =


1 x1
1 x2
...

...
1 xn

 u =

[
a
b

]

The length is that coming from the inner product onMn,1(R) that corresponds to the dot product on
Rn, that is 〈v1,v2〉 = vT1 v2.

To minimise ‖y −Au‖we want u to be such that Au is as close as possible to y (which is fixed).

That is, we want the vector in

W = {Av | v ∈M2,1(R)} 6Mn,1(R) (W is the column space of A)

that is closest to y.

The closest vector is precisely p = projW (y). To find u we could project y to W to get p and then
solve Au = p to get u (by solving a linear system).
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However, we can calculate u more directly (without finding an orthonormal basis for W ) by using
properties of the projection:

wT (y − projW y) = 0 ∀ w ∈W
=⇒ (Av)T (y −Au) = 0 ∀ v ∈M2,1(R) (since w = Av)

=⇒ vTAT (y −Au) = 0 ∀ v ∈M2,1(R)

=⇒ AT (y −Au) =
⇀
0

=⇒ ATy −ATAu =
⇀
0

=⇒ (ATA)u = ATy (∗)

From this we can calculate u, given that we know A and y. It’s just a matter of solving the linear
system.

Note that ATA ∈M2,2(R). If ATA is invertible (and it usually is), the solution to (∗) is given by

u = (ATA)−1ATy

Example 31.1. We find the straight line which best fits the data points: (−1, 1), (1, 1), (2, 3), (4, 5)

ATA =

[
1 1 1 1
−1 1 2 4

]
1 −1
1 1
1 2
1 4

 =

[
4 6
6 22

]

(ATA)−1ATy =
1

52

[
22 −6
−6 4

] [
1 1 1 1
−1 1 2 4

]
1
1
3
5

 =
1

13

[
16
11

]

The line of best fit is y = 16
13 + 11

13x
-2 -1 1 2 3 4 5

1

2

3

4

5

31.2 Polynomial of best fit

The same method works for finding quadratic (or higher degree) fitting curves.

To find the quadratic y = a+ bx+ cx2 which best fits data (x1, y1), (x2, y2),. . . , (xn, yn) we take

A =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n

 y =

y1...
yn



and solve
ATAu = ATy

for

u =

ab
c


Example 31.2. We find the parabola which best fits the data points: (−1, 1), (1, 1), (2, 3), (4, 5)
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ATA =

 1 1 1 1
−1 1 2 4
1 1 4 16




1 −1 1
1 1 1
1 2 4
1 4 16

 =

 4 6 22
6 22 72
22 72 274



(ATA)−1ATy =

83
78
9
26
1
6


The parabola of best fit is

y = 83
78 + 9

26x+ 1
6x

2

-2 -1 1 2 3 4 5

2

4

6

31.3 Volume of a parallelpiped

We give expressions for the area of a parallelogram and the volume of a parallelepiped as determi-
nants.
Given two vectors b, c ∈ R3, the area of the parallelogram
they determine is given by A = ‖b‖ ‖c‖ sin(θ). Therefore

A = ‖b× c‖

If we have two vectors (b1, b2), (c1, c2) ∈ R2, letting b =
(b1, b2, 0) and c = (c1, c2, 0) we have

A =

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
b

c
θ

The 3-dimensional version of a parallelogram is a parallelepiped.
Given three vectors in R3, there is a corresponding parallelepiped.
The volume of the parallelepiped is given by V = Ah where h is
the height. The height is given by h = ‖a‖ cos(ϕ) = a · n̂, where
ϕ is the angle between a and the unit normal n̂ to the plane deter-
mined by b and c. The volume is therefore given by

V = Ah = ‖b× c‖ n̂ · a
= (b× c) · a

=

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣

b

c
a

a

b

cn̂
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31.4 Exercises

282. Find the (least squares) line of best fit for the given data sets.

(a) {(0, 0), (1, 0), (2, 1), (3, 3), (4, 5)}
(b) {(−2, 2), (−1, 1), (0,−1), (1, 0), (2, 3)}

283. A maths lecturer was placed on a rack by his students and stretched to lengths L = 1.7, 2.0
and 2.3 metres when forces of F = 1, 2 and 4 tonnes were applied. Assuming Hooke’s law
L = a+ bF , estimate the lecturer’s normal length a.

284. A firm that manufactures widgets finds the daily consumer demand d(x) for widgets as a
function of their price x is as in the following table:

x 1 1.5 2 2.5 3
d(x) 200 180 150 100 25

Using least squares, approximate the daily consumer demand by a linear function.

285. Find the parabola of best fit for the data in Exercise 282(a).
(Use MATLAB for the matrix algebra in this question!)

286. (a) Find the area of the parallelogram determined by the vectors (1, 4,−2), (1, 1,−1) ∈ R3.

(b) Find the area of the triangle which has vertices: A(1, 1, 2), B(2, 2, 1), C(2, 3, 2)

287. Find the volume of the parallelepiped determined by the following vectors:
(1, 0, 6), (2, 3,−8), (8,−5, 6) ∈ R3

© University of Melbourne 2023
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Extra material for lecture 31

� Reference

Elementary Linear Algebra by Anton and Rorres, §6.5, p387

© University of Melbourne 2023
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LECTURE 32

Orthogonal diagonalisation

In this lecture we look at matrix representations with respect to orthonormal bases.

Suppose that B = {u1, . . . , un} is an orthonormal basis for Rn equipped with the standard inner
product (dot product). Then the transition matrix P = PS,B = [ [u1]S · · · [un]S ] has the property that
P TP = In.

32.1 Orthogonal matrices

Definition 32.1

A matrix Q ∈Mn,n(R) is called orthogonal if QTQ = In.

Examples 32.2.

1) The following are all orthogonal:

1

3

 1 2 −2
−2 2 1
2 1 2

 ∈M3.3(R)

[
0 1
1 0

]
,

[
cos θ − sin θ
sin θ cos θ

]
∈M2,2(R)

2) The following are not orthogonal: 1 2 −2
−2 2 1
2 1 2

 ∈M3.3(R)

[
2 0
0 1

2

]
,

1

5

[
4 3
3 4

]
∈M2,2(R)

Exercise 288. Suppose that Q,P ∈Mn,n(R) are orthogonal matrices. Show that

(a) QT is orthogonal

(b) Q−1 is orthogonal

(c) PQ is orthogonal

(d) det(Q) = ±1

Lemma 32.3: Conditions equivalent to orthogonality

Let Q ∈Mn,n(R). The following are equivalent

1. Q is orthogonal

2. the columns of Q form an orthonormal basis ofMn,1(R) (with respect to the dot product)

3. the rows of Q form an orthonormal basis ofMn,1(R) (with respect to the dot product)

4. ‖Qu‖ = ‖u‖ for all u ∈Mn,1(R)

5. 〈Qu,Qv〉 = 〈u, v〉 for all u, v ∈Mn,1(R)

Proof. That 1 ⇔ 2 follows from the way in which matrix multiplication is defined. That 1 ⇔ 3 then
follows from the fact that the transpose of an orthogonal matrix is orthogonal.
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For 1⇒ 4 we have:

‖Qu‖2 = 〈Qu,Qu〉 = (Qu)T (Qu) (coordinate matrices with respect to the standard basis)

= uTQTQu

= uT Inu (since QTQ = In)

= uTu = ‖u‖2

For 4⇒ 5 we have:

〈Qu,Qv〉 =
1

4
(〈Qu+Qv,Qu+Qv〉 − 〈Qu−Qv,Qu−Qv〉)

=
1

4
(〈Q(u+ v), Q(u+ v)〉 − 〈Q(u− v), Q(u− v)〉)

=
1

4
(〈u+ v, u+ v〉 − 〈u− v, u− v〉) (since 4 holds)

= 〈u, v〉

It only remains to show that 5⇒ 1.

〈Qu,Qv〉 = 〈u, v〉 =⇒ uTQTQv = uT v =⇒ uT (QTQ− In)v = 0

Since this holds for all u, v ∈Mn,1(R) we must have that QTQ− In =
⇀
0.

32.2 Orthogonal diagonalisation

Definition 32.4

A matrixA ∈Mn,n(R) is said to be orthogonally diagonalisable if there is an orthogonal matrix
Q ∈Mn,n(R) and a diagonal matrix D ∈Mn,n(R) such that A = QDQT .

Example 32.5. The matrix A =

[
1 2
2 −2

]
is orthogonally diagonalisable since

A =

[
1 2
2 −2

]
=

[
− 1√

5
2√
5

2√
5

1√
5

] [
−3 0
0 2

][− 1√
5

2√
5

2√
5

1√
5

]T
= QDQT

(We’ll see soon how Q can be found.)

We have the following version of Theorem 24.4.

Theorem 32.6

A matrix A ∈ Mn,n(R) is orthogonally diagonalisable if and only if there is an orthonormal*

basis B forMn,1(R) with the property that all elements of B are eigenvectors of A.

Sketch of proof. The proof is the same as for Theorem 24.4, but with the extra observation that the
basis B is orthonormal if and only if the transition matrix is orthogonal.

*with respect to the dot product

© University of Melbourne 2023
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32.3 Real symmetric matrices

Theorem 32.7

Let A ∈Mn,n(R). If A is symmetric (i.e., AT = A), then A is orthogonally diagonalisable.

Although we postpone the proof of this theorem, we note the following

Proposition 32.8

Let A ∈Mn,n(R). If A is symmetric, then:

1. All roots of cA(x) are real.

2. Eigenvectors having different eigenvalues are orthogonal.

Proof. (Recall that for a matrix M ∈Mm,n(C), A∗ denotes the conjugate transpose A∗ = A
T .)

Suppose that λ ∈ C and v ∈ Mn,1(C) \ {⇀0} are such that Av = λv. Then v∗Av is a 1 × 1 matrix and
(v∗Av)T = v∗Av (since any 1× 1 matrix is symmetric). It follows that

v∗Av = (v∗Av)T = vTAT v = v∗A∗ v = v∗Av

Therefore v∗Av ∈ R. Since v∗Av = v∗λv = λv∗v, and both v∗Av and v∗v are real numbers (and
v∗v > 0), it follows that λ is real.

Suppose v1, v2 ∈Mn,1(R) are two eigenvectors of A with Av1 = λ1v1 and Av2 = λ2v2.
Then

vT1 Av2 = vT1 (λ2v2) = λ2v
T
1 v2

and also

vT1 Av2 = vT1 A
T v2 = (Av1)

T v2 = (λ1v1)
T v2 = λ1v

T
1 v2

Therefore λ2vT1 v2 = λ1v
T
1 v2 which, if λ1 6= λ2, implies vT1 v2 = 0.

Algorithm 32.9: To orthogonally diagonalise a real symmetric matrix

Let A ∈Mn,n(R) and suppose that AT = A.

1. Find the eigenvalues of A.

2. For each eigenvalue

(a) Find a basis for the eigenspace

(b) Use Gram-Schmidt to convert to an orthonormal basis

3. The union of the eigenspace bases will be an orthonormal basis {u1, . . . , un} for Rn.
Letting Q be the matrix whose columns are given by the ui and letting D be the diagonal
matrix whose diagonal entries are the corresponding eigenvalues†we then have

A = QDQT

© University of Melbourne 2023
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Example 32.10. We apply the above to the matrix A =

4 2 2
2 4 2
2 2 4

,

To find the eigenvalues:

det(A− xI3) = det

4− x 2 2
2 4− x 2
2 2 4− x

 = det

4− x 2 2
x− 2 2− x 0
x− 2 0 2− x

 (R2 −R1, R3 −R1)

= (x− 2)2 det

4− x 2 2
1 −1 0
1 0 −1


= (x− 2)2

(
−det

[
2 2
0 −1

]
− det

[
4− x 2

1 −1

])
(expanding along the second row)

= (x− 2)2 (2− (x− 6)) = (x− 2)2(8− x)

The eigenvalues are 2 and 8.

To find a basis for the eigenspace with λ = 2:

A− 2I3 =

2 2 2
2 2 2
2 2 2

 ∼
1 1 1

0 0 0
0 0 0


A basis for the eigenspace is therefore {(−1, 1, 0), (−1, 0, 1)}.

We apply Gram-Schmidt to find an orthonormal basis for the (λ = 2) eigenspace:

u1 =
1√
2

(−1, 1, 0)

w2 = (−1, 0, 1)− 〈(−1, 0, 1), u1〉u1

= (−1, 0, 1)− 1

2
〈(−1, 0, 1), (−1, 1, 0)〉(−1, 1, 0)

= (−1, 0, 1)− 1

2
(−1, 1, 0)

= (−1

2
,−1

2
, 1) =

1

2
(−1,−1, 2)

u2 =
w2

‖w2‖
=

(−1,−1, 2)

‖(−1,−1, 2)‖
=

1√
6

(−1,−1, 2)

Therefore { 1√
2
(−1, 1, 1), 1√

6
(−1,−1, 2)} is an orthonormal basis for the eigenspace.

Now for the λ = 8 eigenspace:

A− 8I3 =

−4 2 2
2 −4 2
2 2 −4

 ∼
1 0 −1

0 1 −1
0 0 0


A basis for the eigenspace is therefore {(1, 1, 1)}.

We apply Gram-Schmidt to find an orthonormal basis for the (λ = 8) eigenspace:

u3 =
1√
3

(1, 1, 1)

Finally, if we take

Q =


− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

1√
3

 and D =

2 0 0
0 2 0
0 0 8


we have that A = QDQT .

†The order of the eigenvalues must correspond to the order of the eigenvectors ui

© University of Melbourne 2023
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32.4 Exercises

289. Determine whether or not the given matrix A is orthogonal.

(a)


1
3

2
3

2
3

2
3

1
3 −2

3
2
3 −2

3
1
3

 (b)

0 1 0
1 0 1
0 1 0



290. Show that the rotation matrix A =

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal.

291. For each symmetric matrix A below find a decomposition A = QDQT , where Q is orthogonal
and D diagonal.

(a)
[

6 −2
−2 6

]

(b)

7 2 0
2 6 2
0 2 5


(c)

 −2 0 −36
0 −3 0
−36 0 −23



(d)

1 1 0
1 1 0
0 0 0



(e)


3 1 0 0
1 3 0 0
0 0 0 0
0 0 0 0



© University of Melbourne 2023
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Extra material for lecture 32

� Reference

Elementary Linear Algebra by Anton and Rorres, §7, p401

© University of Melbourne 2023
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LECTURE 33

Proof of the spectral theorem

Our goal is to show that every real symmetric matrix is orthogonally diagonalisable (Theorem 32.7).
The proof is more easily understood when presented in terms of linear transformations rather than
matrices.

Definition 33.1

Let V be a finite dimensional real inner product space. We will call a linear transformation
T : V → V symmetric if it has the property that 〈T (u), v〉 = 〈u, T (v)〉 for all u, v ∈ V .

Exercise 292. Let V be a finite dimensional real inner product space. Let B be an orthonormal basis
for V and let T : V → V be a linear transformation. Show that T is symmetric if and only if the
matrix [T ]B is symmetric.

Theorem 33.2

Let V be a finite-dimensional real inner product space and T : V → V a linear transforma-
tion. If T is symmetric, then there exists an orthonormal basis for V all of whose elements are
eigenvectors of T .

Proof. We use induction on n = dim(V ).

Base case: If n=1, then we choose any non-zero vector u ∈ V and take B = {u/‖u‖}.

Induction step: Assume that for any (n− 1)-dimensional inner product space W and every symmetric
linear transformation S : W → W there exsits an orthonormal basis for W made up of eigenvectors
of S.

Let λ be an eigenvalue of T . From Proposition 32.8 we know that λ ∈ R. Let u ∈ V be an eigenvector
of T with eigenvalue λ and with ‖u‖ = 1. Let W = {v ∈ V | 〈v, u〉 = 0}. Then we have

(a) W is a subspace of V (b) T (W ) ⊆W (c) dim(W ) = n− 1

Let S : W → W be given by S(w) = T (w). Then S is a symmetric linear transformation. By
the induction hypothesis, there exists an orthonormal basis C for W such that all elements in C are
eigenvectors of S. We therefore have that C ⊆ V is an orthonormal set and all its elements are
eigenvectors of T . Hence {u} ∪ C is an orthonormal basis for V made up of eigenvectors of T .

Therefore, by mathematical induction a symmetric linear transformation on a finite dimensional real
inner product space is orthogonally diagonalisable.

33.1 An application: conic sections

Suppose that we would like to plot the set of points (x, y) ∈ R2 that satisfy the equation

6x2 − 4xy + 3y2 = 1

We can use orthogonal diagonalisation to eliminate the cross terms in the above equation.
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The equation can be written as XTAX = 1 where X =

[
x
y

]
and A =

[
6 −2
−2 3

]
.

Since A is real symmetric we know that it can be orthogonally diagonalised. Calculation gives A =
QDQT with

D =

[
2 0
0 7

]
and Q =

1√
5

[
1 −2
2 1

]
Note that

XTAX = XTQDQTX = (QTX)TD(QTX) (∗)
Let B = {b1 = 1√

5
(1, 2), b2 = 1√

5
(−2, 1)} be the orthonormal basis of R2 corresponding to the columns

of Q. We rewrite the above equation using coordinates with respect to B.

Let X ′ =

[
x′

y′

]
be the coordinates of the point (x, y) with respect to B. Note that PS,B = Q and

therefore PB,S = Q−1 = QT .

We have
X ′ = [(x, y)]B = PB,S [(x, y)]S = QTX

Then we have

6x2 − 4xy + 3y3 = 1 ⇐⇒ XTAX = 1

⇐⇒ (QTX)TD(QTX) = 1 (from ∗)
⇐⇒ (X ′)TDX ′ = 1

⇐⇒
[
x′ y′

] [2 0
0 7

] [
x′

y′

]
= 1

⇐⇒ 2(x′)2 + 7(y′)2 = 1

The curve is now much easier to recognise as an ellipse.

x′

y′

1√
2

1√
7 x

y
b1

b2

1√
2
b1

1√
7
b2

33.2 Exercises

293. Use orthogonal diagonalisation to sketch the curve given by the following equation:

5x2 − 4xy + 8y2 = 36

294. Prove the statements (a), (b), and (c) about W in the above proof of Theorem 33.2.

295. Let T : R2 → R2 be the linear transformation given by T (x, y) = (−6x,−5x+4y). The following
defines an inner product on R2

〈(a, b), (x, y)〉 = ax− ay − bx+ 2by

(a) Show that T is symmetric (with respect to the inner product above).
(b) Find a basis for R2 that is orthonormal (with respect to the inner product above) and com-

posed of eigenvectors of T .

© University of Melbourne 2023
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Extra material for lecture 33

� For a longer discussion of the application of diagonalisation to conic sections see

Elementary Linear Algebra by Anton and Rorres, §7.2, p417

The same approach can be applied to quadric surfaces.

© University of Melbourne 2023
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LECTURE 34

Unitary diagonalisation

We note that the results on orthogonal diagonalisation carry over to complex matrices. The proofs
given in the real case apply with only minor changes, and will not be repeated.

34.1 Unitary matrices

Recall that for a matrix A ∈Mm,n(C) we denote by A∗ the conjugate transpose A∗ = A
T .

Definition 34.1

A matrix U ∈Mn,n(C) is called unitary if U∗U = In.

Examples 34.2.
1√
2

[
i i
1 −1

]
,

1

2

[
1 + i 1− i
1− i 1 + i

]
∈M2,2(C)

Exercise 296. Suppose the U,P ∈Mn,n(C) are unitary matrices. Show that

(a) U∗ is unitary

(b) U−1 is unitary

(c) PU is unitary

(d) |det(U)| = 1

Lemma 34.3: Conditions equivalent to being unitary

Let U ∈Mn,n(C). The following are equivalent

1. U is unitary

2. the columns of U form an orthonormal basis of Cn
(with respect to the complex dot product)

3. the rows of U form an orthonormal basis of Cn
(with respect to the complex dot product)

4. ‖Uv‖ = ‖v‖ for all v ∈ Cn (complex dot product)

5. 〈Uu,Uv〉 = 〈u, v〉 for all u, v ∈ Cn (complex dot product)

Proof. We prove that 4 implies 5.

〈u+ v, u+ v〉 − 〈u− v, u− v〉 = 2(〈u, v〉+ 〈v, u〉) = 4<(〈u, v〉)
〈U(u+ v), U(u+ v)〉 − 〈U(u− v), U(u− v)〉 = 2(〈Uu,Uv〉+ 〈Uv,Uu〉) = 4<(〈Uu,Uv〉)

Since 4 holds, the left hand sides above are equal and therefore <(〈u, v〉) = <(〈Uu,Uv〉. Putting iv in
place of v in the above calculation gives

〈u, v〉 − 〈v, u〉 = 〈Uu,Uv〉 − 〈Uv,Uu〉

and therefore =(〈u, v〉) = =(〈Uu,Uv〉 (the imaginary parts are equal).
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34.2 Unitary diagonalisation

Definition 34.4

A matrix A ∈ Mn,n(C) is said to be unitarily diagonalisable if there is a unitary matrix U ∈
Mn,n(C) and a diagonal matrix D ∈Mn,n(C) such that A = U DU∗.

Example 34.5. The matrix A =

[
1 2i
−2i −2

]
is orthogonally diagonalisable since

A =

[
1 2i
−2i −2

]
=

[
− i√

5
2i√
5

2√
5

1√
5

][
−3 0
0 2

][− i√
5

2i√
5

2√
5

1√
5

]∗
= UDU∗

Theorem 34.6

A matrix A ∈ Mn,n(C) is unitarily diagonalisable if and only if there is an orthonormal basis B
for Cn with the property that all elements of B are eigenvectors of A.

34.3 Hermitian matrices

Theorem 34.7

Let A ∈Mn,n(C). If A is Hermitian (i.e., A∗ = A), then A is unitarily diagonalisable.

Proposition 34.8

Let A ∈Mn,n(C). If A is Hermitian (i.e., A∗ = A), then:

1. All eigenvalues of A are real;

2. Eigenvectors having different eigenvalues are orthogonal.

Algorithm 34.9: To unitarily diagonalise a Hermitian matrix

Let A ∈Mn,n(C) and suppose that A∗ = A.

1. Find the eigenvalues of A.

2. For each eigenvalue

(a) Find a basis for the eigenspace

(b) Use Gram-Schmidt to convert to an orthonormal basis

3. The union of the eigenspace bases will be an orthonormal basis {u1, . . . , un} for Cn.
Letting U be the matrix whose columns are given by the ui and letting D be the diagonal
matrix whose diagonal entries are the corresponding eigenvalues, we then have

A = UDU∗

© University of Melbourne 2023
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Example 34.10. Let A =

[
1 1 + i

1− i 2

]
.

To find the eigenvalues of A:

det(xI2 −A) = det

[
x− 1 −1− i
−1 + i x− 2

]
= (x− 1)(x− 2)− (1 + i)(1− i) = x2 − 3x = x(x− 3)

The eigenvalues of A are: 0, 3.

To find the eigenvectors of A:

A− 0I2 =

[
1 1 + i

1− i 2

]
∼
[
1 1 + i
0 0

]
A basis for the λ = 0 eigenspace is {(1 + i,−1)}. An orthonormal basis is { 1√

3
(1 + i,−1)}.

A− 3I2 =

[
−2 1 + i

1− i −1

]
∼
[
−2 1 + i
0 0

]
A basis for the λ = 3 eigenspace is {(1 + i, 2)}. An orthonormal basis is { 1√

6
(1 + i, 2)}.

(Notice that (1 + i,−1) · (1 + i, 2) = (1 + i)(1− i)− 2 = 0)

Letting U =

[1+i√
3

1+i√
6

−1√
3

2√
6

]
and D =

[
0 0
0 3

]
we have that A = UDU∗.

34.4 Exercises

297. Unitarily diagonalse the Hermitian matrix A =

[
2 i
−i 2

]
.

298. LetM ∈Mn,n(C) be an Hermitian matrix. Show thatM is positive definite (see definition 29.1)
if and only if all eigenvalues of M are strictly positive. (Hint: unitarily diagonalise M .)

299. A linear transformation T : V → V on a complex inner product space V is called self-adjoint
if

∀u, v ∈ V, 〈T (u), v〉 = 〈u, T (v)〉

(a) Show that all eigenvalues of T are real.

(b) Show that eigenvectors corresponding to distinct eigenvalues are orthogonal

300. Let A ∈ Mn,n(C) and suppose that A∗ = −A. Suppose that λ ∈ C is an eigenvalue of A. Show
that λ = iy for some y ∈ R.

© University of Melbourne 2023
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Further material for lecture 34

� A matrix A ∈Mn,n(C) is called normal if A∗A = AA∗. Normal matrices are unitarily diagona-
lisable. (This will be covered in the subject MAST20022 Group Theory and Linear Algebra.)

All Hermitian matrices are normal. The matrix
[
2+i 2−i
2−i 2+i

]
is normal but not Hermitian.

© University of Melbourne 2023



LECTURE 35

Cardinality

What should it mean for two sets to have the same ‘size’? Does it make sense to say that there are
more rational numbers than there are natural numbers?* Are there more real numbers than there are
rationals?†

Rather than trying to define the size of a set directly, it is convenient to introduce the notion of two
sets ‘having the same number of elements’. The notion of a bijective function is clearly just what is
required.

Definition 35.1

Two setsA andB are said to have the same cardinality if there exists a bijectionA→ B. A set is
finite if it is either empty or has the same cardinality as the set {1, 2, . . . , n} for some n. A set that
is not finite is called infinite. A set is called countably infinite is it has the same cardinality as
N. A set is called countable if it is either finite or countably infinite. A set that is not countable
is called uncountable.

Lemma 35.2

Let A be a set.

1. If there exists an injective function A→ N, then A is countable.

2. If there exists a surjective function N→ A, then A is countable.

Proof. For the first statement it suffices to show that if B is an infinite subset of N, then there is a
bijection ϕ : N → B. We inductively define a sequence of subsets Bi ⊂ N together with the required
function ϕ : N → B. Let B1 = B. Suppose that Bi has been defined and is infinite. Let bi = min(Bi)
and define ϕ(i) = bi and Bi+1 = Bi \ {bn}. Since Bi is infinite, Bi+1 is infinite. The finction ϕ : N→ B
defined inductively in this way is clearly a bijection.

For the second statement, suppose now that there exists a surjective function f : N→ A. If A is finite,
then A is countable by definition and there is nothing to prove. We can assume, therefore, that A is
infinite. We define a map g : N→ A as follows. Define M ⊆ N by

M = {m ∈ N | f(m) /∈ {f(1), f(2), . . . , f(m− 1)}}

Note that

1. M is infinite since A is infinite

2. f(M) = A

3. If m,n ∈M and m 6= n, then f(m) 6= f(n)

Denote by mi the i-th element of M (using the usual ordering on N) and define

g : N→ A, g(i) = f(mi)

*no
†yes
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That g is bijective follows from properties 2 and 3 above.

Proposition 35.3

1. Z and N have the same cardinality (i.e., Z is countably infinite)

2. N× N and N have the same cardinality (i.e., N× N is countably infinite)

3. Q and N have the same cardinality (i.e., Q is countably infinite)

Proof. 1. The map f : N→ Z given by f(n) =

{
n
2 if n is even
1−n
2 if n is odd

is a surjection.

(In fact it’s a bijection.)

2. The map g : N× N→ N given by g(m,n) = 2m3n is injective.

3. From the first two parts, we know that Z × (Z \ {0}) has the same cardinality as N. Then note
that the map h : Z× (Z \ {0})→ Q given by h(m,n) = m

n is surjective.

At this point we might start to think that all infinite sets are countably infinite. But we’d be wrong.

Theorem 35.4

R is uncountable.

Proof. Suppose, for a contradiction, that the interval (0, 1) ⊂ R is countable and let f : N → (0, 1) be
a bijection. We consider the decimal expansion of each element:

f(1) = 0.a11a12a13 . . .

f(2) = 0.a21a22a23 . . .

...
f(i) = 0.ai1ai2ai3 . . .

...

Each aij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and aij is the j-th digit in the decimal expansion of f(i). Define
b ∈ (0, 1) as follows:

b = 0.b1b2b3 . . . where bi =

{
7 if aii = 8

8 if aii 6= 8

Notice that for all i ∈ N, bi 6= aii. It follows that for all i ∈ N, b 6= f(i). This contradicts the assumption
that f is surjective.

A similar ‘diagonal argument’ establishes the following.

Theorem 35.5

Let A be a set. The power set of A, P(A), does not have the same cardinality as A.
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Proof. Suppose, for a contradiction, that there exists a bijection f : A → P(A). Define B = {a ∈ A |
a /∈ f(A)}. Since B ⊆ A and f is surjective, there exists b ∈ A such that f(b) = B. Then we have

b ∈ f(b) ⇐⇒ b ∈ B (since f(b) = B)
⇐⇒ b /∈ f(b) (definition of B)
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APPENDIX A

Existence of bases

THIS IS FOR INTEREST ONLY!

The goal is to present a proof of the following theorem.

Theorem A.1

Let V be a vector space.

1. Every spanning set of V contains a basis of V .

2. Every linearly independent set in V can be extended to a basis of V .

3. Any two bases of V have the same cardinality.

If we assume that V is finite dimensional, the theorem is much easier to prove (see Lecture 17). In the
general case, which we shall consider here, the proof uses some fundamental results from the theory
of infinite sets which are stated without proof in the second section.

Notice that, since V itself is a spanning set for V , we have the following consequence of the theorem.

Corollary A.2

Every vector space has a basis.

A.1 Proof of the theorem
We start by proving the following.

Lemma A.3

Let V be a vector space over F and let X,Y ⊆ V be two subsets. If X is linearly independent and
Y spans V , then there is a subset Y ′ ⊆ Y such that X ∪ Y ′ is a basis of X .

Proof of Lemma A.3. Define S to be the collection of all subsets Z of Y such that X ∪ Z is linearly
independent, that is:

S = {Z | Z ⊆ Y and X ∪ Z is linearly independent}

Let Y ′ ∈ S be maximal in S, that is, for all Z ∈ S we have:

Z ⊇ Y ′ =⇒ Z = Y ′

How do we know that such a maximal element exists? If Y is a finite set, then S is also finite and the
existence is clear. If Y is infinite, the existence of a maximal element Y ′ is less obvious, and is in fact
a fundamental property of set theory. It is called “Zorn’s Lemma”* (see the next section).

By constructionX∪Y ′ is linearly independent. We claim that it is also a spanning set for V . We know
that for all y ∈ Y , y ∈ span(X ∪ Y ′) since otherwise X ∪ Y ′ ∪ {y} would be linearly independent,

*In fact, it is not really a lemma. It is equivalent to something called the “Axiom of Choice,” which is independent of
the other axioms of set theory.
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which contradicts the maximality of Y ′. Thus Y ⊆ span(X ∪ Y ′) and hence span(Y ) ⊆ span(X ∪ Y ′).
Since span(Y ) = V and span(X ∪ Y ′) ⊆ V , it follows that span(X ∪ Y ′) = V . Therefore X ∪ Y ′ is a
spanning set for V , and hence a basis.

We can now prove the first two parts of the theorem.

Proof (of parts 1 and 2 of the theorem).

1. Suppose that Y is a spanning set. Applying Lemma A.3 with this Y and X = ∅ yields a subset
Y ′ ⊆ Y such that Y ′ is a basis.

2. Suppose now that X is any linearly independent set. Taking Y = V and applying Lemma A.3
yields a basis that contains X .

To prove the third part of the theorem, we will use the following lemma.

Lemma A.4

Let V be a vector space over F, let Y ⊆ V be a spanning set for V , and let {x1, . . . , xm} ⊆ V be a
linearly independent set of vectors. If |Y | > m, then there are elements y1, . . . , ym ∈ Y such that
{Y \ {y1, . . . , ym}} ∪ {x1, . . . , xm} is a spanning set for V . (That is, replacing the yi by the xi still
gives a spanning set.)

Proof. We first note that since {x1, . . . , xm} is linearly independent, all of the xi are non-zero. Since Y
is a spanning set, there exist a1, . . . , ak ∈ Y and α1, . . . , αk ∈ F such that x1 = α1a1 + · · · + αkak. As
x1 is non-zero, at least one of the αi is non-zero. By re-ordering the ai if necessary we may assume
that α1 6= 0. We then have that

a1 =

(
1

α1

)
x1 −

(
α2

α1

)
a2 − · · · −

(
αk
α1

)
ak

Let y1 = a1. Using the above expression any linear combination of elements from Y can be rewritten
as a linear combination of vectors from Y1 = {Y \ {y1}} ∪ {x1}. We simply replace any occurance of
y1 by the right hand side of the above expression. This then gives a linear combination which does
not involve y1, but does involve x1. It follows that span(Y ) ⊆ span(Y1), and therefore span(Y1) = V .

Suppose now that we have found y1, . . . , yl ∈ Y (where 1 6 l < m) such that Yl = {Y \{y1, . . . , yl}}∪
{x1, . . . , xl} is a spanning set for V . Since Yl is a spanning set, there exist b1, . . . , bk ∈ Y \ {y1, . . . , yl}
and β1, . . . , βk, γ1 . . . , γl ∈ F such that xl+1 = β1b1+· · ·+βkbk+γ1x1+· · ·+γlxl. Since xl+1 is non-zero,
at least one of the βi or γj is non-zero. Indeed, not all the βi can be zero, as that would contradict the
linear independence of the set {x1, . . . , xl+1}. Re-ordering if necessary, we may assume that β1 6= 0.
Then

b1 =

(
1

β1

)
xl+1 −

(
β2
β1

)
b2 − · · · −

(
βk
β1

)
bk −

(
γ1
β1

)
x1 − · · · −

(
γl
β1

)
xl

Letting yl+1 = b1 and Yl+1 = {Y \{y1, . . . , yl+1}}∪{x1, . . . , xl+1}, we have, as above, that span(Yl+1) =
V . The lemma then follows by induction.

The third part of the theorem follows from:

Lemma A.5

Let V be a vector space over F and let X,Y ⊆ V be two subsets. If X is linearly independent and
Y spans V , then |X| 6 |Y |.

Proof. We first prove the lemma under the assumption that Y is finite. Let Y = {y1, . . . , yk}. Sup-
pose, in order to get a contradiction, that |X| > k. Choose distinct elements x1, . . . , xk ∈ X . Then
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{x1, . . . , xk} is linearly independent (since X is), and applying Lemma A.4 we know that

{x1, . . . , xk} = (Y \ {y1, . . . , yk}) ∪ {x1, . . . , xk}

is a spanning set for V . Since |X| > k, there is an element x ∈ X \ {x1, . . . , xk}. As {x1, . . . , xk} is a
spanning set for V , x can be expressed as a linear combination of the xi. This contradicts the linear
independence of X , so we must in fact have |X| 6 k.

Consider now the case where Y is not finite. Denote by F (Y ) the set of all finite subsets of Y . Then
|F (Y )| = |Y | (See Lemma A.6). Define a map Φ : X → F (Y ) as follows: For each x ∈ X we choose a
a finite subset Sx ⊂ Y such that x is a linear combination of Sx, and define Φ(x) = Sx. If |X| > |F (Y )|
then there is some element S ∈ F (X) with infinite preimage (see Lemma A.6). We would then have
a finite set S ⊂ Y such that Φ−1(S) ⊂ X is an infinite, linearly independent subset of span(S). This
would contradict the first case of this proof.

Proof of part 3 of the theorem. Let B1 and B2 be two bases for V . Since B1 is linearly independent
and B2 is a spanning set, Lemma A.5 implies that |B1| 6 |B2|. On the other hand, B2 is linearly
independent and B1 is a spanning set, so we also have |B2| 6 |B1|. It follows that |B1| = |B2|.

A.2 Results from set theory

In the above proof we used some results about infinite sets. We state them here without proof. The
interested reader should consult an introductory textbook on set theory.

Lemma A.6

Suppose that X and Y are infinite sets and f : X → Y is a function. Then

1. |F (Y )| = |Y | (where F (Y ) is the set of all finite subsets of Y )

2. If |X| > |Y |, then there exists an element y ∈ Y whose preimage, {x ∈ X | f(x) = y}, is
infinite.

Zorn’s Lemma is a fundamental statement in the theory of infinite sets, and is equivalent to the Axiom
of Choice. In order to state Zorn’s Lemma (in the form we use) we make the following definition. If
S is a collection of sets, a non-empty subset C ⊆ S is called a chain if

∀ A,B ∈ C either A ⊆ B or B ⊆ A

Zorn’s Lemma

Let S be a non-empty collection of sets. Suppose that whenever C is a chain in S the union ∪C∈CC
is also an element of S. Then S contains a maximal element.
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