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Chapter 1

Modular Arithmetic and Fields

We begin with some number theory, looking at divisibility properties of the natural numbers and the integers.

natural numbers: N = {1, 2, 3, 4, . . . }
integers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

We then introduce a fundamental concept in number theory: the idea of modular arithmetic due to Gauss. This
provides examples of algebraic structures (groups and fields) that will be important throughout this subject. Mod-
ular arithmetic also plays a key role in cryptography, used daily to provide secure transmission of information
over the internet.

1 Well-ordering and induction

An important property of the natural numbers that we will need is the following:

Well-ordering property: (WOP)

Every non-empty subset of N has a smallest element.

It is equivalent to the following:

Principle of mathematical induction: (PMI)

Suppose that we have a set of statements {S(n) | n ∈ N} satisfying:

1) S(1) is true

2) ∀n ∈ N S(n) =⇒ S(n+ 1)

Then S(n) is true for all n ∈ N.

Which is equivalent to:

Strong form of induction: (SMI)

Suppose that we have a set of statements {S(n) | n ∈ N} satisfying:

1) S(1) is true

2) ∀n ∈ N (S(1) ∧ S(2) ∧ · · · ∧ S(n)) =⇒ S(n+ 1)

Then S(n) is true for all n ∈ N.

1



2 MAST20022 Group Theory and Linear Algebra, 2019

We will show that the above three properties of N are equivalent by showing that

WOP =⇒ PMI =⇒ SMI =⇒ WOP

WOP =⇒ PMI: Suppose first that the well-ordering property holds. Assume that S(n) are as in the statement
of the principle of mathematical induction. We need to show that S(n) is true for all n ∈ N. Let E = {n ∈ N |
S(n) is false}. Suppose, for a contradiction, that E is non-empty. By the WOP, E has a minimum element, call it
m ∈ E. Since S(1) is true, we have that m 6= 1. Therefore m− 1 ∈ N and S(m− 1) is true by the minimality of m.
But S(m− 1) is true implies that S(m) is true. From this contradiction we conclude that E = ∅.
PMI =⇒ SMI: Exercise!
SMI =⇒ WOP: Assume that SMI holds. Let E ⊆ N be such that E does not have a smallest element. We want
to show that E = ∅. Let S(n) be the statement n /∈ E. Then S(1) is true since otherwise 1 ∈ E would be minimal.
Suppose that S(1), S(2), . . . , S(n) are all true. Then 1 /∈ E,. . . , n /∈ E. If n ∈ E, then n would be minimal. Since E
has no minimal element, we must have that S(n) is true. From SMI we conclude that S(n) is true for all n ∈ N,
that is, E = ∅.

Exercise 1. Show that WOP holds for every subset of Z that is bounded below. That is, ifE ⊆ Z is bounded below,
then every non-empty subset ofE has a minimal element. What about subsets ofQ (orR) that are bounded below?

2 Integer division

Theorem 1.1

Let a ∈ Z and d ∈ N. Then there exist q, r ∈ Z such that

a = qd+ r and 0 6 r < d

Moreover, q and r are uniquely determined by a and d.

The integers q and d are known as the quotient and remainder respectively.

Proof. Given a ∈ Z and d ∈ N define E = {k ∈ Z | k > 0 and k = a − qd for some q ∈ Z}. Note that E 6= ∅ since
a − (−|a|)d = a + d|a| > 0. By WOP, E has a minimal element r ∈ E. Since r ∈ E, we have r > 0 and there is a
q ∈ Z such that r = a− qd. Also, r < d since

r is minimal in E =⇒ r − d /∈ E =⇒ r − d = a− (q + 1)d /∈ E =⇒ r − d < 0 =⇒ r < d

The uniqueness of q and r is left as an exercise.

Remark. There are versions of this result that hold when Z is replaced by R[X] or Z[i] (and others). The proof is
essentially the same.

Definition 1.2. Let a, d ∈ Z. We say that d divides a if ∃ q ∈ Z such that a = qd. It is often denoted by d | a. We
also say that d is a divisor of a.

Lemma 1.3

Let a, b, c ∈ Z. Then

1) (a | b) ∧ (b | c) =⇒ a | c

2) (a | b) ∧ (a | c) =⇒ ∀x, y ∈ Z, a | (xb+ yc)

3) (a | b) ∧ (b | a) =⇒ a = ±b

4) a | 1 =⇒ a = ±1

Proof. Left as an exercise.

Definition 1.4. Let a, b ∈ Z. A greatest common divisor (gcd) of a and b is an element d ∈ Z such that

© University of Melbourne 2021
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1) (d | a) ∧ (d | b)

2) ∀c ∈ Z, (c | a) ∧ (c | b) =⇒ c | d

Lemma 1.5

Let a, b ∈ Z be such that at least one of a and b is non-zero. Then there is a unique d ∈ N such that d is a gcd
of a and b. It will be denoted d = gcd(a, b).

Proof. We first show that there exists a greatest common divisor d ∈ N. LetE = {k > 0 | ∃x, y ∈ Z, k = xa+yb}.
Then E ⊆ N and E 6= ∅ (since a2 + b2 ∈ E). By the WOP, E has a minimal element d ∈ S. Fix x, y ∈ Z such that
d = xa+ yb. By Theorem 1.1 there exist q, r ∈ Zwith a = qd+ r and 0 6 r < d. Then

r = a− qd = a− q(xa+ yb) = (1− qx)a+ (−qy)b

We must, therefore, have r = 0 since otherwise r ∈ E and r < d. Therefore a = qd, that is, d | a.
Similarly, d | b.
Now suppose that c | a and c | b. Then c | d = xa+ yb (see Lemma 1.3).
Now for uniqueness. Suppose that d and d′ are both satisfy the conditions for being a greatest common divisor of
a and b. Then d | d′ and d′ | d which implies that d′ ± d. Since d, d′ ∈ N, we conclude that d′ = d.

Given the uniqueness pointed out in the above result we use the notation gcd(a, b) for the greatest common divisor
of two integers a and b. In fact, the above proof establishes the following result.

Theorem 1.6: Bézout’s Theorem

Let a, b ∈ Z. Then there exist x, y ∈ Z such that gcd(a, b) = xa+ yb.

Definition 1.7. We say that two integers a, b ∈ Z are relatively prime if gcd(a, b) = 1.

2.1 Exercises

Exercise 2. Show that two integers a, b ∈ Z are relatively prime if and only if ∃ x, y ∈ Z, xa+ yb = 1.

Exercise 3. Find the quotient and remainder when:

(a) 25 is divided by 3 (b) 68 is divided by 7 (c) −33 is divided by 7

Exercise 4. Prove Lemma 1.3.

Exercise 5. Prove the uniqueness of q and d in Theorem 1.1. That is, show that if qd+r = q′d+r′ with 0 6 r, r′ < d,
then q = q′ and r = r′.

Exercise 6. Let a, b, c ∈ Z be integers with gcd(a, b) = 1. Show that if a | c and b | c, then ab | c.

Exercise 7. Let Fn be the n-th Fibonacci number, defined by F0 = 0, F1 = 1 and Fk+2 = Fk + Fk+1.

(a) Use induction to show that gcd(Fn, Fn+1) = 1 for all n ∈ N.

(b) Find integers xn, yn such that xnFn + ynFn+1 = 1.

3 Euclidean algorithm

The greatest common divisor of two integers can be computed by first finding the prime factorisations of the
given integers. However, a mush more efficient method is given by the Euclidean algorithm. It is based on the
following observations.

© University of Melbourne 2021
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Lemma 1.8

Let a, b, q, r ∈ Z.

1) gcd(a, b) = gcd(b, a) = gcd(−a, b)

2) gcd(a, 0) = |a|

3) If a = qb+ r, then gcd(a, b) = gcd(b, r)

Proof. We shall prove 3) and leave the rest as an exercise. Since gcd(a, b) divides both a and b, we have

gcd(a, b) | b and gcd(a, b) | r = (a− qb)

which implies that gcd(b, r) | gcd(a, b). Similarly,

gcd(b, r) | a = qb+ r and gcd(b, r) | b

which implies that gcd(a, b) | gcd(b, r). Since both are positive, we have gcd(a, b) = gcd(b, r).

Given a > b > 0, define qi and ri as follows:

a = q1b+ r1 r1 < b

b = q2r1 + r2 r2 < r1

r1 = q3r2 + r3 r3 < r2

...
...

rn−2 = qnrn−1 + rn rn < rn−1

rn−1 = qn+1rn + 0 0 < rn

Since the ri are strictly decreasing, we must eventually arrive at a remainder of zero. By Lemma 1.8 we have

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn, 0) = rn

That is, the greatest common divisor of a and b is given by the last non-zero remainder obtained.

Example 1.9. We calculate the greatest common divisor of 4163 and 8869.

8869 = 2× 4163 + 543 (1.1)
4163 = 7× 543 + 362 (1.2)
543 = 1× 362 + 181 (1.3)
362 = 2× 181 + 0 (1.4)

Therefore gcd(4163, 8869) = 181

Note that we can also express the greatest common divisor as a linear combination of a and b.
Working back through the above calculation, we get

181 = 543− 362 (from 1.3)
= 543− (4163− 7× 543) (from 1.2)
= −4163 + 8× 543

= −4163 + 8(8869− 2× 4163) (from 1.1)
= −17× 4163 + 8× 8869

3.1 Exercises

Exercise 8. Using the Euclidean Algorithm (by hand) find:

(a) gcd(14, 35)

(b) gcd(105, 165)

(c) gcd(1287, 1144)

(d) gcd(1288, 1144)

(e) gcd(1287, 1145)

© University of Melbourne 2021
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Exercise 9. Find the greatest common divisor d = gcd(a, b) for the following pairs of numbers (a, b), and find
integers x and y so that d = xa+ yb.

(a) (27, 33) (b) (27, 32) (c) (312, 377)

Exercise 10. Complete the proof of Lemma 1.8

4 Primes

Lemma 1.10

Let a, b, c ∈ Z. If gcd(a, b) = 1 and a | bc, then a | c.

Proof. We have

xa+ yb = 1 for some x, y ∈ Z

and

bc = az for some z ∈ Z

therefore

xac+ ybc = c =⇒ xac+ yaz = c =⇒ (xc+ yz)a = c =⇒ a | c

Definition 1.11. A natural number p ∈ N is called prime if p 6= 1 and ∀ a, b ∈ Z, p | ab =⇒ (p | a) ∨ (p | b)

Lemma 1.12

A natural number p ∈ N is prime if and only if it has exactly two divisors in N.

Proof. Assume that p is prime. Then p 6= 1 and both 1 and p are divisors of p. We need to show that these are the
only positive divisors of p. Suppose that p = ab for some a, b ∈ N. Since p | p = ab and p is prime, we have that
p | a or p | b. Note that

p | a =⇒ a = pq (some q ∈ N)
=⇒ p = pqb

=⇒ qb = 1 (since p 6= 0)
=⇒ b = 1 (since b, q ∈ N)
=⇒ a = p (since p = ab)

Similarly, if p | b, then a = 1 and b = p.
For the converse, assume that p has exactly two positive divisors. First note that p 6= 1 by Lemma 1.3. The two
distinct positive divisors of p are therefore 1 and p. Let a, b ∈ Z be such that p | ab. We want to show that either
p | a or p | b, which is equivalent to showing that p 6 | a =⇒ p | b.

p 6 | a =⇒ gcd(a, p) = 1 (since gcd(a, p) | p)
=⇒ p | b (by Lemma 1.10 since p | ab)

Theorem 1.13: The Fundamental Theorem of Arithmetic

Let n ∈ Nwith n > 2. Then there exist k ∈ N, and i1, . . . , ik ∈ N, and primes p1 < p2 < · · · < pk ∈ N such that

m = pi11 p
i2
2 . . . p

ik
k

© University of Melbourne 2021
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Moreover, this expression is uniquely determined by m.

Proof. Left as an exercise. Hint: For existence use Strong Mathematical Induction.

4.1 Exercises

Exercise 11. (a) Give an example of natural numbers a, b, c such that a | c and b | c but ab 6| c.

(b) Let a, b, c ∈ Z be integers with gcd(a, b) = 1. Prove that if a | c and b | c then ab | c.

Exercise 12. Prove Theorem 1.13.

5 Modular arithmetic

5.1 Congruence

Definition 1.14. Fix m ∈ N. We say that a, b ∈ Z are congruent modulo m if m | (a− b). It is denoted

a ≡ b (mod m)

Example 1.15.

42 ≡ 6 (mod 4)

77 ≡ −4 (mod 9)

15 ≡ 0 (mod 5)

Remark. It follows from Theorem 1.1 that given a ∈ Z and m ∈ N, there exists a unique r ∈ Zwith 0 6 r < m such
that a ≡ r (mod m).

The following are fundamental properties of the congruence relation. They say that, for a fixedm, being congruent
modulo m is an "equivalence relation".

Lemma 1.16: congruence is an equivalence relation

Let m ∈ N and a, b, c ∈ Z. Then

1) a ≡ a (mod m) (reflexive)

2) a ≡ b (mod m) =⇒ b ≡ a (mod m) (symmetric)

3) a ≡ b (mod m) ∧ b ≡ c (mod m) =⇒ a ≡ c (mod m) (transitive)

Proof. For the first two, note that m | 0 and that (a− b) | (b− a). For the third note that

(m | (a− b)) ∧ (m | (b− c)) =⇒ m | (a− b) + (b− c) = a− c

The next result is that congruence works well with the arithmetic operations on Z.

Lemma 1.17

Let m,n ∈ N and a, b, c, d ∈ Z. Suppose that a ≡ c (mod m) and b ≡ d (mod m). Then

1) a+ b ≡ c+ d (mod m)

2) a− b ≡ c− d (mod m)

3) ab ≡ cd (mod m)

4) an ≡ cn (mod m)
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Proof. For the first note that

m | (a− c) ∧m | (b− d) =⇒ m | ((a− c) + (b− d)) =⇒ m | ((a+ b)− (c+ d)) =⇒ a+ b ≡ c+ d (mod m)

For the third note that

m | (a− c) ∧m | (b− d) =⇒ (a− c = mk) ∧ (b− d = ml) (for some k, l ∈ Z )
=⇒ (a = mk + c) ∧ (b = ml + d)

=⇒ ab = cd+ cml +mkd+m2kl

=⇒ ab− cd = m(cl + kd+mkl)

=⇒ ab ≡ cd (mod m)

The remaining cases are left as an exercise.

Example 1.18. We find an r with 0 6 r < 12 such that 294 ≡ r (mod 12). Rather than calculating 294, we will use
Lemma 1.17. Noting first that 29 ≡ 5 (mod 12), we have

294 ≡ 54 (mod 12) (Lemma 1.17.4)

=⇒ 294 ≡ 252 (mod 12)

=⇒ 294 ≡ 12 (mod 12) (since 25 ≡ 1 (mod 12))

=⇒ 294 ≡ 1 (mod 12)

Definition 1.19. Let a ∈ Z and m ∈ N. The congruence class of a modulo m is the following subset of Z which
is denoted [a]m.

[a]m = {x ∈ Z | x ≡ a (mod m)}

Example 1.20.

[0]3 = {. . . ,−6,−3, 0, 3, 6, . . . }
[1]3 = {. . . ,−5,−2, 1, 4, 7, . . . }
[2]3 = {. . . ,−4,−1, 2, 5, 8, . . . }
[3]3 = {. . . ,−6,−3, 0, 3, 6, . . . }

Exercise 13. Prove the following:

(a) [a]m = [b]m if and only if a ≡ b (mod m)

(b) [a]m ∩ [b]m 6= ∅ =⇒ [a]m = [b]m

(c) [0]m ∪ [1]m ∪ · · · ∪ [m− 1]m = Z

5.2 Integers modulo m

Definition 1.21. The set of congruence classes is denoted Z/mZ and is called the integers modulo m. That is,

Z/mZ = {[0]m, . . . , [m− 1]m}

Remark. Notice that |Z/mZ| = m

Example 1.22. Z/3Z = {[0]3, [1]3, [2]3}

We define two binary operations on Z/mZ in the following way:

[a]m + [b]m = [a+ b]m

[a]m × [b]m = [a× b]m

Remark.

1) It is important to realise that what is being defined here is what the symbols ‘+’ and ‘×’ mean when used as
on the left. On the right of the above definitions the same symbols are used to represent the usual operations
of addition and multiplication in Z.
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2) Each binary relation is a function Z/mZ× Z/mZ→ Z/mZ

3) These operations are ‘well-defined’, meaning that if a, b, α, β are such that [a]m = [α]m and [b]m = [β]m, then
[a+ b]m = [α+ β]m and [a× b]m = [α× β]m.

4) As with Z, we often omit the symbol ‘×’ and write [a]m[b]m in place of [a]m × [b]m.

5) [am]m[1]m = [a]m and [am]m + [0]m = [a]mfor all [a]m ∈ Z/mZ.

6) Equipped with these operations, Z/mZ forms what is called a ‘commutative ring’.

Definition 1.23. We say that [a]m is the multiplicative inverse of [b]m if [a]m[b]m = [1]m.

Exercise 14. Show that [a]m has at most one multiplicative inverse in Z/mZ.

Example 1.24. The multiplication table for Z/6Z is
shown. Note that in this table we have written a in place
of [a]6. The element [5]6 is the multiplicative inverse of
itself. The element [2]6 has no multiplicative inverse.

(Z/6Z,×)
0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Theorem 1.25

Let m ∈ N and a ∈ Z. Then [a]m has a multiplicative inverse if and only if gcd(a,m) = 1.

Proof. Suppose that [a]m has a multiplicative inverse. That is, there exists b ∈ Z such that [a]m[b]m = [1]m. Then
note that

[a]m[b]m = [1]m =⇒ [ab]m = [1]m

=⇒ ab ≡ 1 (mod m)

=⇒ m | (ab− 1)

=⇒ ab− 1 = mk (for some k ∈ Z)
=⇒ ab−mk = 1

=⇒ gcd(a,m) = 1 (see Exercise 2 )

For the converse, we have

gcd(a,m) = 1 =⇒ xa+my = 1 (for some x, y ∈ Z, by Theorem 1.6 )
=⇒ xa− 1 = −my
=⇒ xa ≡ 1 (mod m)

=⇒ [x]m[a]m = [1]m

Corollary 1.26

If p is prime, then every non-zero element of Z/pZ has a multiplicative inverse.

5.3 Exercises

Exercise 15. Write down the multiplication tables for Z/7Z and Z/8Z.

Exercise 16. Decide whether the following congruences hold.
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(a) 3 ≡ 42 (mod 13)

(b) 2 ≡ −20 (mod 11)

(c) 26 ≡ 482 (mod 14)

(d) −2 ≡ 933 (mod 5)

(e) −2 ≡ 933 (mod 11)

(f) −2 ≡ 933 (mod 55)

Exercise 17. Simplify the following, writing your answers in the form a mod m where 0 ≤ a < m.

(a) 482 (mod 14)

(b) 511 (mod 9)

(c) −374 (mod 11)

(d) 933 (mod 55)

(e) 102725 (mod 10)

(f) 57102725 (mod 9)

Exercise 18. Calculate the following, giving answers in the form a mod m where 0 ≤ a < m.
(Hint: it’s easiest to reduce modulo m as soon as possible.)

(a) 24× 25 (mod 21)

(b) 84× 125 (mod 210)

(c) 252 + 24× 3− 6 (mod 9)

(d) 363 − 3× 19 + 2 (mod 11)

(e) 1× 2× 3× 4× 5× 6 (mod 7)

(f) 1× 2× 3× · · · × 20× 21 (mod 22)

Exercise 19. Use congruences modulo 9 to show that the following multiplication is incorrect:

326× 4471 = 1357546.

Exercise 20. Show that if n is an integer with n ≡ 7 (mod 8), then the equation

n = x2 + y2 + z2

has no solutions with x, y, z integers.

Exercise 21. In the following systems Z/mZwrite down the set of elements that have multiplicative inverses.

(a) Z/7Z

(b) Z/8Z

(c) Z/12Z

(d) Z/13Z

(e) Z/15Z

Exercise 22. Using the Euclidean algorithm, find the multiplicative inverses of the following (if they exist). Here
we use a as an abbreviation for [a]m.

(a) 32 in Z/27Z

(b) 32 in Z/39Z

(c) 17 in Z/41Z

(d) 18 in Z/33Z

(e) 200 in Z/911Z

Exercise 23. Find the smallest positive integer giving a remainder of 3 when divided by 7, and a remainder of 8
when divided by 11.

Exercise 24. (Harder!) Prove the Chinese remainder theorem:
Let m1, m2 be relatively prime integers, and let a1, a2 be any integers. Then the simultaneous congruences

x ≡ a1 (mod m1) and x ≡ a2 (mod m2)

have a solution x and it is unique modulo m1m2.
Generalise to an arbitrary number of congruences.

6 Fields

Definition 1.27. A commutative ring is a set R together with two binary operations ‘+’ and ‘×’ satisfying

1) ∀x, y, z ∈ R, (x+ y) + z = x+ (y + z) (addition is associative)

2) ∀x, y ∈ R, x+ y = y + x (addition is commutative)

3) ∃ 0 ∈ R ∀x ∈ R, x+ 0 = x (additive identity)
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4) ∀x ∈ R ∃y ∈ R, x+ y = 0 (additive inverses)

5) ∀x, y, z ∈ R, (x× y)× z = x× (y × z) (multiplication is associative)

6) ∀x, y ∈ R, x× y = y × x (multiplication is commutative)

7) ∃ 1 ∈ R ∀x ∈ R, 1× x = x (multiplicative identity)

8) ∀x, y, z ∈ R, x× (y + z) = (x× y) + (x× z) (distriibutivity)

Example 1.28. 1. Zwith the usual operations is a commutative ring

2. Nwith the usual operations is not a commutative ring (why not?)

3. Z/mZwith the operations defined above is a commutative ring

4. R[X], the set of all polynomials equipped with the usual operations is a commutative ring

5. {∗}with operations given by ∗+ ∗ = ∗ and ∗ × ∗ = ∗ is a commutative ring

Exercise 25. Show that the additive inverse of an element x ∈ R (whose existence is given by axiom 4 above) is
unique. It is denoted −x.

Exercise 26. Let R be a commutative ring, and x ∈ R any two elements. Show that

a) 0x = 0 b) (−1)x = −x

Exercise 27. Let R be a commutative ring. Show that if 1 = 0 (i.e., the additive and multiplicative identities
coincide), then R consists of a single element.

Definition 1.29. A field is a commutative ring having at least two elements and in which every non-zero element
has a multiplicative inverse.

Example 1.30. 1. Q, R, and C are fields

2. Z is not a field

3. Q[
√

2] = {a+ b
√

2 | a, b ∈ Q} ⊂ R is a field

4. Z/pZ for any prime p is a field. It will sometimes be denoted Fp.

5. {
(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
} ⊂M2(Z/2Z) with the usual matrix operations is a field.

Definition 1.31. A field K is called algebraically closed if every non-constant polynomial over K has a root in
K. That is,

∀p(X) ∈ K[X], deg(p(X)) > 1 =⇒ (∃ k ∈ K, p(k) = 0)

Example 1.32. 1. Q and R are not algebraically closed since X2 + 1 has no root in R

2. F2 is not algebraically closed since X2 +X + 1 has no root in F2

We will need the following facts, we we state without proof.

Theorem 1.33: Fundamental Theorem of Algebra

The field C is algebraically closed.

Theorem 1.34: Algebraic closure

Any field can be embedded in an algebraically closed field.
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6.1 Exercises

Exercise 28. Show that the set of all real numbers of the form a + b
√

2 with a, b ∈ Q forms a field with the usual
operations of addition and multiplication of the real numbers. (This is a subfield of R.)

Exercise 29. Show that the set of all real numbers of the form a+ b 3
√

2 with a, b ∈ Q does not form a field with the
usual operations of addition and multiplication of the real numbers. Is there a way to make a field, similar to the
previous example of Q[

√
2], but which contains 3

√
2 as well as the rational numbers?

Exercise 30. Find an element a of F7 so that every non-zero element of F7 is a power of a.

Exercise 31. Show that the set of all polynomials with real coefficients does not form a field (using the usual
operations).

Exercise 32. (Harder) Let C((t)) denote the set of all formal Laurent series of the form

c−kt
−k + c−k+1t

−k+1 + · · ·+ c−1t
−1 + c0 + c1t+ · · ·+ cst

s + . . .

with the usual operations of addition and multiplication of series. Show that C((t)) forms a field. (You should
ignore the question of whether the series are convergent.)

Exercise 33. Show that the field Q[
√

2] = {a+ b
√

2 | a, b ∈ Q} is not algebraically closed.

Exercise 34. Let K be a field having only finitely many elements. Show that K is not algebraically closed.

7 RSA cryptography

Cryptography is the study of keeping messages secret by coding the messages so only the intended recipient can
read them. In a public key cryptosystem, the method of encryption can be made public, but decryption is not
possible (in a reasonable amount of time) except by the intended recipient. In this section we outline the use of
modular arithmetic in the RSA cryptosystem. It was developed in 1977 by Rivest, Shamir and Adleman and is a
public key system very widely used today (for example, for transactions over the internet and in ATM machines).
It relies on the difficulty of factoring large integers (typically more than 200 decimal digits) in a practical amount of
time. (Currently, it takes many months of computing time to factor most numbers of 120-130 digits.) By contrast,
large primes can be found efficiently using known primality tests.

7.1 Fermat’s little theorem and Euler’s theorem

We will need the following results.

Theorem 1.35: Fermat’s Little Theorem

Let p ∈ N a prime number. If a ∈ Z is any integer which is not a multiple of p, then

ap−1 ≡ 1 (mod p)

Proof. Let a ∈ Zwith p 6 | a. We will show that it must then be the case that p divides ap−1 − 1.
Since p 6 | a, we have that [a]p has a multiplicative inverse in Z/pZ (Corollay 1.26). Let [b]p ∈ Z/pZ be such that
[b]p[a]p = [1]p. Consider the map Z/pZ→ Z/pZ given by [x]p 7→ [a]p[x]p. This map is injective since

[a]p[x]p = [a]p[y]p =⇒ [b]p[a]p[x]p = [b]p[a]p[y]p =⇒ [x]p = [y]p

An injective map from a finite set to itself is necessarily also surjective. Therefore

{[0]p, [1]p, . . . , [p− 1]p} = {[0]p, [a]p, . . . , [(p− 1)a]p}
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Multiplying together the non-zero elements, we obtain

[a]p × [2a]p × · · · × [(p− 1)a]p = [1]p × [2]p × · · · × [(p− 1)]p

[ap−1(p− 1)!]p = [(p− 1)!]p

=⇒ p | (ap−1 − 1)(p− 1)!

=⇒ p | (ap−1 − 1) or p | (p− 1)! (p is prime)

=⇒ p | (ap−1 − 1) (since p 6 | (p− 1)!)

Theorem 1.36: Euler

Let p, q ∈ N be primes with p 6= q. Suppose that N ∈ N satisfies N ≡ 1 (mod (p− 1)(q − 1)).
Then

∀a ∈ Z, aN ≡ a (mod pq)

Proof. Let k ∈ Z be such that N = 1 + k(p− 1)(q − 1). By Fermat’s Little Theorem, if p 6 | a then ap−1 ≡ 1 (mod p).
Thus

ak(p−1)(q−1) ≡ (ap−1)k(q−1) ≡ 1 (mod p)

and therefore
aN ≡ a (mod p)

This equation also holds if p | a, since both sides are then 0. Therefore

∀a ∈ Z aN ≡ a (mod p)

Similarly,
∀a ∈ Z aN ≡ a (mod q)

Since p | (aN − a) and q | (an − a) and gcd(p, q) = 1, it follows that pq | aN − a (Exercise 11). Hence

∀a ∈ Z aN ≡ a (mod pq)

7.2 RSA cryptosystem

Setting up an RSA cryptosystem

1. Choose two large primes p 6= q (typically more than 150 decimal digits).

2. Compute m = pq.

3. Compute n = (p− 1)(q − 1).

4. Choose an integer e with 1 < e < n such that gcd(e, n) = 1.

5. Compute d such that ed ≡ 1 (mod n) (using Euclid’s algorithm).

We represent our message units by elements of Z/mZ = {0, 1, . . . ,m− 1}.

Then:

• the public key is: m, e. (These are made public and used to encrypt.)

• the private key is d. (This is kept secret and used to decrypt.)

• encryption of a message unit X ∈ Z/mZ is given by

X 7→ Xe (mod m)

• decryption is given by
Y 7→ Y d (mod m)
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The original message is recovered since (by Euler’s theorem)

(Xe)d ≡ Xed ≡ X (mod m)

Why is the RSA cryptosystem secure? To decrypt a message efficiently requires finding n = (p − 1)(q − 1) or
equivalently p and q. But factoringm = pq is not computationally feasible with current algorithms and technology
if m is large (e.g., 300-400 decimal digits).

Example 1.37. A very small example:

• Choose p = 7, q = 13

• Then m = 7× 13 = 91 and n = 6× 12 = 72

• Choose e = 5. (This is OK since gcd(5, 72) = 1)

• Then d = 29 since 5× 29 = 145 ≡ 1 (mod 72)

• Public key is: m = 91, e = 5

If someone wants to send us the message:
23 85

they calculate
235 ≡ 4 (mod 91) 855 ≡ 50 (mod 91)

and send:
4 50

To decrypt, we calculate
429 ≡ 23 (mod 91) 5029 ≡ 85 (mod 91)

and recover the original message:
23 85

7.3 Exercises

Exercise 35. We set up an RSA cryptosystem using primes p = 3 and q = 19.

(a) Write down m = pq and n = (p− 1)(q − 1).

(b) Show that e = 5 is a suitable choice of encrypting key.

(c) With this encrypting key, encrypt the message ‘2 3 6 18’.

(d) Calculate the decrypting key d (for e = 5).

(e) With this decrypting key, decrypt the message ‘7 50’.

Exercise 36. In this question we suppose that it has been agreed that the letters of the alphabet are encoded as

a = 1, b = 2, . . . , z = 26 and ‘space’ = 27

with no distinction made between upper and lower case. Messages are to be broken down into single letters
which are then encrypted and sent in sequence.
Ada wants to be able to receive encrypted messages from her friends. She chooses two prime numbers: p = 5 and
q = 11. The first part of her public key is then m = 55. She then calculates n = (p− 1)(q − 1). Knowing that e = 3
satisfies gcd(e, n) = 1, she tells all her friends to encrypt messages for her using the numbers 55 and 3.

(a) Calculate n. (Note that, in practice, m would be chosen large enough that calculating n without knowing
the prime factorisation of m would be impractical.)

(b) Xav wants to send Ada the message: ‘hi there’. What is the encrypted sequence Xav should send?

(c) Ada receives the encrypted message 2 20 39 15 8 21 9. By first calculating d such that ed ≡ 1 (mod n),
decrypt the message.
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Chapter 2

Linear Algebra I

Let V be a finite dimensional K-vector space and f : V → V a linear transformation. We would like to find a basis
B such that [f ]B is an ‘simple’ as possible. We know that not all linear transformations are diagonalisable. We will
show that the matrix can be chosen to be in a slightly generalised form known as ‘Jordan normal form’. Along the
way we will state and prove the Cayley-Hamilton Theorem.

1 Revision on vector spaces

We list here some important definitions and results that will be used. More are given (with some overlap with the
present chapter) in an appendix.

1.1 Bases and dimension

Theorem 2.1

Let V be a vector space.

1. Every spanning set for V contains a basis.

2. Every linearly independent subset of V can be extended to a basis.

3. Any two bases of V have the same cardinality.

Lemma 2.2

Let V be a vector space and U,W 6 V two subspaces of V . Suppose that U + V is finite dimensional. Then

dim(U) + dim(W ) = dim(U +W ) + dim(U ∩W )

1.2 Matrix representation of a linear transformation

Let V and W be two finite dimensional K-vector spaces. Fix bases B = {v1, . . . , vm} and C = {w1, . . . , wn} for V
and W respectively.

Lemma 2.3

Let f : V →W be a linear transformation. There exists a unique matrix [f ]C,B ∈Mn×m(K) with the property
that

∀v ∈ V [f(v)]C = [f ]C,B × [v]B

Definition 2.4. The matrix given by the above lemma is called the matrix representation of f with respect to B
and C

15
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Remark (on notation). In the case in which V = W and B = C we sometimes write [f ]B in place of [f ]B,B.

Lemma 2.5

The entries aij of [f ]C,B are given by the equation f(vj) =
∑n
i=1 aijwi

Remark. The lemma says that the j-th column of [f ]C,B is exactly the coordinate matrix [f(vj)]C .

Lemma 2.6

The matrix [f ]C,B is invertible if and only if f is a bijection.

Notice that for all v ∈ V we have

[IdW ]C′,C [f ]C,B[v]B = [f(v)]C′ = [f ]C′,B′ [IdV ]B′,B[v]B

[v]B
[f ]C,B×−−−−−→ [f(v)]C

[IdV ]B′,B×
y y[IdW ]C′,C×

[v]B′ −−−−−−→
[f ]C′,B′×

[f(v)]C′

Suppose we have a linear transformation f : V → V and
two bases B and B′ for V . Letting P = [IdV ]B′,B we have

P [f ]B[v]B = [f ]B′P [v]B

Since this holds for all v ∈ V we have that

P [f ]B = [f ]B′P

[v]B
[f ]B×−−−−→ [f(v)]B

P×
y yP×

[v]B′ −−−−→
[f ]B′×

[f(v)]B′

Definition 2.7. LetA,B ∈Mn(K). We say thatA andB are similar if there exists an invertible matrix P ∈ GLn(K)
such that B = P−1AP . It is denoted A ∼ B.

From the above observations we see that, if B and B′ are bases of V , then [f ]B and [f ]B′ are similar.
The next lemma says that, if we fix a basis for V , there is a correspondence between linear transformations and
matrices.

Lemma 2.8

Let V be an n-dimensional K-vector space and B a basis for V . The map EndK(V )→Mn(K), f 7→ [f ]B is an
isomorphism of K-vector spaces.

1.3 Exercises

Exercise 37. Show that the relation of similarity is an equivalence relation on Mn(K). That is, show that the
relation is reflexive, symmetric and transitive.

Exercise 38. Let V be an n-dimensional K-vector space. Show that every element of GLn(K) is a change of basis
matrix for V . That is, show that for all P ∈ GL(K) there exist bases B and B′ for V such that P = [IdV ]B′,B.

Exercise 39. Let’s note that if we allow different bases for domain and codomain, then f does have a diagonal
matrix representation. Given a linear transformation f : V → V , show that there exist bases B and B′ for V such
that [f ]B′,B is diagonal and all entries are either 0 or 1. (Hint: start with a basis for the kernel of f .)

2 Invariant decompositions

Our approach to finding a ‘simple’ matrix representation of a linear transformation f : V → V will be to decom-
pose V into smaller pieces that are each preserved by f .
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Definition 2.9. Let V be a K-vector space (not necessarily finite dimensional). Let f : V → V be a linear trans-
formation. An eigenvalue of f is an element λ ∈ K such that there exists v ∈ V \ {0} with f(v) = λv. Given an
eigenvalue λ, the corresponding eigenspace is given by Vλ = {v ∈ V | f(v) = λv}. The non-zero elements of Vλ
are called eigenvectors of f .

Exercise 40. Show that Vλ is a subspace of V and has dimension at least 1.

Similarly, we define eigenvalues (etc) for a square matrix A ∈Mn(K).

Definition 2.10. Let A ∈ Mn(K). Consider the linear transformation f : Mn,1(K) → Mn,1(K) defined by f(v) =
Av. We say that λ ∈ K is an eigenvalue of A is if is an eigenvalue of f . Smilarly, the eigenspaces and eigenvectors
of A are defined to be those of f .

Exercise 41. Let A,B ∈ Mn(K) be similar matrices. Show that λ ∈ K is an eigenvalue of A if and only of λ is an
eigenvalue of B.

Example 2.11. Some linear transformations with their eigenvalues:

1. f : R3 → R3 given by orthogonal reflection across the plane Π given by ax + by + cz = 0. There are two
eigenvalues: −1 and 1. The eigenspaces are V1 = Π and V−1 = span{(a, b, c)}

2. f : R3 → R3 given by rotation through an angle θ ∈ (0, π) about the line ` = span{(a, b, c)}. There is only
one eigenvalue: 1. The eigenspace is V1 = `

3. A =

2 1 2
0 3 3
0 0 7

 has eigenvalues 2,3 and 7.

4. V = {ϕ ∈ RR | ϕ is smooth }, f : V → V given by f(ϕ) = dϕ
dx . Every λ ∈ R is an eigenvalue of f ! Given any

λ ∈ R, the function given by ϕ(x) = eλx is an element of V that is an eigenvector with eigenvalue λ.

Exercise 42. Let f : V → V be a linear transformation and λ an eigenvalue of f . Show that if v ∈ Vλ, then
f(v) ∈ Vλ.

Definition 2.12. Let f : V → V be a linear transformation. A subspace W 6 V is called an invariant subspace if
∀w ∈W , f(w) ∈W . Given an invariant subspace W , the restriction of f to W is the linear transformation

f |W : W →W given by f |W (w) = f(w)

Exercise 43. Let V be a finite dimensional K-vector space and f : V → V a linear transformation. Suppose that
W 6 V is an f -invariant subspace. Fix a basis {w1, . . . , wm} forW and extend to a basisB = {w1, . . . , wm, v1, . . . , vn}
for V . Show that

[f ]B =

[
A B
0 D

]
for some A ∈Mm(K), B ∈Mm,n(K), D ∈Mn(K).

Example 2.13. Consider the linear transformation f : Q3 → Q3 determined by

f(1, 0, 0) = (1,−1, 0), f(0, 1, 0) = (2, 1, 0), f(0, 0, 1) = (1, 0, 1)

Then W = span{(1, 0, 0), (0, 1, 0)} is invariant and [f ]S =

 1 2 1
−1 1 0
0 0 1


Definition 2.14. Let V be a vector space and W 6 V a subspace. A complement of W is a subspace U 6 V such
that: U ∩W = {0} and U +W = V . We write V = U ⊕W and say that V is a direct sum of U and W .

Remark. Clearly, if U is a complement of W , then W is a complement of U .

Lemma 2.15

Let V be a finite dimensional vector space and U , W two subspaces of V . Then the following are equivalent:
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1. V = U ⊕W

2. Given any bases B and C for U and W (respectively), B ∪ C is a basis for V and B ∩ C = ∅

3. There exist bases B and C for U and W (respectively) such that B ∪ C is a basis for V and B ∩ C = ∅

4. U ∩W = {0} and dimV = dimU + dimW

5. U +W = V and dimV = dimU + dimW

Proof. (1⇒ 2) Assume that the first holds. That is, assume that we have U ∩W = {0} and U +W = V . Fix bases
B = {u1, . . . , um} and C = {w1, . . . , wn} for U andW . It is clear that B∪C is a spanning set for V since V = U+W .
That the set B ∪ C is linearly independent follows from the following

m∑
i=1

αiui +

n∑
i=1

βiwi = 0 (where αi, βi ∈ K)

=⇒
m∑
i=1

αiui =

n∑
i=1

(−βi)wi ∈ U ∩W

=⇒
m∑
i=1

αiui = 0 and
n∑
i=1

(−βi)wi = 0

=⇒ αi = 0 and βi = 0 for all i

Therefore B ∪ C is a basis for V . Also

v ∈ B ∩ C =⇒ v ∈ U ∩W =⇒ v = 0

Since any set containing the zero vector is linearly dependent, we conclude that B ∩ C = ∅.

(2⇒ 3) Is immediate.

(3⇒ 4) Assume now that B and C are as in 3. Then

dimV = |B ∪ C| (B ∪ C is a basis for V )
= |B|+ |C| (B ∩ C = ∅)
= dimU + dimW

Also

dim(U +W ) + dim(U ∩W ) = dimU + dimW (Lemma 2.2)
=⇒ dimV + dim(U ∩W ) = dimV

=⇒ dim(U ∩W ) = 0

=⇒ U ∩W = {0}

(4⇒ 5) Assume that U ∩W = {0} and dimV = dimU + dimW . We have

dimV = dimU + dimW =⇒ dimV = dim(U +W ) + dim(U ∩W ) (using Lemma 2.2)
=⇒ dimV = dim(U +W ) (U ∩W = {0})
=⇒ V = U +W (since U +W 6 V )

(5⇒ 1) Assume that V = U +W and dimV = dimU + dimW . We have

dimV = dimU + dimW =⇒ dimV = dim(U +W ) + dim(U ∩W ) (Lemma 2.2)
=⇒ dimV = dimV + dim(U +W ) (since V = U +W )
=⇒ dim(U + V ) = 0

=⇒ U + V = {0}

Exercise 44. Show that the first three conditions in the above lemma remain equivalent even without the hypoth-
esis that V be finite dimensional.

The following observations will be an important tool in finding a simple matrix representation.
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Lemma 2.16

Let V be a finite dimensional vector space and f : V → V a linear transformation. Suppose that U and W are
f -invariant subspaces of V such that V = U ⊕W . Let B and C be bases for U and W respectively. Then

[f ]B∪C =

[
[f |U ]B 0

0 [f |W ]C

]

Proof. Let B = {u1, . . . , um} and C = {w1, . . . , wn}. For j ∈ {1, . . . ,m} the j-th column of [f ]B∪C is equal to
[f(uj)]B∪C . Since U is f -invariant, we have f(uj) =

∑m
i=1 aijui for some aij ∈ K. Therefore

[f |U (uj)]B =

a1j...
amj

 and [f(uj)]B∪C =



a1j
...

amj
0
...
0


Similar considerations apply to the last n columns of the matrix [f ]B∪C

Given a linear transformation f we want to find complementary f -invariant subspaces. To help do this we con-
sider the minimal polynomial of f .

3 Minimal polynomial

The minimal polynomial (to be defined below) is the monic polynomial of lowest degree that is satisfied by a
linear transformation. We will see that it divides the characteristic polynomial.
Let V be a finite dimensional K-vector space and let p(X) = a0 + a1X + · · · + anX

n ∈ K[X] be a polynomial.
Given a a linear transformation f : V → V , define p(f) : V → V by p(f) = a0 IdV +aif + · · · + anf

n. Similarly,
given a square matrix A ∈Mm(K) define p(A) ∈Mm(K) by p(A) = a0Im + a1A+ · · ·+ anA

n.

Remark. If B a basis for V and p(X) ∈ K[X], we have

[p(f)]B = p([f ]B)

Now consider the set of polynomials

S = {p(X) ∈ K[X] | p(f) = 0, p(X) 6= 0} ⊆ K[X]

To see that S 6= ∅. Let n = dimV . We know from Lemma 2.8 that dim(EndK(V )) = n2. Therefore the set
{IdV , f, f2, . . . , fn

2} ⊆ EndK(V ) is linearly dependent, that is, there exist ai ∈ K (not all equal to zero) such that∑n2

i=0 aif
i = 0. It follows that

∑n2

i=0 aiX
i ∈ S.

Since the set {deg(p(X)) | p(X) ∈ S} ⊆ N is non-empty, there is (by the Well Ordering property ofN) a polynomial
m(X) ∈ S such that deg(m(X)) 6 deg(p(X)) for all p(X) ∈ S. Multiplying by an element of K if necessary, we
can assume that m(X) is monic.

Definition 2.17. Let f : V → V . The minimal polynomial of f is the element of S that is of lowest degree and is
monic.

Remark. If is clear from the above discussion that m(X) is uniquely determined by f and that deg(m(X)) > 1.

Exercise 45. Let f be a linear transformation on a vector space V with minimal polynomial X2 − 1 and suppose
that 2 6= 0 in the field of scalars. (Thus, for example, F2 is not allowed as the field of scalars.) Show directly that
the subspaces {v ∈ V : f(v) = v} and {v ∈ V : f(v) = −v} are complementary subspaces of V . Find a diagonal
matrix representing f .

To show that m(X) divides all elements of S, we use the polynomial versions of Theorems 1.1 and 1.6.
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Theorem 2.18

Let K b a field and a(X), d(X) ∈ K[X] with d(X) 6= 0. There there exist q(X), r(X) ∈ K[X] such that

a(X) = q(x)d(X) + r(X) and either r = 0 or deg(r(X)) < deg(d(X))

Moreover, q(X) and r(X) are uniquely determined by a(X) and d(X).

Proof. The proof follows exactly the same reasoning as in the version for Z (Theorem 1.1).

Exercise 46. Modify the proof of Theorem 1.1 to produce a proof of Theorem 2.18.

Exercise 47. Use Theorem 2.18 to show that ∀p(X) ∈ K[X] ∀k ∈ K, p(k) = 0 =⇒ (X − k) | p(X)

Definition 2.19. Let a(X), b(X) ∈ K[X]. A greatest common divisor (gcd) of a(X) and b(X) is an element
d(X) ∈ K[X] such that

1) (d(X) | a(X)) ∧ (d(X) | b(X))

2) ∀c(X) ∈ K[X], (c(X) | a(X)) ∧ (c(X) | b(X)) =⇒ c(X) | d(X)

We say that a(X) and b(X) are relatively prime if 1 is a gcd of a(X) and b(X).

Remark. The gcd of two polynomials is not unique, but any two gcd’s differ only up to multiplication by an
element of K.

Example 2.20. 1. X2 +X + 1 is a gcd of X3 −X2 −X − 2 and X4 + 2X3 + 2X2 +X in R[X]

2. X2 +X + 1 is not a gcd of X3 −X2 −X − 2 and X4 + 2X3 + 2X2 +X in F2[X]. A gcd is X3 +X2 +X .

Exercise 48. Let a, b ∈ K with a 6= b.

a) Show that (X − a) and (X − b) are relatively prime.

b) Show that if d(X) is monic and divides (X − a)m, then d(X) = (X − a)k for some 0 6 k 6 n.

c) Let m,n ∈ N. Show that (X − a)m and (X − b)n are relatively prime.

Theorem 2.21

Let a(X), b(X) ∈ K[X] be two polynomials at least one of which in non-zero. Then there exists a gcd d(X)
of a(X) and b(X). Moreover, for any gcd d(X) there exist α(X), β(X) ∈ K[X] such that

d(X) = α(X)a(X) + β(X)b(X)

Proof. The proof follows exactly the same reasoning as in the version for Z (Theorem 1.6).

Exercise 49. Modify the proof of Theorem 1.6 to produce a proof of Theorem 2.21.

We can now show that the minimal polynomial divides any polynomial that has f as a root.

Proposition 2.22

Let m(X) ∈ K[X] be the minimal polynomial of a linear transformation f . Then

∀ p(X) ∈ K[X], p(f) = 0 =⇒ m(X) | p(X)

Proof. Let p(X) ∈ K[X] be such that p(f) = 0. By Theorem 2.18, there exist q(X), r(X) ∈ K[X] such that p(X) =
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q(X)m(X) + r(X) and either r(X) = 0 or deg(r(X)) < deg(m(X)).

r(X) = p(X)−m(X)q(X)

=⇒ r(f) = p(f)−m(f) ◦ q(f)

= 0 (since p(f) = m(f) = 0)

We must therefore have that r(X) = 0, since otherwise r(X) ∈ S and has lower degree than m(X). Therefore
p(X) = q(X)m(X).

Examples 2.23.

1. Let V be an n-dimensional K-vector space, let λ ∈ K, and consider the linear transformation f = λ IdV . The
minimal polynomial is m(X) = (X − λ). The characteristic polynomial is (X − λ)n.

2. Consider a reflection (across a line through the origin) f : R2 → R2. Since f2 = IdV , we know that m(X) |
(X2 − 1). Therefore m(X) is one of X + 1, X − 1 or X2 − 1 (as these are the only monic divisors of X2 − 1).
But if m(X) = X + 1, then f = − IdV . Similarly, if m(X) = X − 1, then f = IdV . Therefore m(X) = X2 − 1.
The characteristic polynomial is also X2 − 1.

3. Fix a basis B of R4 and let f : R4 → R4 be given by [f ]B =


1 0 0 0
0 2 1 0
0 0 2 0
0 0 0 2

. Calculating the characteristic

polynomial of the matrix gives c(X) = (X − 1)(X − 2)3. Therefore

[c(f)]B = c([f ]B) = 0 (by the Cayley-Hamilton theorem)

Therefore c(f) = 0 and hence m(X) must be one of the monic divisors of c(X):

X − 1, X − 2, (X − 1)(X − 2), (X − 1)(X − 2)2, (X − 1)(X − 2)3

Since

[f ]B − I 6= 0 [f ]B − 2I 6= 0 ([f ]B − I)([f ]B − 2I) 6= 0 ([f ]B − I)([f ]B − 2I)2 = 0

we conclude that m(X) = (X − 1)(X − 2)2.

Since the minimal polynomial divides the characteristic polynomial, any root of the minimal polynomial is also a
root of the characteristic polynomial and therefore an eigenvalue. The next result is that, conversely, all eigenval-
ues are roots of the minimal polynomial.

Lemma 2.24

Let V be a finite dimensional K-vector space, f : V → V a linear transformation, and m(X) ∈ K[X] the
minimal polynomial of f . Then

∀λ ∈ K, m(λ) = 0 ⇐⇒ λ is an eigenvalue of f

Proof. Suppose that λ ∈ K is an eigenvalue of f . Let v ∈ V \ {0} be such that f(v) = λv. For any p(X) ∈ K[X] we
have p(f)(v) = p(λ)v and therefore

m(f)(v) = m(λ)v

=⇒ 0(v) = m(λ)v (m(f) = 0 ∈ EndK(V ))
=⇒ 0V = m(λ)v (0EndK(V )(v) = 0V )

=⇒ m(λ) = 0K (v 6= 0V )

Now for the converse. Suppose thatm(λ) = 0. We will show, without appealing to the Cayley-Hamilton theorem,
that λ is an eigenvalue of f . From Exercise 47 we know that m(λ) = 0 implies that (X − λ) | m(X). Let t ∈ N be
given by

t = max{n ∈ N | (X − λ)n | m(X)}
Then m(X) = (X − λ)tq(X) with deg(q(X)) < deg(m(X)) and q(λ) 6= 0. Since deg(q(X)) < deg(m(X)) we have
q(f) 6= 0EndK(V ). Let v ∈ V be such that q(f)(v) 6= 0V . Letting w = q(f)(v) we have

(f − λ IdV )t(w) = (f − λ IdV )tq(f)(v) = m(f)(v) = 0EndK(V )(v) = 0V
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Now define s ∈ Z, with 0 6 s < t to be maximal with the property that (f − λ IdV )s(w) 6= 0. Then letting
u = (f − λ IdV )s(w) we have u 6= 0 and

(f − λ IdV )u = (f − λ IdV )s+1(w) = 0

Therefore u is an eigenvector with eigenvalue λ.

Exercise 50. Find the minimal polynomials of the matrices:

[
2 0
3 −1

]
,

[
0 1
1 −1

]
,

0 0 1
1 0 0
0 1 0

 ,
1 2 3

0 1 4
0 0 1

 .
Exercise 51. Show that the matrices 

2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1

 and


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


have the same minimal polynomial. Do they have the same characteristic polynomial?

Exercise 52. Show that the matrix

A =

1 −3 3
3 −5 3
6 −6 4


has minimal polynomial X2 − 2X − 8. Use this to determine the inverse of A.

Exercise 53. Show that a linear transformation f is invertible if and only if its minimal polynomial has non-zero
constant term. Assuming f is invertible, how can the inverse be calculated if the minimal polynomial is known?

Exercise 54. Suppose that A is an n× n upper triangular matrix with zeros on the diagonal. Prove that An = 0.

Lemma 2.25

Let V be a (not necessarily finite dimensional) K-vector space and let p(X) ∈ K[X]. Then ker(p(f)) is an
f -invariant subspace of V .

Proof. Let p(X) =
∑n
i=0 aiX

i. Let v ∈ ker(p(f)). Then

p(f)(f(v)) = (

n∑
i=0

aif
i)(f(v)) =

n∑
i=0

aif
i+1(v) = f(

n∑
i=0

aif
i(v))

= f(p(f)(v)) = f(0) = 0

Therefore f(v) ∈ ker(p(f)).

Remark. Notice that the point in the above proof is the f and p(f) commute.

The following will be a crucial tool in developing Jordan normal form.

Lemma 2.26

Let V be a finite dimensional K-vector space. Let f : V → V be a linear transformation and m(X) ∈ K[X]
its minimal polynomial. Suppose that m(X) = p(X)q(X) where p(X), q(X) ∈ K[X] are monic polynomials
that are relatively prime. Then

1. V = ker(p(f))⊕ ker(q(f))

2. the minimal polynomial of f |ker(p(f)) is p(X)
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3. the minimal polynomial of f |ker(q(f)) is q(X)

Proof.

∃ a(X), b(X) ∈ K[X], a(X)p(X) + b(X)q(X) = 1 Theorem 2.21
a(f)p(f) + b(f)q(f) = IdV

∀v ∈ V, v = a(f)p(f)(v) + b(f)q(f)(v) (∗)

It follows that

V = ker(q(f)) + ker(p(f))

and

v ∈ ker(q(f)) ∩ ker(p(f)) =⇒ v = a(f)(0) + b(f)(0) (by ∗)

Therefore V = ker(q(f))⊕ ker(p(f))

To see that p(X) is the minimal polynomial of g = f |ker(p(f)) note first that

p(g) = p(f |ker(p(f))) = p(f)|ker(p(f)) = 0

Let p′(X) be any non-zero polynomial such that p′(g) = 0. Then, for all v ∈ V we have

p′(f)q(f)(v) = p′(f)q(f)(u+ w) (for some u ∈ ker(q(f)) and w ∈ ker(p(f)))
= p′(f)q(f)(u) + p′(f)q(f)(w)

= p′(f)q(f)(w) (u ∈ ker(q(f)))
= p′(f)(z) (letting z = q(f)(w))
= p′(g)(z) (since z ∈ ker(p(f)))
= 0(z) = 0

Therefore (p(X)q(X)) | (p′(X)q(X)) since p(X)q(X) is the minimal polynomial of f . This implies that deg(p(X)) 6
deg(p′(X)).
The same argument can be used to show that q(X) is the minimal polynomial of f |ker(q(f)).

Proposition 2.27

Let V be a finite dimensional K-vector space and f : V → V a linear transformation. Suppose that the
minimal polynomial of f can be factorised as a product of pairwise relatively prime monic polynomials
qi ∈ K[X]:

m(X) = q1(X)q2(X) . . . qN (X)

Let Bi be a basis for ker(qi(f)) and Ai = [f |ker(qi(f))]Bi

Then B = B1 ∪ · · · ∪ BN is a basis for V and

[f ]B =

A1 0 0

0
. . . 0

0 0 AN


Proof. We consider the case N = 2. Extension to the general case is then an easy induction argument.
Suppose m(X) = q1(X)q2(X). Let Ki = ker(qi(f)). By Lemma 2.25 Ki is f -invariant and by Lemma 2.26 V =
K1 ⊕K2. Applying Lemma 2.16 we have

[f ]B1∪B2 =

[
A1 0
0 A2

]
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Example 2.28. As an illustration of the above proposition, consider f : R3 → R3 given by [f ]S = A =

−13 4 7
−18 6 9
−14 4 8


A quick calculation gives the characteristic polynomial as X2(X − 1) and so the eigenvalues as 0 and 1. Multipli-
cation gives that A(A− I) 6= 0 and A2(A− I) = 0. Therefore the minimal polynomial of f is m(X) = X2(X − 1).
Let q1(X) = X2 and q2(X) = X − 1. Note that they are relatively prime. Using that

q1(A) =

−1 0 1
0 0 0
−2 0 2

 q2(A) =

−14 4 7
−18 5 9
−14 4 7


we obtain bases B1 = {(1, 0, 1), (0, 1, 0)} and B2 = {(1, 0, 2)} for ker(q1(f)) and ker(q2(f)) respectively. Letting
B = {(1, 0, 1), (0, 1, 0), (1, 0, 2)}, we have

[f ]B =

1 0 1
0 1 0
1 0 2

−1A
1 0 1

0 1 0
1 0 2

 =

−6 4 0
−9 6 0
0 0 1


We want to analyze the blocks Ai that arise in the Proposition 2.27 from factors of the form (X − λ)m.

Lemma 2.29

Let V be an n-dimensional K-vector space and let f : V → V be a linear transformation. Suppose that the
minimal polynomial of f if (X − λ)m for some λ ∈ K and m ∈ N. Then m 6 n and there exists a basis B of V
such that [f ]B is in upper-triangular form with all entries on the diagonal equal to λ. That is,

[f ]B =

λ ∗ ∗
0

. . . ∗
0 0 λ


Proof. Since λ is a root of the minimal polynomial, it is an eigenvalue (Lemma 2.24). For 0 6 i 6 m define
Wi = ker(f − λ IdV )i. Note that

{0} = W0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wm = V

We now show that Wi−1 6= Wi. Suppose, for a contradiction, that Wi−1 = Wi for some i. Then for all v ∈ V , we
have

(f − λ IdV )m(v) = 0

=⇒ (f − λ IdV )i ◦ (f − λ IdV )m−i(v) = 0

=⇒ (f − λ IdV )i−1 ◦ (f − λ IdV )m−i(v) = 0 (since Wi−1 = Wi)

=⇒ (f − λ IdV )m−1(v) = 0

Since this holds for all v ∈ V we have that (f − λ IdV )m−1 = 0, contradicting the minimality of m(X).
Now choose Bi ⊂ Wi such that Bi is a basis for Wi and B1 ( B2 ( · · · ( Bm. Since |Bi+1| > |Bi|+ 1 we have that
n = |Bm| > m.
We also have

v ∈Wi =⇒ (f − λ IdV )i(v) = 0

=⇒ (f − λ IdV )i−1(f − λ IdV )(v) = 0

=⇒ (f − λ IdV )(v) ∈Wi−1

=⇒ f(v)− λv = w for some w ∈Wi−1

=⇒ f(v) = λv + w

That [f ]Bm
has the desired form then follows.

Exercise 55. Let f : (F5)3 → (F5)3 be given by [f ]S =

1 3 1
2 1 3
3 1 4
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(a) Calculate the eigenvalues of f .

(b) Find the minimal polynomial of f .

(c) Find a basis B of (F5)3 such that [f ]B is in upper triangular form.

Proposition 2.30

Let V be an finite dimensional K-vector space and let f : V → V be a linear transformation. Suppose that
the minimal polynomial of f is of the form

m(X) = (X − λ1)m1(X − λ2)m2 . . . (X − λN )mN

for some N ∈ N, mi ∈ N and λi ∈ K with λi 6= λj if i 6= j.
Then there exists a basis B of V such that [f ]B is in upper triangular form.

Proof. Note that for i 6= j the polynomials (X − λi)mi and (X − λj)mj are relatively prime.
Let qi(X) = (X − λi)mi ∈ K[X], Vi = ker(qi(f)) 6 V , and fi = f |Vi

. Choose a basis Bi for Vi and let Ai = [fi]Bi
.

By Lemma 2.26, V = V1 ⊕ · · · ⊕ VN and the minimal polynomial of fi is qi(X).
By Lemma 2.29

Ai =

λi ∗ ∗
0

. . . ∗
0 0 λi


Let B = B1 ∪ · · · ∪ BN . By Proposition 2.27, B is a basis for V and

[f ]B =

A1 0 0

0
. . . 0

0 0 AN

 =


λ1 ∗ ∗

0
. . . ∗

0 0 λ1

0
. . .

0
λN ∗ ∗

0
. . . ∗

0 0 λN



Corollary 2.31

Let V be an finite dimensional K-vector space and let f : V → V be a linear transformation. If K is alge-
braically closed, then there exists a basis B of V such that [f ]B is in upper triangular form.

Proof. Since K is algebraically closed, any polynomial in K[X] can be written as a product of linear terms. In
particular, for the minimal polynomial of f we have

m(X) = (X − λ1)m1(X − λ2)m2 . . . (X − λN )mN

for some N ∈ N, mi ∈ N and λi ∈ K with λi 6= λj if i 6= j. Apply the preceding result.

4 The Cayley-Hamilton theorem

We first recall here the definition of the characteristic polynomial.

Definition 2.32. LetK be a field andA ∈Mn(K). The characteristic polynomial ofA is the polynomial cA(X) ∈
K[X] given by

cA(X) = det(XIn −A)

Remark. The polynomial cA(X) is always monic and of degree n. The constant term of c(X) is equal to (−1)n det(A).

Exercise 56. Show that if A,B ∈Mn(K) are similar, then cA(X) = cB(X).
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Definition 2.33. Let V be an finite dimensional K-vector space and let f : V → V be a linear transformation. The
characteristic polynomial of f is denoted cf (X) and given by cf (X) = cA(X) for some matrix representation
A = [f ]B of f .

Remark. The above exercise shows that cf (X) does not depend on the choice of A.

Theorem 2.34: Cayley-Hamilton Theorem

Let V be an finite dimensional K-vector space and let f : V → V be a linear transformation. Let cf (X) ∈
K[X] be the characteristic polynomial of f . Then cf (f) = 0.
(That is, ‘f satisfies its own characteristic equation’.)

Proof. Assume first that K is algebraically closed. Then the minimal polynomial has the form

m(X) = (X − λ1)m1(X − λ2)m2 . . . (X − λN )mN

for some N ∈ N, mi ∈ N and λi ∈ K with λi 6= λj if i 6= j. As in the proof of Proposition 2.30 define Vi =
ker(f −λi)mi . By Lemma 2.25, Vi is f -invariant. Let fi = f |Vi

. By Lemma 2.26, V = V1⊕· · ·⊕VN andt he minimal
polynomial of fi is (X − λi)mi . Let ni = dim(Vi). By Lemma 2.29, mi 6 ni and there exists a basis Bi for Vi such
that

[fi]Bi =

λi ∗ ∗
0

. . . ∗
0 0 λi

 ∈Mni
(K)

By Lemma 2.16 we have

[f ]B =

[fi]Bi 0
. . .

0 [fi]Bi

 =


λ1 ∗ ∗

0
. . . ∗

0 0 λ1

0
. . .

0
λN ∗ ∗

0
. . . ∗

0 0 λN


Letting A = [f ]B, we have We have

cf (X) = cA(X) = det(XIn −A)

= ΠN
i=1 det(XIni

−Ai)
= ΠN

i=1(X − λi)ni

Since mi 6 ni, we have

m(X) = (X − λ1)m1 . . . (X − λN )mN | (X − λ1)n1 . . . (X − λN )nN = c(X)

Therefore c(f) = 0 and we’re done in the case in which K is algebraically closed.
Now consider the case in which K is not algebraically closed. Let L be an algebraically closed field with K ⊆ L
(see Theorem 1.34 ). Let B be any basis of V and let A = [f ]B. Then A ∈ Mn(K) ⊆ Mn(L). Applying the result
already obtained for algebraically closed fields, we have that A satisfies its characteristic equation and therefore

[c(f)]B = c(A) = 0

Recall that a linear transformation f : V → V is called diagonalisable if there exists a basis B of V such that [f ]B
is a diagonal matrix.

Proposition 2.35

Let K be an algebraically closed field and let V be a finite dimensional K-vector space. A linear transforma-
tion f : V → V is diagonalisable if and only if its minimal polynomial can be written as a product of distinct
linear factors (in K[X]).
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Proof. Denote the minimal polynomial by m(X) ∈ K[X]. Since K is algebraically closed, m(X) can be written as
a product of linear factors

m(X) = (X − λ1)m1 . . . (X − λN )mN

with λi 6= λj if i 6= j. Define Vi, fi and Bi as above. Then

f is diagonalisable ⇐⇒ ∀i, fi is diagonalisable
⇐⇒ ∀i, fi = λi IdVi

(λi is the only eigenvaluie of fi)
⇐⇒ ∀i, the minimal polynomial of fi is (X − λi)
⇐⇒ ∀i, mi = 1 (the minimal polynomial of fi is (X − λi)mi )

5 Jordan normal form

Linear transformations that are not diagonalisable do nonetheless have a nice matrix representation which is block
diagonal with each block of a simple form.

Definition 2.36. Let λ ∈ K and n ∈ N. Define a matrix J(λ, n) ∈ Mn(K) to be the matrix with λ at all entries on
the main diagonal, 1 at all entries directly above the main diagonal, and 0 elsewhere.

J(λ, n) =


λ 1 0

λ 1
. . . . . .

λ 1

0 λ


A marix of this form is called a Jordan block.

Example 2.37. J(4, 3) =

4 1 0
0 4 1
0 0 4


Exercise 57.

(a) Show that the characteristic polynomial of J(λ, n) is (X − λ)n

(b) Show that the minimal polynomial of J(λ, n) is (X − λ)n

(c) Show that the eigenspace has dimension 1.

Definition 2.38. A square matrix is said to be in Jordan normal form (JNF) if it is block diagonal and each of the
blocks is a Jordan block.

Example 2.39. The matrix shown is in JNF. Note that the characteristic
and minimal polynomials are

c(X) = (X − 2)3(X − i)2 m(X) = (X − 2)2(X − i)2


2 0 0 0 0
0 i 1 0 0
0 0 i 0 0
0 0 0 2 1
0 0 0 0 2


Definition 2.40. A linear transformation T : V → V is called nilpotent if there exists n ∈ N such that Tn = 0.
Similarly, a square matrix A ∈Mm(K) is called nilpotent if An = 0 for some n ∈ N.

Example 2.41. 1. The linear transformation D : Pd(K)→ Pd(K) given by differentiation is nilpotent.

2. The matrix
[
0 2
0 0

]
is nilpotent.

Exercise 58. Show that if a linear transformation T : V → V is nilpotent, then it is not injective.

The following technical looking lemma will be used in the proof of the existence of a Jordan normal form matrix
representative.
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Lemma 2.42

Let K be a field and V a finite dimensional K-vector space. Suppose that N : V → V is a nilpotent linear
transformation. Then there exist v1, . . . , vk ∈ V and m1, . . . ,mk ∈ N such that

∀i ∈ {1, . . . , k}, Nmi(vi) = 0

and

{ Nm1−1(v1), . . . , N2(v1), N(v1), v1,

Nm2−1(v2), . . . , N2(v2), N(u2), v2,

...

Nmk−1(vk), . . . , N2(vk), N(vk), vk }

is a basis for V .

Remark. If we let B denote the (ordered) basis given in the above lemma, then [N ]B is in Jordan normal form:

[N ]B = J(0,m1)⊕ J(0,m2)⊕ · · · ⊕ J(0,mk)

Proof of Lemma 2.42. We use (strong) induction on the dimension of V . For the base case (dim(V ) = 1), let u ∈
ker(N) \ {0}. Then {u} is a basis for V and Nu = 0.
Now suppose that dim(V ) > 2 and that the lemma holds in all cases with lower dimension. Note that, by the
rank-nullity theorem, we have

dim(im(N)) = dim(V )− dim(ker(N)) < dim(V )

By the induction hypothesis, the result holds for the transformation N |im(N) : im(N) → im(N). Let u1, . . . , uk ∈
im(N) and m1, . . . ,mk ∈ N be such that

A = {Nm1−1(u1), . . . , N(u1), u1, N
m2−1(u2), . . . , N(u2), u2, . . . , N

mk−1(uk), . . . , N(uk), uk}

is a basis for im(N) and Nmi(ui) = 0 for all i. Choose vi ∈ V such that Nvi = ui and define

B = A ∪ {v1, . . . , vk}
= {Nm1(v1), . . . , N(v1), v1, N

m2(v2), . . . , N(v2), v2, . . . , N
mk(vk), . . . , N(vk), vk}

The set B is linearly independent since

k∑
i=1

mi∑
j=0

αijN
jvi = 0 =⇒

k∑
i=1

mi∑
j=0

αijN
j+1vi = 0 (applying N to both sides)

=⇒
k∑
i=1

mi∑
j=0

αijN
jui = 0 (ui = Nvi)

=⇒
k∑
i=1

mi−1∑
j=0

αijN
jui = 0 (Nmiui = 0)

=⇒ αij = 0 for all i ∈ {1, . . . , k} and j ∈ {0, . . . ,mi − 1} (A is linear independent)

which then also gives

k∑
i=1

αi,miN
mivi = 0

=⇒
k∑
i=1

αi,mi
Nmi−1ui = 0

=⇒ αi,mi = 0 for all i ∈ {1, . . . , k} (A is linear independent)
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Having shown that B is linearly independent, we know that it can be extended to a basis of V . Let w̃i ∈ V be such
that B ∪ {w̃1, . . . , w̃`} is a basis of V . We have (for all i)

Nw̃i ∈ im(V )

=⇒ Nw̃i ∈ span(A)

=⇒ Nw̃i ∈ span(N(B)) (N(B) = A ∪ {0})
=⇒ Nw̃i = Nŵi (for some ŵi ∈ span(B))
=⇒ w̃i − ŵi ∈ ker(N)

Letting wi = w̃i − ŵi we have that
C = B ∪ {w1, . . . , w`}

is a basis for V and is of the desired form.

Theorem 2.43: Jordan normal form

Let K be an algebraically closed field, V a finite dimensional K-vector space, and f : V → V a linear
transformation. There exists a basis B of V such that

[f ]B =


J1 0

J2
. . .

0 JN


where each Ji is a Jordan block.

Proof. By Lemmas 2.25, 2.26, 2.27 it is enough to consider the case in which f has only one eigenvalue. (In the
notation of the previous proof, it is enough to consider the transformation fi.) So assume that we have a linear
transformation f : V → V with minimal polynomial (X − λ)m. Define N : V → V by N = f − λ Id. Then N is
nilpotent since Nm = (f − λ Id)m = 0. Applying Lemma 2.42, there is a basis B of V such that [N ]B is in JNF and
each Jordan block is of the form J(0, ni) for some ni ∈ N. Since f = N +λ Id we have that [f ]B = [N ]B+λI where
I is the identity matrix of size dim(V ). Therefore [f ]B is in JNF and has blocks of the form J(λ, ni).

Remark. The JNF is unique up to rearrangement of the Jordan blocks. See Exercise 69. Two matrices in JNF are
similar if and only if one can be obtained from the other by permuting the Jordan blocks.

The minimal and characteristic equation can be read from the Jordan normal form.

Exercise 59. Let K be an algebraically closed field, V a finite dimensional K-vector space, and f : V → V a linear
transformation. Suppose that λ ∈ K is an eigenvalue of f and let m,n ∈ N be maximal with the property that
(X − λ)m divides that minimal polynomial and (X − λ)n divides the characteristic polynomial. Show that

(a) m = the size of the largest Jordan block having λ on the diagonal

(b) n = is the sum of the sizes of all Jordan blocks having λ on the diagonal

(c) the dimension of the λ-eigenspace is equal to the number of Jordan blocks having λ on the diagonal.

Example 2.44. Suppose that A ∈ M7(C) is similar to the matrix shown
(which is in JNF). Then the characteristic and minimal
polynomials of A are

c(X) = (X − 2)5(X − i)2 m(X) = (X − 2)2(X − i)2

The eigenspaces have dimensions

dim(V2) = 3 dim(Vi) = 1



2 0 0 0 0 0 0
0 i 1 0 0 0 0
0 0 i 0 0 0 0
0 0 0 2 1 0 0
0 0 0 0 2 0 0
0 0 0 0 0 2 1
0 0 0 0 0 0 2



See Example 2.39 for another example.

Example 2.45. Find the Jordan normal form for

A =

 2 2 −1
−1 −1 1
−1 −2 2
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The characteristic polynomial is c(X) = (X − 1)3 so there is only one eigenvalue, λ = 1. Using row reduction,
we find the corresponding eigenspace Nullspace(A − I) has dimension 2. Thus the Jordan normal form J has 2
blocks, hence

J =

1 1 0
0 1 0
0 0 1

 .
Remark. For square matrices of size 2 or 3, the JNF can be determined from the minimal and characteristic poly-
nomials. However, this is not true for larger matrices

Example 2.46. The following two matrices (both in JNF) are not similar.

A =



2 0 0 0 0 0 0
0 2 1 0 0 0 0
0 0 2 1 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 1 0
0 0 0 0 0 2 1
0 0 0 0 0 0 2


B =



2 1 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 1 0 0 0
0 0 0 2 0 0 0
0 0 0 0 2 1 0
0 0 0 0 0 2 1
0 0 0 0 0 0 2


However both have m(X) = (X − 2)3, c(X) = (X − 2)7 and dim(V2) = 3. One way to see that they are not similar
is to note that dim(ker(A− 2I)2) = 5 but dim(ker(B − 2I)2) = 6

5.1 Exercises

Exercise 60. Show that the linear transformation Pn(R) → Pn(R) given by differentiation cannot be represented
by a diagonal matrix.

Exercise 61. If f is a linear transformation on a finite dimensional vector space V satisfying f2 = f , explain how
to find a diagonal matrix representing f .

Exercise 62. Suppose that linear transformations f and g on a vector space V commute; that is, that fg = gf .
Show that an eigenspace of f will be g-invariant. If the field F of scalars is algebraically closed and V is finite
dimensional, deduce that f and g have a common eigenvector.

Exercise 63. Find the Jordan normal form of the following matrices:[
−1 1
−1 −3

]
,

−1 3 0
0 2 0
2 1 −1

 ,
1 −3 3

3 −5 3
6 −6 4

 .
Exercise 64. For each of the following pairs of minimal and characteristic polynomials, find all possibilities for
the Jordan normal form:

Minimal polynomial Characteristic polynomial
X2(X + 1)2 X2(X + 1)4

(X − 3)2 (X − 3)5

X3 X7

(X − 1)2(X + 1)2 (X − 1)4(X + 1)4.

Exercise 65. Which of the following pairs of matrices (over C) are similar?

(a)
[
−1 2
0 −1

]
,

[
1 5
0 1

]
(b)

[
−1 2
0 −1

]
,

[
−1 5
0 −1

] (c)


2 0 0 0
0 1 1 0
0 0 1 0
0 0 0 2

 ,


1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 2


Exercise 66. Given a 4 × 4 matrix A over C and given the minimal and characteristic polynomials of A, describe
the possibilities for the JNF of A. (There will be one case where there are two possibilities.)

Exercise 67. Show that any JNF matrix J is a sum J = D + N where D is diagonal and N is nilpotent; that is
Nk = 0 for some k. Deduce that any linear transformation f of a finite dimensional complex vector space can be
written in the form f = d+ n where d is diagonalisable and n is nilpotent.
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Exercise 68. In the language of the previous question, show that JN = NJ and JD = DJ . Deduce that fd = df
and fn = nf .

Exercise 69. (Harder) Show that the Jordan normal form of a complex matrix A is completely determined by the
dimensions of the nullspaces of (A− λI)i, i = 1, 2, 3, . . . for all the eigenvalues λ of A.
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Chapter 3

Groups I

1 Definition of a group and some examples

Definition 3.1. A group is a non-empty set G together with a binary operation ∗ : G×G→ G (the image of (g, h)
being denoted g ∗ h or simply gh) that satisfies the following properties:

1) ∀g, h, k ∈ G, (g ∗ h) ∗ k = g ∗ (h ∗ k) (associativity)

2) ∃e ∈ G∀g ∈ G, g ∗ e = g ∧ e ∗ g = g (identity element)

3) ∀g ∈ G∃h ∈ G, g ∗ h = e ∧ h ∗ g = e (inverses)

Remark. Since a group consists of a set G and an operation, a good notation would be (G, ∗). However, it is
common to suppress explicit mention of the operation and refer to the group simply as G.

Exercise 70. (a) Prove that the identity element is unique. That is, show that

(∀g ∈ G, g ∗ e = g ∧ e ∗ g = g) ∧ (∀g ∈ G, g ∗ e′ = g ∧ e′ ∗ g = g) =⇒ e = e′

(b) Show that the element h in the third axiom is uniquely determined by g. That is, for a given g ∈ G,

(g ∗ h = e ∧ h ∗ g = e) ∧ (g ∗ h′ = e ∧ h′ ∗ g = e) =⇒ h = h′

In light of this uniqueness, the element is denoted g−1 and called the inverse of g.

(c) Let g, h ∈ G. Show that (g−1)−1 = g and (g ∗ h)−1 = h−1 ∗ g−1.

Definition 3.2. A group G is called abelian if ∀g, h ∈ G, gh = hg. A group G is called finite if the underlying set
G is finite.

Example 3.3. 1. (Z,+) is an infinite abelian group.

2. (Z,×) is not a group.

3. (Z/2Z,+) is a finite group. It has two elements.

4. If (K,+,×) is a field, then (K,+) and (K \ {0},×) are (different) abelian groups.

5. (Mn(K),×) is not a group.

6. GL(n,K) is a (non-abelian) group.

7. Other matrix groups include:
O(n) the group of all n×n orthogonal matrices (real matricesA such thatATA = I)
U(n) the group of all n×n unitary matrices (complex matrices U such that U

t
U = I)

SL(n,K) the group of all n× n matrices of determinant 1 with entries from the field K
SO(n) the group of all n× n orthogonal matrices having determinant 1
SU(n) the group of all n× n unitary matrices having determinant 1
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Lemma 3.4

Let G be a group and g, h, k ∈ G. Then

1) gh = gk =⇒ h = k

2) ∃! l ∈ G, gl = h

3) The map Lg : G→ G, Lg(x) = gx is a bijection.
The map Rg : G→ G, Rg(x) = xg is also a bijection.

Exercise 71. Write out a proof of Lemma 3.4.

Example 3.5. Here are two groups of size 4. Let

V =

{[
1 0
0 1

]
,

[
−1 0
0 1

]
,

[
1 0
0 −1

]
,

[
−1 0
0 −1

]}
⊂ GL(2,R)

C4 =

{[
1 0
0 1

]
,

[
0 −1
1 0

]
,

[
−1 0
0 −1

]
,

[
0 1
−1 0

]}
⊂ GL(2,R)

with the operation in both cases defined to be matrix multiplication.
Notice that in V every element has square equal to the identity. That’s not the case in C4 where, for example,[
0 −1
1 0

]2
=
[−1 0

0 −1
]
6= [ 1 0

0 1 ].

1.1 Exercises

Exercise 72. Write down the multiplication tables for V and C4.

Exercise 73. Show that the set of all rotations of the plane about a fixed centre P , together with the operation of
composition, forms a group. What about all of the reflections for which the axis (or mirror) passes through P ?

Exercise 74. Suppose that x and y are elements of a group. Show that there are elements w and z so that wx = y
and xz = y. Show that w and z are unique. Must w be equal to z?

Exercise 75. Set X = R \ {0, 1}. Show the following set of functions X → X , together with the operation of
composition, forms a group.

f(x) = 1
1−x g(x) = x−1

x h(x) = 1
x

i(x) = x j(x) = 1− x k(x) = x
x−1

Exercise 76. If G is a group and (gh)2 = g2h2 for all g, h ∈ G, prove that G is abelian.

2 The symmetric groups Sn

We investigate the permutations of a fixed set.

Definition 3.6. Let n ∈ N. A permutation of the set {1, . . . , n} is a bijecion {1, . . . , n} → {1, . . . , n}. The group
of all permutations of the set {1, . . . , n} is denoted by Sn and called the symmetric group (on n letters). The
operation is the usual composition of functions.

Remark. It is clear that |Sn| = n!.

2.1 Notations for permutations

Let σ ∈ Sn. One way of specifying σ is as two rows, with the image σ(i) written directly below i. That is, as(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
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Example 3.7. There are six permutations of the set {1, 2, 3}. We can list the six elements of S3 as follows:

e =

(
1 2 3
1 2 3

)
, σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2 3
3 1 2

)
, τ1 =

(
1 2 3
1 3 2

)
, τ2 =

(
1 2 3
2 2 1

)
, τ3 =

(
1 2 3
2 1 3

)
Since the operation is composition of functions we have, for example:

τ3σ1 =

(
1 2 3
2 1 3

)(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
= τ1

σ1τ3 =

(
1 2 3
2 3 1

)(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
= τ2

Notice that the group S3 is not
abelian since τ3σ1 6= σ1τ3. The
full multiplication table for S3 is
given on the right.

S3 e σ1 σ2 τ1 τ2 τ3

e e σ1 σ2 τ1 τ2 τ3
σ1 σ1 σ2 e τ3 τ1 τ2
σ2 σ2 e σ1 τ2 τ3 τ1
τ1 τ1 τ2 τ3 e σ1 σ2
τ2 τ2 τ3 τ1 σ2 e σ1
τ3 τ3 τ1 τ2 σ1 σ2 e

Another notation used for elements of Sn is to write the set {1, . . . , n} twice and then join i to σ(i) by a directed
edge. To illustrate, we list the elements of S3 in this notation:

e =

1 2 3

1 2 3

σ1 =

1 2 3

1 2 3

σ2 =

1 2 3

1 2 3

τ1 =

1 2 3

1 2 3

τ2 =

1 2 3

1 2 3

τ3 =

1 2 3

1 2 3

To multiply elements in this notation,
we simply place one diagram on top of
the other and amalgamate the directed
edges. For example:

τ3σ1 =

1 2 3

1 2 3

1 2 3

=

1 2 3

1 2 3

= τ1

Cycle notation

A third more compact notation is known as cycle notation. In this notation each element σ ∈ Sn is represented by
a collection tuples (‘cycles’) in which each element i ∈ {1, . . . , n} appears exactly once as in followed immediately
by σ(i) (with the last element of a tuple being ‘followed’ by the first). Some examples will make this clear. We list
the elements of S3 in cycle notation:

e = (1)(2)(3) σ1 = (1, 2, 3) σ2 = (1, 3, 2) τ1 = (1)(2, 3) τ2 = (1, 3)(2) τ3 = (1, 2)(3)

It is common to adopt the further conventions that singletons are omitted and commas are dropped (unless the
notation would be made ambiguous). With these conventions we have:

σ1 = (123) σ2 = (132) τ1 = (23) τ2 = (13) τ3 = (12)

The identity element will be denoted as (1) or simply as e.
We will generally use cyclic notation and give here an example of multiplication written in cycle notation.

Example 3.8. Consider σ, τ ∈ S7 given by σ = (1234)(567), τ = (143)(267). Then

στ = (1234)(567)(143)(267) = (1)(273)(4)(56) = (273)(56)

τσ = (143)(267)(1234)(567) = (162)(3)(4)(57) = (162)(57)

Remark. Cycle notation for a permutation is not unique, for example (123) = (231) = (312) as they all represent
the permutation mapping 1 7→ 2, 2 7→ 3 and 3 7→ 1. Also, (123)(45) = (45)(123).

Exercise 77. Find the product of the following permutations:
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(a) (123)(456) ∗ (134)(25)(6) (b) (12345) ∗ (1234567) (c) (123456) ∗ (123) ∗ (123) ∗ (1)

3 Subgroups

Definition 3.9. Let G be a group. A subgroup of G is a subset H ⊂ G which, when equipped with the operation
from G (restricted to H), itself forms a group. We will use the notation H 6 G.

Remark. It is clear from the definition that {e} 6 G. It is called the trivial subgroup.

Example 3.10. Some examples of groups G and a subgroup H 6 G.

1. G = (Z/4Z,+), H = {[0], [2]}

2. G = S3, H = {e, (123), (132)}

3. G = S3, H = {e, (13)}

4. G = (Z,+), H = 2Z

5. G = GL(n,K), H = SL(n,K)

6. G = GL(n,K),H = {[ 1 0
0 1 ] ,

[
1 0
0 −1

]
,
[−1 0

0 1

]
,
[−1 0

0 −1
]
}

Example 3.11. {e, (12), (23)} ⊂ S3 is not a subgroup of S3.

Lemma 3.12

Let G be a group and H ⊆ G a non-empty subset. Then the following are equivalent:

1) H is a subgroup of G

2) ∀x, y ∈ H, (xy ∈ H) ∧ (x−1 ∈ H)

3) ∀x, y ∈ H, xy−1 ∈ H

Proof. That the first implies the second is immediate from the definition of a subgroup.
Assume the the second holds. Let x, y ∈ H . Then y−1 ∈ H and therefore xy−1 ∈ H . Therefore the second implies
the third.
Assume that the third condition holds. We will show that H is a subgroup. Note first that H is non-empty by
hypothesis. Let h ∈ H . Then e = hh−1 ∈ H by (3).

k ∈ H =⇒ ek−1 ∈ H (by (3))

=⇒ k−1 ∈ H

and therefore

h, k ∈ H =⇒ h, k−1 ∈ H
=⇒ h(k−1)−1 ∈ H (by (3))

=⇒ hk ∈ H ((k−1)−1 = k)

Therefore the group operation G×G→ G restricts to an operation H ×H → H . We need to show that the axioms
of a group are satisfied by H equipped with this operation. Let h, k, l ∈ H . Then we have

h(kl) = (hk)l (since this holds for the original, unrestricted, operation)
eh = he = h (and e ∈ H as noted above)

hh−1 = h−1h = e (and h−1 ∈ H as noted above)

Exercise 78. Let G be a group and {Hi 6 G | i ∈ I} a set of subgroups of G. Show that ∩i∈IHi is a subgroup of G.

Definition 3.13. Let G be a group and let S ⊆ G be a subset of G. The subgroup generated by S is denoted by
〈S〉 and defined to be the subgroup given by theintersection of all subgroups that contain S. That is,

〈S〉 =
⋂
H6G
S⊆H

H
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Remark. It follows from the definition that 〈∅〉 = 〈{e}〉 = {e}.

Example 3.14. We give some examples of subsets S of a group G and the generated generated.

G S ⊂ G 〈S〉 6 G

S3 {(123)} {e, (123), (132)}
S3 {(12), (23)} S3

(C \ {0},×) {i} { 1,i,-1,i}
GL(2,R) {[ 1 1

0 1 ] ,
[
0 −1
1 0

]
} SL(2,Z)

G S ⊂ G 〈S〉 6 G

(Z,+) {0} {0}
(Z,+) {1} Z
(Z,+) {−1} Z
(Z,+) {2, 9} Z
(Z,+) {6, 9} 3Z

The following result reflects the fact that the subgroup generated by S is the smallest subgroup of G that contains
S.

Lemma 3.15

Let G be a group, H 6 G a subgroup of G and S ⊆ G a subset. Then

1) S ⊆ 〈S〉

2) S ⊆ H =⇒ 〈S〉 6 H

Proof. Both are almost immediate from the definition.

3.1 Exercises

Exercise 79. List all of the subgroups of Z/12Z.

Exercise 80. Decide whether or not the following are subgroups:

(a) the positive integers in the additive group of the integers;

(b) the set of all rotations in the group of symmetries of a plane tesselation;

(c) the set of all permutations in Sn which fix 1.

Exercise 81. Show that the set of complex numbers z which are nth roots of unity for some (variable) natural
number n, together with multiplication of complex numbers, forms a group. That is, show that the set {z ∈ C |
∃n ∈ N, zn = 1} forms a subgroup of C×.

Exercise 82. If H is a subgroup of a group G and if g ∈ G, show that gHg−1 = {ghg−1 | h ∈ H} is a subgroup of
G.

4 Cyclic groups

Lemma 3.16

Let g ∈ G. Then 〈g〉 = {gn | n ∈ Z}.

Proof. Let H = {gn | n ∈ Z}. Note first that H is a subgroup of G, since H 6= ∅ and

h, k ∈ H =⇒ h = gm, k = gn for some m,n ∈ Z
=⇒ hk−1 = gm−n

=⇒ hk−1 ∈ H

Therefore H is a subgroup of G and g ∈ H . Now suppose that K is a subgroup of G such that g ∈ K. For all n ∈ Z
we have gn ∈ H , because H is a subgroup. It follows that K 6 H and hence 〈g〉 = H .

Example 3.17. Let g = (123) ∈ S3. Then 〈g〉 = {e, (123), (132)}.
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Definition 3.18. A group G is called cyclic if there exists g ∈ G such that 〈g〉 = G. Such an element g is called a
generator for the cyclic group G.

Remark. It is clear from the definition that cyclic groups are abelian. The converse is false. The group V of Example
3.5 is abelian, but not cyclic.

Example 3.19. 1. Z is cyclic

2. 3Z is a cyclic subgroup of Z

3. 〈6, 9〉 6 Z is a cyclic subgroup

4. Z/6Z is cyclic

5. S3 is not cyclic

6. {[ 1 0
0 1 ] ,

[
1 0
0 −1

]
,
[−1 0

0 1

]
,
[−1 0

0 −1
]
} 6 GL(2,R)

is not a cyclic subgroup. (But it is abelian.)

Lemma 3.20

Every subgroup of a cyclic group is itself cyclic.

Proof. Let G be a cyclic group and g ∈ G such that G = 〈g〉. Let H be a subgroup of G. If H = {e}, then H is
cyclic. So assume that H is non-trivial. Let d = min{m ∈ N | gn ∈ H}. We will show that 〈gd〉 = H . Let h ∈ H .
Then, since h ∈ G, we have that h = ga for some a ∈ Z. We need to show that d | a. Let q, r ∈ Z be such that
a = qd + r and 0 6 r < d. Then h = (gd)qgr, which implies that gr ∈ H . From the minimality of d we conclude
that r = 0.

5 Order of an element

Definition 3.21. Let G be a group and g ∈ G. Let S{n ∈ N | gn = e}. If S = ∅, we say that g has infinite order. If
S 6= ∅ we say that g has finite order and define the order of g to be the minimal element of S. The order of g is
denoted o(g) or |g|.

Remark. The order of an element is equal to the size of the subgroup generated by g, i.e., |g| = |〈g〉|.

Example 3.22. 1. The orders of the elements of S3 are: |e| = 1, |(123)| = 3, |(132)| = 3, |(12)| = 2, |(13) = 2,
|(23)| = 2.

2. (12)(34) ∈ S4 has order 2

3. (123)(45) ∈ S5 has order 6

Lemma 3.23

Let g ∈ G and n ∈ N. If gn = e then g has finite order and |g| divides n.

Proof. That g has finite order is clear from the definition of order. Let d = |g| and write n = qd + r with q, r ∈ Z
and 0 6 r < d. Then note that gn = g(qd+r) = (gd)qgr = eqgr = egr = gr. Therefore gr = e and r < |g|. Therefore
r = 0 and hence d | n.

Exercise 83. Let G be a group and g ∈ G.

(a) Suppose that g has infinite order. Show that ∀m,n ∈ Z, gm = gn =⇒ m = n.

(b) Suppose that g has finite order. Show that ∀m,n ∈ Z, gm = gn =⇒ m ≡ n (mod |g|).

Lemma 3.24

Let G be a group and g ∈ G. Let h ∈ 〈g〉 \ {e}.

1) If g has infinite order, then h has infinite order.
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2) If g has finite order, then h has finite order and |h| | |g|.

Proof. Let n ∈ Z \ {0} be such that h = gn. For that first part, we have the following.

h has finite order =⇒ ∃m ∈ N, hm = e

=⇒ (gn)m = e

=⇒ g|mn| = e (note that mn 6= 0)
=⇒ g has finite order

Now suppose that g has finite order. Note that h|g| = (gn)|g| = (g|g|)n = en = e, and therefore, by Lemma 3.23,
we have that |h| | |g|.

Example 3.25. We list the elements of 〈g〉 together with their orders for g = (1243) ∈ S4.
g0 = e g1 = (1243) g2 = (14)(23) g3 = (1432)
|g0| = 1 |g| = 4 |g2| = 2 |g3| = 4

5.1 Exercises

Exercise 84. Find the orders of the following elements:

(a) (123)(4567)(89) in S10

(b) (14)(23567) in S7

(c) a reflection in the plane

(d) a translation in the group of all symmetries of a
plane pattern

(e) the elements [6]20, [12]20, [11]20, [14]20 in the addi-
tive group of Z/20Z

(f) the elements [2]13, [12]13, [8]13 in the multiplicative
group of non-zero elements of Z/13Z

Exercise 85. If g is an element of a group G, prove that the orders of g and g−1 are equal.

Exercise 86. Show that, in an abelian group, the product of two elements of finite order again has finite order.

Exercise 87. Let A,B ∈ GL(2,R) be given by A =
[

0 1
−1 −1

]
and B =

[
0 1
−1 0

]
. Show that A has order 3, that B has

order 4, and that AB has infinite order.

6 The dihedral groups Dn

The dihedral groups are another important family of non-abelian finite groups. We start by describing the group
D3. Consider the ways in which two copies of an equilateral triangle can by placed one on top of the other. There
are a total of six possibilities: three rotations (including the identity) and three reflections.

1

2

3

e

1

2

3 1

2

3

r

3

1

2 1

2

3

r2

2

3

1

1

2

3

s

3

2

1 1

2

3

s2

1

3

2 1

2

3

s3

2

1

3

Two such maps can by combined. Denote by r the map
given by rotating the triangle through 2π/3 and by s the
map given by reflection across the line indicated above.
The product rs is the map given by first applying s and
then applying r. The product rs is equal to s2. 1

2

3

s

3

2

1

r

1

3

2

rs
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Similarly, we can show that r2s = sr = s3 and r2 = r2.
Notice that rs 6= sr. Equipped with this operation the
given set of six symmetries forms a (non-abelian, finite)
group, which is denoted D3. Given our calculations so
far, we have D3 = {e, r, r2, s, rs, r2s}. The multiplication
table for this group is given on the right.

D3 e r r2 s rs r2s

e e r r2 s rs r2s
r r r2 e rs r2s s
r2 r2 e r r2s s rs
s s r2s rs e r2 r
rs rs s r2s r e r2

r2s r2s rs s r2 r e

We can generalise from an equilateral triangle to a regular n-gon.

Definition 3.26. Let n ∈ N with n > 3. The dihedral groupDn is the group of symmetries of the regular n-gon.
The group operation is composition.

For a fixed n > 3, we denote by r ∈ Dn the el-
ement given by rotation through 2π/n and by
s ∈ Dn the element given by reflection across
the perpendicular bisector of a fixed edge.

n− 1

n 1

2

s

2

1 n

n− 1

Proposition 3.27

The group Dn is a non-abelian group and has 2n elements. The elements r and s satisfy rn = e, s2 = e,
sr = rn−1s. The elements of Dn can be listed as

Dn = {e, r, r2, . . . , rn−1, s, rs, r2s, . . . rn−1s}

Proof. An element of Dn is uniquely determined by the image an edge. There are n choices for the image of the
vertex labelled 1. Given a choice for the image of the vertex labelled 1, there are then two choices for the image of
vertex labelled n. Hence |Dn| = 2n. It is obvious from the way in which they are defined that rn = e and s2 = e.
We now show that sr = rn−1s. Given that an element of Dn is determined by the images of the vertices labelled 1
and n, it is enough to show that sr(1) = rn−1s(1) and sr(n) = rn−1s(n). We calculate

sr(1) = s(2) = n− 1 rn−1s(1) = rn−1(n) = r−1(n) = n− 1

sr(n) = s(1) = n rn−1s(n) = rn−1(1) = r−1(1) = n

Exercise 88. Finish the proof by showing that no two of the listed elements are equal.

Exercise 89. Determine the possible orders of elements in the dihedral group Dn.

7 Group homomorphisms

Definition 3.28. Let G and H be groups. A homomorphism from G to H is a function ϕ : G → H with the
property that: ∀x, y ∈ G, ϕ(xy) = ϕ(x)ϕ(y).

Example 3.29. 1. ϕ : Z→ Z, ϕ(n) = 4n

2. ϕ : Z→ Z/6Z, ϕ(n) = [n]6

3. ϕ : GL(n,R)→ R×, ϕ(A) = det(A)

4. ϕ : S3 → GL(3,K), (ϕ(σ))ij = δi,σ(j)

Lemma 3.30

Let ϕ : G→ H be a homomorphism. Then

a) ϕ(eG) = eH

b) ∀g ∈ G, ϕ(g−1) = ϕ(g)−1

c) If g ∈ G has finite order, then so does ϕ(g) and |ϕ(g)| | |g|
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d) If ϕ is a bijection, then the inverse function ϕ−1 : H → G is a homomorphism.

Proof. For part (a) we have:

ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG)

=⇒ ϕ(eG)−1ϕ(eG) = ϕ(eG)−1ϕ(eG)ϕ(eG)

=⇒ eH = eHϕ(eG)

=⇒ eH = ϕ(eG)

Part (b) is left as an exercise.
For part (c), let n = |g|. We have ϕ(g)n = ϕ(gn) = eH , which implies that |ϕ(g)| | n by Lemma 3.23.
For part (d) we need to show that ∀h1, h2 ∈ H we have ϕ−1(h1h2) = ϕ−1(h1)ϕ−1(h2). Note that

h1h2 = ϕ(ϕ−1(h1))ϕ(ϕ−1(h2))

= ϕ(ϕ−1(h1)ϕ−1(h2))

=⇒ ϕ−1(h1h2) = ϕ−1(h1)ϕ−1(h2)

Example 3.31. The map ϕ : Z/4Z → Z/6Z, ϕ([n]4) = [3m]6 is a homomorphism. Note that |ϕ([1]4)| = |[3]6| = 2
and |[1]4| = 4.

Example 3.32. Let m ∈ N. There is only one homomorphism ϕ : Z/mZ→ Z. To see this, note that every element
g ∈ Z/mZ has finite order. Therefore, ϕ(g) = 0 as this is the only element of Z that has finite order. The only
homomorpism is therefore ϕ : Z/mZ→ Z, ϕ(g) = 0.

Definition 3.33. A bijective homomorphism is called an isomorphism. Two groups G and H are said to be
isomorphic (denoted G ∼= H) if there exists an isomorphism G→ H .

Remark. If two groups are isomorphic, then they are essentially the ‘same’ group. More precisely, any algebraic
property satisfied by one will also be satisfied by the other. For example, if G ∼= H and G is abelian, then H is
abelian.

Example 3.34. 1. (Z/4Z,+) ∼= ({1, i,−1,−i},×)

2. D3
∼= S3

3. (R,+) ∼= (R+,×)

4. (Z/4Z,+) � (Z/3Z,+)

5. (Z/4Z,+) � V

Exercise 90. Suppose that ϕ : G→ H is an isomorphism. Show that

(a) ϕ−1 : H → G is an isomorphism

(b) ∀ g ∈ G, |ϕ(g)| = |g|

Proposition 3.35

Let G be a cyclic group. If G is infinite, then G ∼= Z. If G is finite, then G ∼= Z/mZwhere m = |G|.

Proof. Let g ∈ G be such that 〈g〉 = G.
Suppose first that g has infinite order. Define ϕ : Z→ G by ϕ(m) = gm. Note that ϕ is a homomorphism since:

ϕ(m+ n) = gm+n = gmgn = ϕ(m)ϕ(n)

That ϕ is surjective follows from Lemma 3.16. It is also injective since

ϕ(m) = ϕ(n) =⇒ gm = gn =⇒ gm−n = e =⇒ m− n = 0

Now suppose that g has finite order and let m = |g|. Define ψ : Z/mZ → G by ψ([a]m) = ga. Note that this map
is well-defined because

[a]m = [b]m =⇒ m | (a− b) =⇒ a− b = mk (for some k ∈ Z) =⇒ ga−b = gmk = ek = e =⇒ ga = gb
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It is clear that ψ is surjective (Lemma 3.16). For injectivity we have

ψ([a]m) = ψ([b]m) =⇒ ga = gb =⇒ ga−b = e =⇒ m | (a− b) =⇒ [a]m = [b]m

7.1 Exercises

Exercise 91. Show that the matrix group SO(2) is isomorphic to the group S1 = {z ∈ C : |z| = 1} of complex
numbers having modulus 1 (and operation given by multiplication of complex numbers).

Exercise 92. Show that if m divides n, then Dm is isomorphic to a subgroup of Dn.

Exercise 93. Show that:

(a) (R,+) and (R \ {0},×) are not isomorphic

(b) (Z,+) and (Q,+) are not isomorphic

(c) The additive group of rational numbers (Q,+) is not isomorphic to the multiplicative group of positive
rationals (Q+,×).

Exercise 94. Let H =
{[

1 a c
0 1 b
0 0 1

]
| a, b, c ∈ F3

}
6 GL(2,F3). Show that the group |H| = 27 and that all non-identity

elements have order 3. The group G = Z/3Z × Z/3Z × Z/3Z also has order 27 and has all non-identity elements
of order 3. AreH and G isomorphic?

8 Direct product

Definition 3.36. Let G and H be groups. The direct product of G and H is the group with underlying set the
cartesian product

G×H = {(g, h) | g ∈ G, h ∈ H}

and operation given by
(g1, h1) ∗ (g2, h2) = (g1g2, h1h2)

Exercise 95. (a) Show that (G×H, ∗) forms a group and that eG×H = (eG, eH).

(b) Show that if G and H are both abelian, then G×H is abelian

Example 3.37. 1. Z/2Z× Z/2Z is a (non-cyclic) group of size 4

2. Z/2Z× Z/2Z× Z/2Z, Z/2Z× Z/4Z and Z/8Z are all abelian groups of size 8. No two are isomorphic.

9 Cosets and Lagrange’s theorem

Definition 3.38. Let G be a group and H 6 G a subgroup. The set gH = {gh | h ∈ H} is called a left coset of H
in G. The set Hg = {hg | h ∈ H} is called a right coset of H in G.

Remark. 1. H itself is both a left and right coset: eH = He = H .

2. If g /∈ H , then gH is not a subgroup of G. Similarly, Hg is not a subgroup.

Example 3.39. 1. If G = Z and H = 3Z, there are three (left) cosets: 0 +H = [0]3, 1 +H = [1]3, 2 +H = [2]3.

2. Let G = S3 and H = {e, (123), (132)}. There are two left cosets:

eH = (123)H = (132)H = H and (12)H = (13)H = (23)H = {(12), (13), (23)}

There are two right cosets:

He = H(123) = H(132) = H and (12)H = H(13) = H(23) = {(12), (13), (23)}
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3. Let G = S3 and H = {e, (12)}. There are three left cosets:

eH = (12)H = H and (123)H = (13)H = {(123), (13)} and (132)H = (23)H = {(132), (23)}

There are three right cosets:

He = H(12) = H and H(123) = H(23) = {(123), (23)} and H(132) = H(13) = {(132), (13)}

Note that, in this example, the left and right cosets are not the same.

Lemma 3.40

Let G be a group and H 6 G a subgroup. Let a, b ∈ G.

a) (i) aH = bH ⇐⇒ a−1b ∈ H (ii) Ha = Hb ⇐⇒ ab−1 ∈ H

b) (i) The left cosets partition G. (ii) The right cosets partition G.

c) (i) The map aH → bH , ah 7→ bh is a bijection. (ii) The map Ha→ Hb, ha 7→ hb is a bijection.

Proof. We prove the statements for left cosets, and leave the right coset versions as an exercise.

aH = bH =⇒ b ∈ aH
=⇒ b = ah (for some b ∈ H)

=⇒ a−1b = h ∈ H

Conversely, suppose that a−1b ∈ H . Then

x ∈ aH =⇒ x = ah (for some h ∈ H) =⇒ x = b(a−1b)−1h =⇒ x ∈ bH (since (a−1b)−1 ∈ H)

x ∈ bH =⇒ x = bh (for some h ∈ H) =⇒ x = a(a−1b)h =⇒ x ∈ aH (since (a−1b) ∈ H)

Therefore (a) holds.
For (b) we need to show that every element of G is contained in exactly one coset. Let g ∈ G. There is at least one
coset that contains g since g ∈ gH . Suppose now that g ∈ kH . Our aim is to show that kH = gH . Using part (a)
we have

g ∈ kH =⇒ g = kh (for some h ∈ H) =⇒ k−1g ∈ H =⇒ kH = gH

For part (c), let f : aH → bH be the map f(ah) = bh. We have

f(ah1) = f(ah2) =⇒ bh1 = bh2 =⇒ h1 = h2 =⇒ ah1 = ah2

x ∈ bH =⇒ x = bh (for some h ∈ H) =⇒ x = f(ah)

Remark. 1. It follows from part (c) that ∀ g ∈ G, |gH| = |Hg| = |H|. That is, all cosets (left and right) have the
same size as H .

2. It follows from the lemma that the number of left cosets is equal to the number of right cosets.

Definition 3.41. Let G be a group and H 6 G a subgroup. The number of cosets of H in G is called the index of
H in G and is denoted by [G : H]. That is,

[G : H] = |{gH | g ∈ G}|

Example 3.42. (cf. Example 3.39)

1. [Z : 3Z] = 3 2. [S3 : 〈(123)〉] = 2 3. [S3 : 〈(12)〉] = 3

That the cosets partition G and all have the same size leads directly to the following fundamental and useful
result.
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Theorem 3.43: Lagrange’s Theorem

Let G be a finite group and H 6 G a subgroup. Then |G| = [G : H]|H|.

Proof. We saw in Lemma 3.40 that the left cosets partition G and all have size equal to |H|. Let k = [G : H] and
g1, . . . , gk ∈ G be such that the (distinct) cosets are g1H, . . . , gkH . Then

|G| = |g1H|+ · · ·+ |gkH| (cosets are disjoint)
= k|H| (|giH| = |H|)
= [G : H]|H|

Example 3.44. 1. |S3| = 6 = 2× 3 = [S3 : 〈(123)〉] |〈(123)〉|

2. |S3| = 6 = 3× 2 = [S3 : 〈(12)〉] |〈(12)〉|

Example 3.45. Since |S4| = 24 and |〈(12), (34)〉| = 4, we deduce that [S4 : 〈(12), (34)〉] = 6.

Corollary 3.46

Let G be a finite group and g ∈ G. Then g|G| = e and |g| | |G|.

Corollary 3.47

Let G be a finite group. If |G| is prime, then G ∼= Z/pZ, where p = |G|.

9.1 Exercises

Exercise 96. If H and K are subgroups of a group G and if |H| = 7 and |K| = 29, show that H ∩K = {eG}.

Exercise 97. Let G be the subgroup of GL(2,R) of the form

G =

{[
x y
0 1

]
| x, y ∈ R, x > 0

}
Let H be the subgroup of G defined by

H =

{[
z 0
0 1

]
| z ∈ R, z > 0

}
Each element of G can be identified with a point (x, y) of the (x, y)-plane. Use this to describe the right cosets of
H in G geometrically. Do the same for the left cosets of H in G.

Exercise 98. Consider the set of linear equations of the form AX = B, where X and B are column matrices, X is
the matrix of unknowns and A the matrix of coefficients. Let W be the subspace (and so additive subgroup) of Rn
which is the set of solutions of the homogeneous equations AX = 0. Show that the set of solutions of AX = B is
either empty or is a coset of W in the group (Rn,+).

Exercise 99. (a) Let H be a subgroup of index 2 in a group G. Show that if a, b ∈ G \H , then ab ∈ H .

(b) Let H be a subgroup of a group G with the property that if a, b ∈ G\H , then ab ∈ H . Show that H has index
2 in G.

Exercise 100. Determine all subgroups of the dihedral group D5.

Exercise 101. Determine all subgroups of the dihedral group D4 as follows:

(a) List the elements of D4 and hence find all of the cyclic subgroups.
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(b) Find two non-cylic subgroups of order 4 in D4.

(c) Explain why any non-cylic subgroup of D4, other than D4 itself, must be of order 4 and, in fact, must be one
of the two subgroups you have listed in the previous part.

Exercise 102. Let G denote the group of rotational symmetries of a regular tetrahedron. Note that |G| = 12.

(a) Show that G has subgroups of order 1,2,3,4 and 12.

(b) Show that G has no subgroup of order 6.

Exercise 103. Let G be a group of order 841 (which is (29)2). Show that if G is not cyclic, then every element g ∈ G
satisfies g29 = 1.

10 Normal subgroups and quotient groups

Given a group G and a subgroup H 6 G, we would like to define a group G/H in a way that mimics the
construction of (Z/mZ,+). The set will be the set of all (left) cosets, but what should the operation be? The
natural choice to make is to define aH ∗ bH = (ab)H . However, this is not always well-defined.
For example, consider G = S3 and H = {e, (12)}. The left cosets are C1 = {e, (12)}, C2 = {(23), (132)}, C3 =
{(13), (123)}. What should C1 ∗ C2 be? The coset (ab)H depends on the choice of a and b:

C1 ∗ C2 = eH ∗ (23)H = (e(23))H = (23)H = C2

but, also

C1 ∗ C2 = (12)H ∗ (23)H = ((12)(23))H = (123)H = C3

The solution is to put a condition on the subgroup H .

Definition 3.48. A subgroup H 6 G is called a normal subgroup if ∀g ∈ G, gH = Hg. This will be denoted
H �G.

Remark. It is immediate from the definition that {e}�G and G�G.

Exercise 104. Let H be a subgroup of a group G. Show that H is normal if and only if ∀g ∈ G∀h ∈ H, ghg−1 ∈ H .

Remark. If G is abelian, then all subgroups of G are normal.

Example 3.49. 1. 3Z� Z

2. 〈(123)〉� S3

3. SL(n,K) �GL(n,K)

4. 〈(12)〉 6 S3

5. 〈(123)〉 6 S4

Exercise 105. Let G = S4 and H = {e, (12)(34), (13)(24), (14)(23)}. Show that H �G.

Exercise 106. Let G be a group and H 6 G a subgroup. Show that if [G : H] = 2, then H �G.

Definition 3.50. Let G be a group and H �G a normal subgroup. The quotient group G/H is the group whose
elements are the (left) cosets G/H = {gH | g ∈ G} and whose operation is given by (g1H) ∗ (g2H) = (g1g2)H .

Exercise 107. Check that the above operation is well-defined and that G/H is a group and eG/H = eGH .

Remark. 1. If G is finite, from Lagrange’s Theorem we have |G/H| = |G|/|H|.

2. If G = Z and H = mZ, the notation G/H agrees with for our existing notation for Z/mZ.

Example 3.51. Let G = D4 and r, s ∈ D4 as in Definition 3.26. Then H = {e, r2} is a normal subgroup of G. The
multiplication table for D4/〈r2〉 is

eH rH sH rsH

eH eH rH sH rsH
rH rH eH rsH sH
sH sH rsH eH rH
rsH rsH sH rH eH
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In fact, D4/〈r2〉 ∼= (Z/2Z)× (Z/2Z) (see Example 3.57).

10.1 Exercises

Exercise 108. Show that the set of matrices

H =

{[
a b
0 d

]
: ad 6= 0

}
forms a subgroup of GL(2,R). Show that the set of matrices

K =

{[
1 b
0 1

]
: b ∈ R

}
forms a normal subgroup of H .

Exercise 109. Show that if K and L are normal subgroups of a group G, then K ∩ L is a normal subgroup of G.

Exercise 110. Let G be a group and n ∈ N. Show that if there is exactly one subgroup of order n, then it is normal.

Exercise 111. Find all of the normal subgroups of D4. (See Exercise 101.)

Exercise 112. The quaternion group Q8 is the subgroup of GL(2,C) consisting of the matrices {±U,±I,±J,±K}
where

U =

[
1 0
0 1

]
I =

[
i 0
0 −i

]
J =

[
0 1
−1 0

]
K =

[
0 i
i 0

]
(a) Verify that

I2 = J2 = K2 = −U, IJ = K,JK = I,KI = J

and hence that these 8 elements do give a subgroup of GL(2,C).

(b) Find all of the cyclic subgroups of Q8.

(c) Show that every subgroup of Q8, except Q8 itself, is cyclic.

(d) Show that all subgroups of Q8 are normal. (Even though Q8 is not abelian.)

(e) Are Q8 and D4 isomorphic?

Exercise 113. (a) Show that if G is an abelian group, then every quotient G/N is abelian.

(b) Show that if G is a cyclic group, then every quotient G/N is cyclic.

Exercise 114. Let R denote the group of real numbers with the operation of addition and let Q and Z denote the
subgroups of rational numbers and integers, respectively. Show that it is possible to regard Q/Z as a subgroup of
R/Z and show that this subgroup consists exactly of the elements of finite order in R/Z.

Exercise 115. Let H denote the subgroup of D8 generated by r4 (where, as in Definition 3.26, r is rotation by π/4).

(a) Show that H is normal.

(b) Write out the multiplication table of D8/H .

11 The first isomorphism theorem

Definition 3.52. Let ϕ : G→ H be a homomorphism. The kernel of ϕ is defined to be

ker(ϕ) = {g ∈ G | ϕ(g) = eH}

The image of ϕ is defined to be
im(ϕ) = {ϕ(g) | g ∈ G}

Example 3.53. 1. ϕ : Z→ Z, ϕ(m) = 4m. Then ker(ϕ) = {0} and im(ϕ) = 4Z.

2. ϕ : Z→ Z/6Z, ϕ(m) = [4m]6. Then ker(ϕ) = 3Z and im(ϕ) = {[0]6, [2]6, [4]6}.
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3. ϕ : GL(n,R)→ R×, ϕ(A) = det(A). Then ker(ϕ) = SL(n,R) and im(ϕ) = R×.

Exercise 116. Show that ker(ϕ) is a subgroup of G and that im(ϕ) is a subgroup of H .

Lemma 3.54

Let ϕ : G→ H be a homomorphism.

1. ker(ϕ) �G

2. ϕ is injective if and only if ker(ϕ) = {e}

Proof. The ker(ϕ) is a subgroup of G is shown in Exercise 116. To see that it is normal, let g ∈ G and k ∈ ker(ϕ).
Then ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g)−1 = ϕ(g)ϕ(h)ϕ(g)−1 = eH . Therefore gkg−1 ∈ ker(ϕ) and hence ker(ϕ) is normal
by 104.
If ϕ is injective, then k ∈ ker(ϕ) =⇒ ϕ(k) = ϕ(eG) =⇒ k = eG, and therefore ker(ϕ) = {eG}.
Now suppose that ker(ϕ) = {eG}. For g1, g2 ∈ G we have

ϕ(g1) = ϕ(g2) =⇒ ϕ(g1)ϕ(g2)−1 = eH =⇒ ϕ(g1g
−1
2 ) = eH =⇒ g1g

−1
2 ∈ ker(ϕ) =⇒ g1g

−1
2 = eG =⇒ g1 = g2

Therefore, if ker(ϕ) = {eG} then ϕ is injective.

Not only is the kernel of a homomorphism normal, every normal subgroup is the kernel of some homomorphism.

Lemma 3.55

Let G be a group and H � G a normal subgroup. Then the map ϕ : G → G/H , ϕ(g) = gH is a surjective
homomorphism and ker(ϕ) = H .

Remark. The above map G→ G/H is often called the projection map.

Proof. That the map is a surjective homomorphism is clear from the definition of the quotient groupG/H . Further,
k ∈ ker(ϕ) ⇐⇒ ϕ(k) = eG/H ⇐⇒ kH = H ⇐⇒ k ∈ H .

Theorem 3.56: First isomorpism theorem

Let ϕ : G→ H be a homomorphism and letK = ker(ϕ). Then the map ϕ̄ : G/K → H given by ϕ̄(gK) = ϕ(g)
is an injective homomorphism. It follows that G/ ker(ϕ) ∼= im(ϕ).

Proof. First we verify that the given map is well-defined:

g1K = g2K =⇒ g−11 (g2) ∈ K =⇒ ϕ(g−11 g2) = eH =⇒ ϕ(g1)−1ϕ(g2) = eH =⇒ ϕ(g1) = ϕ(g2)

Now that ϕ̄ is a homomorphism:

ϕ̄((g1K)(g2K)) = ϕ̄((g1g2)K) = ϕ(g1g2) = ϕ(g1)ϕ(g2) = ϕ̄(g1K)ϕ̄(g2K)

It is injective:
ϕ̄(gK) = eH =⇒ ϕ(g) = eH =⇒ g ∈ K =⇒ gK = K =⇒ gK = eG/K

Example 3.57. (cf. Example 3.51) Let ϕ : D4 → (Z/2Z)× (Z/2Z) be given by

ϕ(e) = e, ϕ(r) = (1, 0), ϕ(r2) = (0, 0), ϕ(r3) = (1, 0), ϕ(s) = (0, 1), ϕ(rs) = (1, 1), ϕ(r2s) = (0, 1), ϕ(r3s) = (1, 1)

Then ϕ is a surjective homomorphism and ker(ϕ) = {e, r2}. Therefore D4/〈r2〉 ∼= (Z/2Z)× (Z/2Z).

Exercise 117. Let ϕ : Z/8Z→ H be a homomorphism. Show that im(ϕ) is isomorphic to one of: {e}, Z/2Z, Z/4Z,
Z/8Z.
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Chapter 4

Linear Algebra II

1 Inner product spaces

In this chapter, unless explicitly stated otherwise, K will denote either R or C. We start by recalling the definition
of an inner product on a vector space. Having an inner product will enable us to define geometric notions such as
length.

Definition 4.1. Let V be a K-vector space. An inner product on V is a function V × V → K (with the image of
(u, v) being denoted 〈u, v〉) that satisfies the following conditions.

1) ∀u, v ∈ V 〈v, u〉 = 〈u, v〉

2) ∀u, v, w ∈ V ∀k, l ∈ K 〈ku+ lv, w〉 = k〈u,w〉+ l〈v, w〉

3) (a) ∀u ∈ V 〈u, u〉 > 0

(b) ∀u ∈ V 〈u, u〉 = 0 =⇒ u = 0

An inner product space is a vector space equipped with an inner product.

Remark. 1. The first condition implies that ∀u ∈ V, 〈u, u〉 ∈ R.

2. The first and second conditions imply that ∀u, v ∈ V ∀k ∈ K, 〈u, kv〉 = k〈u, v〉.

Exercise 118. Show, using the above axioms, that ∀u ∈ V , 〈0, u〉 = 0.

Exercise 119. Show that the following defines an inner product on C2.

〈(x1, x2), (y1, y2)〉 = x1y1 + ix1y2 − ix2y1 + 2x2y2

Example 4.2. 1. V = Rn equipped with the usual
dot product.

2. The standard inner product on Cn is
〈(u1, . . . , un), (v1, . . . , vn)〉 = u1v1 + · · ·+ unvn

3. V = Mn(K), 〈A,B〉 = tr(A(B)t)

4. V = C([a, b],C), 〈f, g〉 =
∫ b
a
f(t)g(t) dt

Definition 4.3. Let V be an inner product space.

1) The length (or norm) of a vector u ∈ V is defined to be ‖u‖ =
√
〈u, u〉

2) The distance function (or metric) on V is defined to be d : V × V → R>0 given by d(u, v) = ‖u− v‖

3) Two vectors u, v ∈ V are said to be orthogonal if 〈u, v〉 = 0

4) The orthogonal complement of a subspace W 6 V is defined to be W⊥ = {u ∈ V | ∀w ∈W 〈u,w〉 = 0}

5) A subset S ⊆ V is said to be orthonormal if

∀u, v ∈ S 〈u, v〉 =

{
1 if u = w

0 if u 6= w
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Example 4.4. 1. With V = C2, 〈(x1, x2), (y1, y2)〉 = x1y1 + ix1y2 − ix2y1 + 2x2y2 we have ‖(1, i)‖ =
√

5

2. V = C([0, 1],C), 〈f, g〉 =
∫ 1

0
f(t)g(t) dt. Let f, g ∈ V be given by f(t) = e2πit and g(t) = e4πit. Then ‖f‖ = 1

and 〈f, g〉 = 0.

3. V = C(R,R), 〈f, g〉 =
∫ 1

−1 f(t)g(t) dt, S = { 1√
2
, sin(πt), cos(πt), sin(2πt), cos(2πt), . . . } is an (infinite) or-

thonormal set.

Lemma 4.5

Let V be an inner product space and S ⊆ V a subset. If S is orthonormal, then S is linearly independent.

Proof. Let u1, . . . , un ∈ S and ki, . . . , kn ∈ K be such that
∑n
i=1 αiui = 0. Then for all j we have

0 = 〈0, uj〉 = 〈
n∑
i=1

kiui, uj〉 =

n∑
i=1

ki〈ui, uj〉 = kj

Exercise 120. Find the length of

(a) (2 + i, 3− 2i,−1) in the standard inner product on C3.

(b) x2 − 3x+ 1 ∈ P2(R) using inner product 〈p(x), q(x)〉 =
∫ 1

0
p(x)q(x) dx.

(c)
[
3 2
1 4

]
∈M2(C) using inner product 〈A,B〉 = tr(A(B)t).

Exercise 121. An exercise (from an anonymous textbook) claims that, for all elements u, v of an inner product
space, ‖u+ v‖+ ‖u− v‖ = 2‖u‖+ 2‖v‖. Prove that this is false. Can you guess what was intended?

2 Gram-Schmidt

Bases that are orthonormal are convenient to work with (see Proposition 4.8 below, for example). Although not
all vector spaces admit an orthonormal basis, all finite dimensional vector spaces do.

Theorem 4.6: Gram-Schmidt

Let V be a finite dimensional inner product space. Any orthonormal set S ⊂ V can be extended to an
orthonormal basis.

Remark. It follows that every finite dimensional inner product space has an orthonormal basis.

Proof. Let S ⊂ V be an orthonormal set. Then S is linearly independent and therefore |S| 6 dim(V ). Say S =
{ui, . . . , uk}. We want to show that there is a basis B with B ⊇ S. If S is a spanning set, we take B = S. Otherwise,
let w ∈ V \ span(S) and let v = w −

∑k
i=1〈w, ui〉ui. Note that v 6= 0 since w /∈ span(S). Also, ∀j ∈ {1, . . . , k} we

have

〈v, uj〉 = 〈w, uj〉 −
k∑
i=1

〈w, ui〉〈ui, uj〉 = 〈w, uj〉 − 〈w, uj〉 = 0

Defining uk+1 = v/‖v‖, the set {u1, . . . , uk, uk+1} is orthonormal. If S′ is a spanning set for V , then it is a basis
and we are done. Otherwise we repeat the above with S′ in place of S.

Example 4.7. Consider P2(R) quipped with the inner product 〈p(x), q(x)〉 =
∫ 1

0
p(x)q(x) dx. The set S = {1}

is an orthonormal set. We extend to an orthonormal basis in the way described in the above proof. Note that
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x /∈ span{1} and x2 /∈ span{1, x}. We have

v1 = x− 〈x, 1〉1 = x− 1

2

‖v1‖2 = 〈v1, v1〉 =

∫ 1

0

(x− 1

2
)2 dx =

1

12

u1 = v1/‖v1‖ =
√

3(2x− 1)

v2 = x2 − 〈x2, 1〉1− 〈x2, u1〉u1 = x2 − x+
1

6

‖v2‖2 =

∫ 1

0

(x2 − x+
1

6
)2 dx =

1

180

u2 = v2/‖v2‖ =
√

5(6x2 − 6x+ 1)

The set {1,
√

3(2x− 1),
√

5(6x2 − 6x+ 1)} is an orthonormal basis for P2(x).

Proposition 4.8

Let V be an inner product space and S = {u1, . . . , un} an orthonormal set. Let v ∈ V .

1)
∑n
i=1 |〈v, ui〉|2 6 ‖v‖2

2) If S is a basis, then v =
∑n
i=1〈v, ui〉ui

Proof. We have

‖v −
n∑
i=1

〈v, ui〉ui‖2 = 〈v −
n∑
i=1

〈v, ui〉ui, v −
n∑
i=1

〈v, ui〉ui〉

= 〈v, v〉 −
n∑
i=1

〈v, ui〉〈v, ui〉 −
n∑
i=1

〈v, ui〉〈ui, v〉+

n∑
i=1

n∑
j=1

〈v, ui〉〈v, uj〉〈ui, uj〉

= 〈v, v〉 −
n∑
i=1

|〈v, ui〉|2 −
n∑
i=1

|〈v, ui〉|2 +

n∑
i=1

|〈v, ui〉|2

= 〈v, v〉 −
n∑
i=1

|〈v, ui〉|2

Therefore 〈v, v〉 −
∑n
i=1 |〈v, ui〉|2 > 0. The final statement is left as an exercise.

Corollary 4.9: Cauchy-Schwartz

Let V be an inner product space. Then ∀u, v ∈ V, |〈u, v〉| 6 ‖u‖‖v‖

Proof. If u = 0, then the inequality holds since both sides are zero. So we can assume that u 6= 0. Apply Proposition
4.8 with S = {u/‖u‖}.

Example 4.10. 1. If we take V = Rn and the dot product, this becomes

|
n∑
i=1

aibi| 6 (

n∑
i=1

a2i )
1
2 (

n∑
i=1

b2i )
1
2

for any real numbers ai, bi.

2. If we take the inner product space of Example 4.4.2 above, then we have∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ 6 (∫ 1

0

f(t)2 dt

) 1
2
(∫ 1

0

g(t)2 dt

) 1
2

for any f, g ∈ C([0, 1],C).

Exercise 122. Let V be an inner product space. Show that the distance function d : V × V → R (defined by
d(u, v) = ‖u− v‖) satisfies the following properties:
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(a) d(u, v) = 0 ⇐⇒ u = v (b) d(u, v) = d(v, u) (c) d(u, v) 6 d(u,w) + d(w, v)

3 Orthogonal complements

Definition 4.11. Let V be an inner product space and let W 6 V be a subspace. The orthogonal complement of
W in V is denoted W⊥ and defined to be

W⊥ = {u ∈ V | ∀w ∈W, 〈u,w〉 = 0}

Exercise 123. Show that

(a) W⊥ is a subspace of V (b) W ∩W⊥ = {0} (c) W ⊆ (W⊥)⊥

Proposition 4.12

Let V be a finite dimensional inner product space and let W 6 V be a subspace. Then V = W ⊕W⊥.

Proof. We know that W ∩W⊥ = {0} from Exercise 123. It remains to show that V = W + W⊥. From Theorem
4.6 we know that W has an orthonormal basis, say {w1, . . . , wk}. Given u ∈ V define w =

∑k
i=1〈u,wi〉wi. Then

w ∈W and 〈u− w,wi〉 = 0 for all i. Therefore u− w ∈W⊥ and we have u = w + (u− w) ∈W +W⊥.

Remark. It follows from the proposition that dim(V ) = dim(W ) + dim(W⊥).

Exercise 124. Show that if V is a finite dimensional inner product space and W 6 V is a subspace of V , then
(W⊥)⊥ = W .

Example 4.13. This is an example in which W 6= (W⊥)⊥. Denote by `2 the vector space of all square-summable
real-valued sequences, that is

`2 = {(x1, x2, . . . ) | xi ∈ R and
∞∑
i=1

|xi|2 converges}

The following is an inner product on `2

〈(x1, x2, . . . ), (y1, y2, . . . )〉 =

∞∑
i=1

xiyi

Let W be the subspace of `2 consisting of all sequences that are eventually zero, that is,

W = {(x1, x2, . . . ) | xi ∈ R, ∃N ∈ N such that i > N =⇒ xi = 0}

Now define v ∈ `2 to be the sequence v = (1/i)i∈N. Clearly, v /∈ W , however v ∈ (W⊥)⊥ because for any
(ξi) ∈W⊥ we have

〈v, ξ〉 =

∞∑
i=1

ξivi = lim
N→∞

N∑
i=1

ξivi = lim
N→∞

〈ξ, ui〉 = lim
N→∞

0 = 0

where ui ∈W is the sequence given by (ui)j =

{
vj j 6 i

0 j > i

Therefore W $ (W⊥)⊥.

4 Adjoint transformations

Definition 4.14. Let V be an inner product space and f : V → V a linear transformation. An adjoint of f is a
linear transformation f∗ : V → V satisfying

∀u, v ∈ V 〈f(u), v〉 = 〈u, f∗(v)〉

For a matrix A ∈Mn(K) the notation A∗ is used to denote the matrix A∗ = (A)t.
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Lemma 4.15

Let V be an inner product space and f : V → V a linear transformation.

1. If an adjoint of f exists, it is unique. (This justifies the notation f∗.)

2. If V is finite dimensional, then an adjoint of f exists.

Proof. For the first part, suppose that g, h : V → V are such that

∀u, v ∈ V 〈f(u), v〉 = 〈u, g(v)〉 = 〈u, h(v)〉

Let v ∈ V and define u = g(v)− h(v). We have

〈u, u〉 = 〈u, g(v)〉 − 〈u, h(v)〉
= 〈f(u), v〉 − 〈f(u), v〉
= 0

From which it follows that g(v) = h(v). Since this holds for all v ∈ V , we have that g = h.
We now establish the second part. Since V is finite dimensional, there is an orthonormal basis. Let B = {b1, . . . , bn}
be an orthonormal basis for V and let A = [f ]B. Let g : V → V be the linear transformation determined by the
condition that [g]B = A∗. We will now show that g is an adjoint for f . Denote the entries in the matrix A by Aij .

〈f(bi), bj〉 = 〈
n∑
k=1

Akibk, bj〉 =

n∑
k=1

Aki〈bk, bj〉 = Aji

〈bi, g(bj)〉 = 〈bi,
k∑
i=1

(A∗)kjbk〉 =

k∑
i=1

(A∗)kj〈bi, bk〉 = (A∗)ij = Aji

Therefore, for all i, j ∈ {1, . . . , n}we have 〈f(bi), bj〉 = 〈bi, g(bj)〉. It follows that for all u, v ∈ V we have 〈f(u), v〉 =
〈u, g(v)〉.

Remark. As part of the above proof we showed that [f∗]B = ([f ]B)∗ for any orthonormal basis B of a finite dimen-
sional V .

Example 4.16. 1. f : C2 → C2, f(x, y) = (x, 0) has adjoint f∗ = f .

2. f : R2 → R2, given by a rotation has adjoint f∗ = f−1

3. Let W be as in Example 4.13. The linear transformation f : W → W given by f(x1, x2, . . . ) = (0, x1, x2, . . . )
has adjoint given by f∗(x1, x2, . . . ) = (x2, x3, . . . ).

4. Let V = {f : R → R | f is infinitely differentiable and ∀n ∈ Z f(x + n) = f(x)} with inner product
〈f, g〉 =

∫ 1

0
f(t)g(t) dt. Let ∆ : V → V be given by ∆(f) = d2f

dt2 . Then ∆∗ = ∆.

Lemma 4.17: Properties of the adjoint

Let V be an inner product space and let f, g : V → V be two linear transformations and k ∈ K. Then

1. (f + g)∗ = f∗ + g∗

2. (kf)∗ = kf∗

3. (f ◦ g)∗ = g∗ ◦ f∗

4. (f∗)∗ = f

Exercise 125. Write out a proof of the above lemma. Note that there is no assumption that V be finite dimensional,
merely that f∗ and g∗ exist.

Definition 4.18. Let f : V → V be a linear transformation on an inner product space. We say that f is:

1. self-adjoint if f∗ = f (also called symmetric if K = R or hermitian if K = C)

2. isometric if f∗ ◦ f = IdV (also called orthogonal if K = R or unitary if K = C)

3. normal if f∗ ◦ f = f ◦ f∗
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Remark. It follows from the definitions that

1. If f is self-adjoint, then it is normal.

2. If V is finite dimensional and f is an isometry, then f∗ = f−1 and f is normal.

Example 4.19. Considering the linear transformations in Example 4.16 we see that:

1. f is self-adjoint and therefore normal,

2. f is an isometry and therefore normal (since R2 is finite dimensional),

3. f is an isometry since f∗ ◦ f = Id, but f is not invertible and not normal,

4. ∆ is self-adjoint and therefore normal.

Lemma 4.20

Let f : V → V be a linear transformation on an inner product space. The following are equivalent:

1. f∗ ◦ f = IdV (i.e., f is an isometry as defined above)

2. ∀u, v ∈ V , 〈f(u), f(v)〉 = 〈u, v〉

3. ∀v ∈ V , ‖f(v)‖ = ‖v‖

Proof. If the first holds, then we have 〈f(u), f(v)〉 = 〈u, f∗ ◦ f(v)〉 = 〈u, IdV (v)〉 = 〈u, v〉, so the second holds.
If the second holds, then we have ‖f(v)‖2 = 〈f(v), f(v)〉 = 〈v, v〉 = ‖v‖2, so the third holds.
Now suppose that the third condition holds and define g = f∗ ◦ f − IdV . We will show that g = 0. From Lemma
4.17 we have that g is self-adjoint: g∗ = (f∗ ◦ f)− Id∗V = f∗ ◦ (f∗)∗ − IdV = f∗ ◦ f − IdV = g. For any u, v ∈ V we
have

〈g(v), v〉 = 〈f∗ ◦ f(v)− v, v〉 = 〈f∗ ◦ f(v), v〉 − 〈v, v〉 = 〈f(v), f(v)〉 − 〈v, v〉 = ‖f(v)‖2 − ‖v‖2 = 0

and therefore

0 = 〈g(u+ v), u+ v〉 = 〈g(u), v〉+ 〈g(v), u〉 = 〈g(u), v〉+ 〈v, g(u)〉 = 〈g(u), v〉+ 〈g(u), v〉

Letting v = g(u) we obtain

0 = 〈g(u), g(u)〉+ 〈g(u), g(u)〉 = 2〈g(u), g(u)〉

Therefore g(u) = 0 for all u ∈ V and hence g = 0.

Lemma 4.21

Let f : V → V be a linear transformation on a inner product space andW 6 V a subspace. IfW is f -invariant,
then W⊥ is f∗-invariant.

Proof. Let u ∈W and v ∈W⊥. Then 〈u, f∗(v)〉 = 〈f(u), v〉 = 0 since f(u) ∈W and v ∈W⊥.

4.1 Exercises

Exercise 126. If A is a transition matrix between orthonormal bases, show that A is isometric (i.e., A∗A = I).

Exercise 127. Suppose that f is a linear transformation on an inner product space V . Prove the following.

(a) If f is self-adjoint, then all eigenvalues of f are real.

(b) If f is isometric, then all eigenvalues of f have absolute value 1.
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Exercise 128. Suppose that f is a linear transformation on a finite dimensional inner product space V . Show that
the range of f∗ is the orthogonal complement of the kernel of f . Deduce that the rank of f is equal to the rank of
f∗. Deduce that the row-rank of a square matrix is equal to its column rank.

Exercise 129. Consider the inner product space P(R) having inner product 〈p(x), q(x)〉 =
∫ 1

0
p(x)q(x) dx. Show

that the linear transformation δ : P(R) → P(R) given by differentiation has no adjoint. (Hint: Try to find what
δ∗(1) should be.)

Exercise 130. Show that a triangular matrix which is self-adjoint or unitary is diagonal.

Exercise 131. Let V be a finite dimensional inner product space and f a linear transformation on V . Show that,
given a vector w ∈ V , there exists a unique vector w1 ∈ V such that 〈f(v), w〉 = 〈v, w1〉 for all v ∈ V . (Hint: First
show that it will be enough to consider only those v that lie in some fixed orthonormal basis of V .)

Exercise 132. Let g be a self-adjoint linear transformation on a finite dimensional inner product space V . Suppose
that 〈g(v), v〉 = 0 for all v ∈ V .

(a) Show that 〈g(u), w〉+ 〈g(w), u〉 = 0 for all u,w ∈ V .

(b) Deduce that g is the zero linear transformation if the space is a real space. (This is the time to use the fact
that g is self-adjoint).

(c) Assume now that the space is complex; deduce that 〈g(u), w〉 is imaginary for all u,w ∈ V .

(d) Deduce that 〈g(iu), w〉 is imaginary for all u,w ∈ V and so 〈g(u), w〉 = 0 for all u,w ∈ V .

(e) Deduce that g is zero in the complex case also.

Exercise 133. Let f be a linear transformation on a finite dimensional inner product space V . Suppose that W is
an f -invariant and f∗-invariant subspace of V . Show that (f |W )

∗
= (f∗) |W .

Exercise 134. Let f be an isometry on a finite dimensional inner product space V . Suppose thatW is an f -invariant
subspace of V . Show that fW is also an isometry.

Exercise 135. Let V be a two dimensional real inner product space and let f be an isometry of V . Show that f can
be represented by a matrix of the form

[
cos θ − sin θ
ε sin θ ε cos θ

]
where ε = ±1.

5 Spectral theorem

We now come to the question of when a linear transformation can be diagonalised. We have seen necessary and
sufficient conditions in terms of the minimal polynomial of the transformation. The spectral theorem gives a
sufficient condition for diagonalisability (without reference to the minimal polynomial).

Theorem 4.22: Spectral theorem for normal linear transformations

Let V be a finite dimensional, complex inner product space vector space and let f : V → V be a linear
transformation. If f is normal, then there exists an orthonormal basis B for V such that [f ]B is diagonal.

Proof. We use (strong) induction on n = dim(V ). If n = 1, then the statement is trivially true. Assume now that
n > 1 and that the statement holds for all cases in which the dimension is less than n. Let λ ∈ C be an eigenvalue
of f and Vλ the corresponding eigenspace. By Proposition 4.12 we have V = Vλ⊕V ⊥λ . Note that dim(Vλ) < dim(V )
and dim(V ⊥λ ) < dim(V ). We will show that both Vλ and V ⊥λ are f -invariant, and then apply Lemma 2.16. That Vλ
is f -invariant is clear (see Exercise 42). To show that V ⊥λ is f -invariant, we note first that Vλ is f∗-invariant since
(using that f is normal):

u ∈ Vλ =⇒ f(f∗(u)) = f∗(f(u)) = f∗(λu) = λf∗(u) =⇒ f∗(u) ∈ Vλ

That V ⊥λ is f -invariant then follows from Lemma 4.21 since (f∗)∗ = f . Let f1 : Vλ → Vλ and f2 : V ⊥λ → V ⊥λ
be the restrictions of f to Vλ and V ⊥λ respectively. By the induction hypothesis, there exist orthonormal bases B1
and B2 for Vλ and V ⊥λ respectively, such that [fi]Bi

is diagonal. By Lemma 2.16 B = B1 ∪ B2 is a basis for V and
[f ]B = [f1]B1 ⊕ [f2]B2 . In particular, [f ]B is diagonal.
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Theorem 4.23: Spectral theorem for normal matrices

Let A ∈ Mn(C) be such that AA∗ = A∗A. There exists a matrix U ∈ Mn(C) such that U∗U = I (i.e., U is
unitary) and U∗AU is diagonal.

Proof. Define f : Mn×1 →Mn×1 by f(X) = AX and apply Theorem 4.22. Letting U be the matrix whose columns
are the elements of B, we have [f ]B = U−1AU . That U−1 = U∗ follows from the fact that B is an orthonormal
basis.

Remark. The columns of U form an orthonormal basis and the diagonal entries or U∗AU are exactly the eigenval-
ues of A.

Example 4.24. Let A =

[
1 −1
1 1

]
. Then A∗A = AA∗. By the spectral theorem there is unitary matrix U ∈ M2(C)

such that U∗AU is diagonal. To find such a U we calculate an orthonormal basis of eigenvectors. The eigenvalues
of the matrix A are 1− i, 1 + i. An orthonormal basis for the (1− i)-eigenspace is {

[
1/
√
2

i/
√
2

]
}. An orthonormal basis

for the (1 + i)-eigenspace is {
[
i/
√
2

1/
√
2

]
}. So we can take

U =
1√
2

[
1 i
i 1

]
D =

[
1− i 0

0 1 + i

]
Note however that the matrix A is not diagonalisable over R. That is, there does not exist an invertible matrix
P ∈M2(R) such that P−1AP is diagonal.

For real inner product spaces we have the following.

Theorem 4.25: Spectral theorem for symmetric linear transformations

Let V be a finite dimensional real inner product space and let f : V → V be a self-adjoint linear transforma-
tion. Then there exists an orthonormal basis B of V such that [f ]B is diagonal.

Outline of proof. We use induction on n = dim(V ). If n = 1, the result holds trivially.
Since f is self-adjoint, all eigenvalues are real (Exercise 127). Let λ ∈ R be an eigenvalue of f and let u ∈ V be
such that f(u) = λu. LetW = span(u). Then V = W ⊕W⊥ (Proposition 4.12) andW andW⊥ are both f -invariant
(Lemma 4.21). By the induction hypothesis, there exists an orthonormal basis C = {c1, . . . , cn−1} for W⊥ such
that D = [f |W⊥ ]C is diagonal. Letting B = {c1, . . . , cn−1, u/‖u‖} we have that [f ]B = D ⊕ [λ] (Lemma 2.16). It
remains to show that B is orthonormal. This follows from the fact that both C and {u/‖u‖} are orthonormal and
that 〈ci, u〉 = 0 for all i.

5.1 Exercises

Exercise 136. Show that if A = UDU∗ where D is a diagonal matrix and U is unitary, then A is a normal matrix.
(The spectral theorem implies that the converse is true).

Exercise 137. Show that a linear transformation f : V → V on a complex inner product space V is normal if and
only if 〈f(u), f(v)〉 = 〈f∗(u), f∗(v)〉 for all u, v ∈ V .

Exercise 138. (a) Show that every normal matrix A has a square root; that is, a matrix B so that B2 = A.

(b) Must every complex square matrix have a square root?

Exercise 139. Two linear transformations f and g on a finite dimensional complex inner product space are uni-
tarily equivalent if there is a unitary linear transformation u such that g = u−1fu. Two matrices are unitarily
equivalent if their linear transformations, with respect to some fixed orthonormal basis, are unitarily equivalent.
Decide whether or not the following matrices are unitarily equivalent.

(a)
[
1 1
0 1

]
and

[
0 0
1 0

]
(b)

0 0 2
0 0 0
2 0 0

 and

1 1 0
1 1 0
0 0 −1
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(c)

 0 1 0
−1 0 0
0 0 −1

 and

−1 0 0
0 i 0
0 0 −i


Exercise 140. Are f and f∗ always unitarily equivalent?

Exercise 141. If f is a normal linear transformation on a finite dimensional complex inner product space, and if
f2 = f3, show that f = f2. Show also that f is self-adjoint.

Exercise 142. If f is a normal linear transformation on a finite dimensional complex inner product space show
that f∗ = p(f) for some polynomial p.

Exercise 143. If f and g are normal linear transformations on a finite dimensional complex inner product space
and fg = gf , show that f∗g = gf∗. (Harder) Prove that the same result holds assuming only that f is normal.

Exercise 144. Let f be a linear transformation on a finite dimensional complex inner product space. Suppose that
f commutes with f∗f ; that is, that f(f∗f) = (f∗f)f . We aim to show that f is normal.

(a) Show that f∗f is normal.

(b) Choose an orthonormal basis so that the matrix of f∗f takes the block diagonal form diag(A1, . . . , Am) where
Ai = λiImi

and λi = λj only if i = j.

(c) Show that f has matrix, with respect to this basis, of the block diagonal form diag(B1, . . . , Bm) for some
mi ×mi matrices Bi.

(d) Deduce that B∗iBi = Ai and so that B∗iBi = BiB
∗
i .

(e) Deduce that f is normal.
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Chapter 5

Groups II

1 Group actions

Definition 5.1. Let G be a group and X a set. A left action of of G on X is a function G×X → X (with the image
of (g, x) being denoted g · x) satisfying

1) ∀x ∈ X, eG · x = x

2) ∀x ∈ X ∀g, h ∈ G, (gh) · x = g · (h · x)

We also say that G acts on X and denote this by Gy X .

Example 5.2. 1. Sn y {1, 2, . . . , n}, for example (132) · 3 = 2

2. Dn acts on the vertices of a regular n-gon

3. GL(n,K) acts on Kn (having fixed a basis for Kn)

4. GL(n,K) acts on {W |W 6 Kn} (having fixed a basis for Kn)

5. Z/2Z y C, [0] · z = z, [1] · z = z

Example 5.3. Here are two important examples in which a group acts on itself.

1. Gy G by left multiplication: g · x = gx

2. Gy G by conjugation: g · x = gxg−1

Remark. Let SX denote the group of all bijections from X to X (with operation given by function composition).
An action Gy X corresponds to a homomorphism G→ SX in the following sense.

Exercise 145. (a) Suppose that a group G acts on a set X .

(i) Let g ∈ G. Show that the map ϕg : X → X , ϕg(x) = g · x is a bijection.

(ii) Show that the map Φ : G→ SX given by Φ(g) = ϕg is a homomorphism.

(b) Suppose that G is a group, X a set and that Ψ : G → SX is a homomorphism. Show that there is an action
of G on X defined by g · x = Ψ(g)(x).

Theorem 5.4: Cayley’s Theorem

Let G be a finite group and n = |G|. Then G is isomorphic to a subgroup of Sn.

Proof. Consider the action of G on itself by left multiplication. From Exercise 145 there is a corresponding homo-
morphism Φ : G→ Sn. The homomorphism Φ is injective since

Φ(g) = e =⇒ g · x = x (for all x ∈ G) =⇒ geG = eG =⇒ g = eG

Because Φ is injective, G ∼= im(Π).
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2 Orbits and stabilisers

Definition 5.5. Suppose that Gy X and let x ∈ X .

1) The orbit of x is the set O(x) = {g · x | g ∈ G} ⊆ X (sometimes denoted G · x)

2) The stabiliser of x is Stab(x) = {g ∈ G | g · x = x}

3) x ∈ X is a fixed point if Stab(x) = G

4) The action is transitive if ∀x, y ∈ X ∃g ∈ G, g · x = y
(i.e., there is only one orbit)

Exercise 146. Show that Stab(x) is a subgroup of G.

Example 5.6. 1. S3 y {1, 2, 3}, Stab(2) = {e, (13)}, O(2) = {1, 2, 3}, the action is transitive

2. G = 〈(123)〉 6 S5, X = {1, 2, 3, 4, 5}, Stab(2) = {e}, O(2) = {1, 2, 3}, Stab(5) = G, O(5) = {5}

3. X = {1, 2, 3, 4} (identified with the vertices of a square), G = D4, Stab(1) = {e, rs}, O(1) = {1, 2, 3, 4}
(using our standing notational conventions for the dihedral groups as in section 3.6.)

4. Gy G by left multiplication, Stab(g) = {e}, O(g) = G

5. Gy G by conjugation, Stab(g) is called the centraliser of g

CG(g) = {h ∈ G | hg = gh}

O(g) = {hgh−1 | h ∈ G} is called the conjugacy class of g.

Lemma 5.7

Let G be a group acting on a set X . The orbits partition X .

Proof. We need to show that every element of X is contained in exactly one orbit. Clearly x = e · x ∈ O(x). We
need to show that if O(x) ∩ O(y) 6= ∅, then O(x) = O(y). Let z ∈ O(x) ∩ O(y). Then there are g, h ∈ G such that
z = g · x and z = h · y. Then x = g−1 · z, y = h−1 · z, and

w ∈ O(x) =⇒ w = k · x for some k ∈ G
=⇒ w = k · (g−1 · z) = (kg−1) · z = (kg−1) · (h · y) = (kg−1h) · y
=⇒ w ∈ O(y)

So O(x) ⊆ O(y). Similarly O(y) ⊆ O(x).

Exercise 147. Any subgroup G of S4 acts on the set {1, 2, 3, 4} in a natural way. For each choice of G given below,
describe the orbits of the action and the stabilizer of each point.

(a) G = 〈(123)〉

(b) G = 〈(1234)〉

(c) G = 〈(12), (34)〉

(d) G = S4

(e) G = 〈(1234), (13)〉 (which is isomorphic to D4)

Exercise 148. Let X = R3 and let v 6= 0 be a fixed element of X . Show that

α · x = x+ αv (x ∈ X,α ∈ R)

defines an action of the additive group of the real numbers on X . Give a geometrical description of the orbits.

Exercise 149. Find the conjugacy classes in the quaternion group described in Exercise 112.

Definition 5.8. LetG be a group. Two elements a, b ∈ G are called conjugates of one another if ∃g ∈ G, gag−1 = b.
This is equivlalent to the condition that a and b lie in the same orbit of the conjugacy action of G on itself.

Exercise 150. Find the conjugates of the following:
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(a) (123) in S3

(b) (123) in S4

(c) (1234) in S4

(d) (1234) in Sn where n > 4

(e) (12 . . .m) in Sn where n > m

Exercise 151. Let τ ∈ Sn. Suppose that σ = (12 . . . k). Show that τστ−1 = (τ(1)τ(2) . . . τ(k)). What is the result if
σ is replaced by a general element of Sn? Use this to describe the conjugacy classes of Sn.

Exercise 152. Suppose that g and h are conjugate elements of a groupG. Show thatCG(g) andCG(h) are conjugate
subgroups of G.

Exercise 153. Determine the centralizer in GL(3,R) of the following matrices:

(a)

1 0 0
0 2 0
0 0 3

 (b)

1 0 0
0 1 0
0 0 2

 (c)

1 1 0
0 1 0
0 0 2

 (d)

1 1 0
0 1 0
0 0 1

 (e)

1 1 0
0 1 1
0 0 1



3 The orbit-stabiliser relation and applications

Theorem 5.9: The orbit-stabiliser relation

Let G be a group and G y X an action on a set X . Denote by G/Stab(x) the set of left cosets of Stab(x).
Then, for all x ∈ X the map G/Stab(x)→ O(x) given by g Stab(x) 7→ g · x is a bijection. If G is finite, then

|G| = |O(x)| |Stab(x)|

Proof. Denote the map by Φ. We first show that the map is well-defined.

g Stab(x) = hStab(x) =⇒ g−1h ∈ Stab(x) =⇒ (g−1h) · x = x =⇒ h · x = g · x

Now that the map is injective.

Φ(g Stab(x)) = Φ(hStab(x)) =⇒ g · x = h · x =⇒ g−1 · (g · x) = g−1 · (h · x) =⇒ (g−1g) · x = (g−1h) · x
=⇒ x = (g−1h) · x =⇒ g−1h ∈ Stab(x)

=⇒ g Stab(x) = hStab(x)

And surjective:

y ∈ O(x) =⇒ y = g · x (for some g ∈ G) =⇒ y = Φ(g Stab(x))

If G is finite, then we have:

|G| = [G : Stab(x)] |Stab(x)| (by Lagrange’s theorem)
= |O(x)| |Stab(x)| (since Φ is a bijection)

We’ll now look at some consequences of the orbit-stabiliser relation. The first are contained in the following
exercises.

Exercise 154. Let G be the subgroup of S15 given by

G = 〈(1, 12)(3, 10)(5, 13)(11, 15), (2, 7)(4, 14)(6, 10)(9, 13), (4, 8)(6, 10)(7, 12)(9, 11)〉

Find the orbits in X = {1, . . . , 15} under the action of G. Deduce that the order of G is a multiple of 60.

Exercise 155. If a groupG of order 5 acts on a setX with 11 elements, must there be an element of the setX which
is left fixed by every element of the group G? What if G has order 15 and X has 8 elements?

The next result is a result of applying the orbit-stabiliser relation to the conjugacy action of a group on itself. First
a definition.
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Definition 5.10. Let G be a group. The centre of G, denoted Z(G), is the set of elements that commute with all
elements of G. That is, Z(G) = {g ∈ G | ∀h ∈ G, gh = hg}.

Remark. The centre of G consists of all fixed points of the action of G on itself by conjugation.

Example 5.11.

1. Z(Z) = Z 2. Z(D4) = {e, r2} 3. Z(S3) = {e}

Exercise 156. Show that Z(G) is a normal subgroup of G.

Exercise 157. Suppose that G is a group with centre Z and is such that G/Z is a cyclic group. Show that there
exists an element h ∈ G such that every element of G can be written in the form g = hiz with i ∈ Z and z ∈ Z.
Deduce that G is commutative.

Theorem 5.12

Let G be a group of size pn where p ∈ N is prime and n ∈ N. Then |Z(G)| > p.

Proof. Consider G acting on itself by conjugation. The orbits partition G and Z(G) is the union of all orbits having
size 1. Therefore, G is a disjoint union

G = Z(G) ∪ C1 ∪ C2 . . . Ck (∗)

where the Ci are the orbits having size at least 2. By the orbit-stabiliser relation we have that for all i, |Ci| | |G|.
Therefore p | |Ci| for all i, and hence p | |Z(G)| by (∗).

Theorem 5.13

Let G be a group of size pn where p ∈ N is prime and n ∈ N. Suppose that G acts on a finite set X . If p does
not divide |X|, then the action has a fixed point.

Proof. Denote the orbits of the action as O1, O2,. . . , Ok. By the orbit-stabiliser relation |Oi| | |G| = pn. Therefore
∀i, |Oi| = 1 or p | |Oi|. Suppose, for a contradiction, that there are no orbits of size 1. Then we would have p | |X|
since |X| = |O1|+ · · ·+ |Ok|.

Example 5.14. Let p ∈ N be a prime. Recall that Fp denotes the filed with p elements. Let G 6 GL(3,Fp) be given
by

G =


1 a b

0 1 c
0 0 1

 | a, b, c ∈ Fp


Note the |G| = p3. Let X be the set of all 1-dimensional subspaces of F3p. Then G acts on X (since GL(3,Fp)
does). Explicitly, after fixing a basis B for F3p we identify F3p with M3×1(Fp) and define g · span(u) = span(gu). The
number of 1-dimensional subspaces is given by

|X| = p3 − 1

p− 1
= p2 + p+ 1

Since p does not divide p2 + p + 1 we conclude (from the above theorem) that there is a 1-dimensional subspace
that is fixed by G.

Theorem 5.15

Let p ∈ N be prime and G a group. If |G| = p2, then either G ∼= Z/p2Z or G ∼= Z/pZ× Z/pZ.

Remark. As a consequence, if |G| = p2 then G is abelian.
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Proof. Suppose that G is not cyclic. We need to show that G ∼= Z/pZ × Z/pZ. By Theorem 5.12, |Z(G)| > 1. Let
g ∈ Z(G) \ {e}. Since G is not cyclic and g 6= e, we have |g| = p. Let H = 〈g〉. Then H � G since g ∈ Z(G). By
Lagrange’s Theorem, |G/H| = |G|/|H| = p. HenceG/H is cyclic. Let x ∈ G be such that xH generatesG/H . Then

G/H = {eH, xH, x2H, . . . , xp−1H}

It follows that 〈x, g〉 = G.
Define a map ϕ : Z/pZ × Z/pZ → G by ϕ([a]p, [b]p) = xagb. Since both x and g have order p, this map is well-
defined. It is a homomorphism since

ϕ(([a1]p, [b1]p) + ([a2]p, [b2]p)) = ϕ(([a1 + a2]p, [b1 + b2]p))

= xa+1+a2gb1+b2 = xa1xa2gb1gb2

= xa1gb1xa2gb2 (since xg = gx)
= ϕ([a1]p, [b1]p)ϕ([a2]p, [b2]p)

Since x, g ∈ im(ϕ) and 〈x, g〉 = G, the homomorphism is surjective, It is therefore also injective since |G| =
|Z/pZ× Z/pZ| = p2.

Exercise 158. Describe the finite groups having exactly one or exactly two or exactly three conjugacy classes.

4 Cauchy’s Theorem

We know from Lagrange’s theorem that if g ∈ G, then |g| divides |G|. The converse is in general false, that is,
m | |G| does not imply that there exists an element in G of order m. But it does hold for prime divisors.

Theorem 5.16: Cauchy’s theorem

Let G be a finite group and p ∈ N a prime. If p divides |G| , then there exists g ∈ G with |g| = p.

Proof. Let X = {(x1, . . . , xp) ∈ Gp | x1x2 . . . xp = e}. Note that |X| = |G|p−1 and therefore p | |G|. The group Z/pZ
acts on X by cyclic permutation, that is:

[1]p · (x1, . . . , xp) = (xp, x1, . . . , xp−1) [2]p · (x1, . . . , xp) = (xp−1, xp, x1, . . . , xp−2) etc

Note that a fixed point of this action is of the form (x, x, . . . , x) with xp = 1. One such fixed point is (e, . . . , e). Our
goal is to show that there exists at least one other orbit of size 1. By the orbit stabiliser relation, all orbits have size
that divides |Z/pZ| = p. If there were only one orbit of size 1, we would have |X| = 1 + kp for some k ∈ N which
contradicts the fact that p | |X|.

Exercise 159. Show that if p is a prime number, then any group of order 2p must have a subgroup of order p and
that this subgroup must be normal.

Exercise 160. Let p ∈ N be prime. Show that, up to isomorphism, there are exactly two groups of order 2p.

5 Burnside orbit counting lemma

Definition 5.17. Given an action Gy X and an element g ∈ G, the fixed point set of g is

Xg = {x ∈ X | g · x = x}

Lemma 5.18: Burnside counting lemma

Let G be a finite group acting on a finite set X . Let N be the number of orbits of the action. Then

N =
1

|G|
∑
g∈G
|Xg|
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Proof. Consider the set S = {(g, x) ∈ G×X | g · x = x}. We will count the elements on S in two ways. Firstly,

|S| =
∑
g∈G
|{x ∈ X | g · x = x}| =

∑
g∈G
|Xg| (1)

For the second count denote the orbits of the action by O1, . . . , ON . We have

|S| =
∑
x∈X
|{g ∈ G | g · x = x}| =

∑
x∈X
|Stab(x)|

=

N∑
i=1

∑
x∈Oi

|Stab(x)| (since the orbits partition X)

=

N∑
i=1

∑
x∈Oi

|G|
|Oi|

( by the orbit-stabiliser relation)

= |G|
N∑
i=1

∑
x∈Oi

1

|Oi|
= |G|

N∑
i=1

1 = N |G| (2)

Equating (1) and (2) gives the desired result.

Example 5.19. How many ways are there to colour the sides of a square using two colours? There are a total of 24

different colourings, but some are equivalent in the sense that one can be obtained from the other by applying a
reflection or a rotation.
More precisely, if we let X denote the set of all colourings, then |X| = 16 and D4 acts on X . The number of
"different" (i.e., non-equivalent) colourings is given by the number of orbits. To find the number of orbits, we can
apply the Burnside Lemma. For that we need to consider the set Xg .

g ∈ D4 Xg |Xg|
e all colourings 16

r, r3 , 2

r2 , , , 4

s , , , , , , , , 8

r2s , , , , , , , , 8

rs , , , 4

r3s , , , 4

The number of colourings (up to symmetry) is
given by the number of orbits, which by Burnside’s
lemma is:

1

|D4|
∑
g∈D4

|Xg| = 1

8
(16 + 2 + 2 + 4 + 8 + 8 + 4 + 4)

=
48

8
= 6

Up to symmetry, there are six different colourings of
the square.

Exercise 161. There are 70 (which is
(
8
4

)
) ways to colour the edges of an octagon so that four edges are green and

four edges are red. Let X be the set of such coloured octagons (so |X| = 70). The group D8 acts on X and two
colourings are considered to be equivalent if they are in the same orbit. Use Burnside’s orbit counting lemma to
find the number of equivalence classes (i.e., orbits).

6 Sylow Theorems

The Sylow theorems are an important tool for understanding finite groups. We know from Cauchy’s theorem that
if the order of a group G is divisible by a prime p, then G contains a subgroup of order p. The first Sylow theorem
generalises this to subgroups of size that is a power of p.

Theorem 5.20: First Sylow theorem

Let G be a finite group, p ∈ N a prime and s ∈ N. If ps divides |G|, then G has a subgroup of size ps.

Proof. We proceed by induction on |G|. If |G| < p, then there is nothing to prove, so we assume that |G| > p. The
inductive hypothesis is that for all groups H with |H| < |G| we have that if pt | |H| (for some t ∈ N), then there
exists a subgroup of H having size pt. We split into two cases.
Case 1: Suppose first that G contains a proper subgroup H $ G such that p 6 | [G : H]. Since ps | |G| = [G : H]|H|
it follows that ps | |H|. By the induction hypothesis H (hence G) contains a subgroup K 6 H with |K| = ps.
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Case 2: Suppose that every proper subgroup of G has index divisible by p. We first show that |Z(G)| is divisible
by p. Considering the action of G on itself by conjugation we have

|G| = |Z(G)|+ |C1|+ |C2|+ · · ·+ |Ck| (∗)

where the Ci are the conjugacy classes of size at least 2. For each i, fix some gi ∈ Ci. From the orbit-stabiliser
relation and Lagrange’s theorem we have that

|Ci| = |G|/|CG(gi)| = [G : CG(gi)]

Since this index is at least 2,CG(gi) is a proper subgroup ofG and therefore [G : CG(gi)] is divisible by p. Therefore,
from (∗), |Z(G)| is divisible by p.
By Cauchy’s theorem there is an element z ∈ Z(G) with |z| = p. Let N = 〈z〉 6 Z(G). Then |N | = p and N is a
normal subgroup of G. Let H = G/N . Then |H| = |G|/p and therefore |H| < |G| and ps−1 | |H|. By the inductive
hypothesis there is a subgroup K 6 H with |K| = ps−1. Denote by π the natural projection homomorphism
π : G → H = G/N , π(g) = gN . Let L = π−1(K) = {g ∈ G | π(g) ∈ K}. Then L is a subgroup of G and has order
ps.

Exercise 162. Use the first isomorphism theorem to prove that L has size ps.

Definition 5.21. A group of order ps for some prime p and some s ∈ N is called a p-group. A Sylow p-subgroup
of a finite group G is a subgroup H 6 G such that

1) H is a p-group 2) [G : H] is not divisible by p

Remark. 1. The condition that [G : H] be not divisible by p is equivalent to the condition that if |H| = ps then s
is the largest element in N for which ps | |G|.

2. The first Sylow theorem shows that p-Sylow subgroups exist for all primes p that divide |G|.

Example 5.22. For the group G = D6 we have |G| = 12 = 22 × 3. The subgroup H = 〈s, r3s〉 ∼= Z/2Z× Z/2Z is a
Sylow 2-subgroup.

Theorem 5.23: Second Sylow theorem

Let G be a finite group. Any two Sylow p-subgroups of G are conjugate.

Theorem 5.24: Third Sylow theorem

Let p ∈ N be prime and let G be a finite group such that p | |G|. Denote by np the number of Sylow p-
subgroups of G. Then

1) np | |G|

2) np ≡ 1 (mod p)

Theorem 5.25: Fourth Sylow theorem

Let G be a finite group and H 6 G a subgroup. If H is a p-group, then H is contained in a Sylow p-subgroup.

6.1 Groups of size 12

As an application we consider the possibilities for a group G of size 12.
For p = 2 a Sylow 2-subgroup H has size 4 and therefore H ∼= Z/4Z or H ∼= Z/2Z × Z/2Z. The number n2 of
Sylow 2-subgroups divides 12 and is odd. Therefore n2 ∈ {1, 3}.
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For p = 3, a Sylow 3-subgroup K has size 3 and therefore K ∼= Z/3Z. The number n3 of Sylow 3-subgroups
divides 12 and n3 ≡ 1 (mod 3). Therefore n3 ∈ {1, 4}.
We claim that n2 = 1 or n3 = 1 (or both). To see this, suppose that n3 = 4. Then there are 8 elements of order 3 in
G. If H is a Sylow 2-subgroup, then its 4 elements make up all the remaining elements of G. Therefore n2 = 1.
We now consider the three possible cases.
Case 1: n2 = n3 = 1
Let H be the Sylow 2-subgroup and K the Sylow 3-subgroup. Both are normal in G since n2 = n3 = 1. It follows
that for every h ∈ H and k ∈ K, hk = kh. Therefore the map H × K → G, (h, k) 7→ hk is an isomorphism.
Therefore

G ∼= Z/4Z× Z/3Z (1)
or G ∼= Z/2Z× Z/2Z× Z/3Z (2)

Case 2: n2 = 1, n3 = 4
Since n3 > 1 it follows from the second Sylow theorem that G is not abelian. Let F1, F2, F3, F4 6 G be the four
Sylow 3-subgroups and let X = {1, 2, 3, 4}. Noting that the conjugate of a Sylow p-subgroup is again a Sylow
p-subgroup, we define an action of G on X as follows

g · i = j ⇐⇒ gFig
−1 = Fj

By the second Sylow theorem there is only one orbit. Then by the orbit-stabiliser relation we have |Stab(i)| =
|G|/4 = 3. Since Fi ⊆ Stab(Fi) and |Fi| = 3, we have that Stab(i) = Fi. The action of G on X corresponds to a
homomorphism ϕ : G→ S4 (see Exercise 145) whose kernel is given by

ker(ϕ) =

4⋂
i=1

Stab(Fi) =

4⋂
i=1

Fi = {e}

Therefore G ∼= im(ϕ) and [S4 : im(ϕ)] = |S4|/|G| = 2. The only index 2 subgroup in S4 is

A4 = {e, (12)(34), (13)(24), (14)(23)

(123), (132), (124), (142), (134), (143), (234), (243)}

Therefore, in this case we have
G ∼= A4 (3)

The Sylow 2-subgroup of A4 is {e, (12)(34), (13)(24), (14)(23)}which is isomorphic to Z/2Z× Z/2Z.

Case 3: n2 = 3, n3 = 1
Let T = {e, t, t2} 6 G be the Sylow 3-subgroup of G and let F, F ′, F ′′ be the Sylow 2-subgroups of G. Let
F = {e, x, y, z}. Since F ∩ T = {e}we have that

G = {e, x, y, z, t, xt, yt, zt, t2, xt2, yt2, zt2}

(The point being that the twelve listed elements are distinct.) Since n2 > 1 it follows from the second Sylow
theorem that G is not abelian. It follows that there exists an element in F that does not commute with t. There is
no loss in generality in assuming that xt 6= tx, which implies that xtx−1 = t2.
We know that F ∼= F ′ ∼= F ′′ by the second Sylow theorem. There are two possibilities; either F ∼= Z/4Z or
F ∼= Z/2Z× Z/2Z.

Subcase 3(a): n2 = 3, n3 = 1, F ∼= Z/2Z× Z/2Z
In this case we have that z = xy. It is easy to check that S = {e, t, t2, x, xt, xt2} is a subgroup of G. Since S has size
6 and is not abelian, we know that S ∼= S3. Since it has index 2, the subgroup S is normal in G. We therefore have
that yty−1 ∈ {t, t2}. If yty−1 = t2, then we have ztz−1 = xyty−1z−1 = xt2x−1 = t. Swapping the roles of y and z
if necessary we can therefore assume that yty−1 = t. We have that y ∈ Z(G) and y /∈ S. Therefore G ∼= 〈y〉 × S.
Since 〈y〉 ∼= Z/2Z, S ∼= S3 we conclude that

G ∼= Z/2Z× S3
∼= D6 (4)

Subcase 3(b): n2 = 3, n3 = 1, F ∼= Z/4Z
In this case we have F = {e, x, x2, x3} and G = {e, x, x2, x3, t, xt, x2t, x3t, t2, xt2, x2t2, x3t2}. Since G is not abelian
and T is normal, we have xtx−1 = t2. With this knowledge (together with |x| = 4 and |t| = 3) we know the
product of any pair of elements: (xmti)(xntj) = xm+ntj−i. It remains to show that there exists a group that has
the corresponding multiplication table. Let ε ∈ C be a non-real cube root of unity (say ε = −1/2 + i

√
3/2). Let
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A = [ 0 ii 0 ] ∈ GL(2,C) and B =
[
ε 0
0 ε2
]
∈ GL(2,C). Then Dic3 = 〈A,B〉 6 GL(2,C) has the specified multiplication

table:
G ∼= Dic3 (5)

There is an isomorphism ϕ : 〈A,B〉 → G with ϕ(A) = x and ϕ(B) = t.
Combining the above cases, we have shown that (up to isomorphism) there are exactly five groups of size 12:

Z/12Z, Z/2Z× Z/2Z× Z/3Z, A4, D6, Dic3

6.2 Proof of the second and fourth Sylow theorems

Let G be a finite group and p ∈ N a prime such that p | |G|. Suppose that H 6 G be a p-group and let K 6 G ba a
Sylow p-subgroup of G. We want to show that there exists an element g ∈ G such that gHg−1 ⊆ K.
Let X be the set of left cosets of K, X = {gK | g ∈ G}. So |X| = [G : K]. Therefore, because K is a Sylow
p-subgroup, p does not divide |X|. Consider the action of H on X by left multiplication:

h · (gK) = (hg)K

For any x ∈ X , from the orbit stabiliser relation, we have that |O(x)| = |H|/|Stab(x)|. Therefore, since H is a
p-group, if |O(x)| > 1, then |O(x)| is divisible by p. Since |X| is the sum of the sizes of the orbits and |X| is not
divisible by p, there must be an orbit of size 1. Let g ∈ G be such that gK ∈ X is fixed by every element of H .
Then we have that for all h ∈ H hgK = gK. Therefore g−1hg ∈ K for all h ∈ H , and hence g−1Hg 6 K.
For the second Sylow theorem, note that if H is a Sylow p-subgroup, then gHg−1 = K since |g−1Hg| = |H| = |K|.
For the fourth Sylow theorem, note that H 6 gKg−1 and that gKg−1 is a Sylow p-subgroup because it has the
same size as K.

6.3 Proof of the third Sylow theorem

Let p ∈ N be prime and let G be a finite group such that p | |G|. Denote by np the number of Sylow p-subgroups
of G. Let X denote the set of Sylow p-subgroups and consider the action of G on X by conjugation. Note that
|X| = np and that, by the second Sylow theorem, there is a single orbit. Let H ∈ X . By the orbit-stabiliser relation,
we have

|G| = |X| × | StabH| = np × | StabH|

Therefore np | |G|.
Now consider H acting on X by conjugation. Note that, from the orbit stabiliser relation and the fact that H is a
p-group, all orbits of this action have size that is a power of p. It is clear that (since H is a subgroup of G) that one
of the orbits of this action is {H}. We claim that all other orbits have size strictly larger than 1. Since the orbits
partition X , we would then have that

np = |X| = 1 + |C1|+ · · ·+ |Ck| ≡ 1 (mod p)

All that remains is to show that {H} is the only orbit (of H acting on X by conjugation) having size 1. Suppose
that {K} is an orbit of size 1. Then hKh−1 = K for all h ∈ H . Let N = {g ∈ G | gKg−1 = K}. Then N 6 G and
H,K 6 N . Since [G : H] = [G : N ]× [N : H], p does not divide [N : H] and therefore H is a Sylow p-subgroup of
N . Similarly, K is a Sylow p-subgroup of N . By the second Sylow theorem (applied to N ), there exists an element
n ∈ N such that nKn−1 = H . However, from the definition of N , we know that nKn−1 = K. Therefore K = H .

6.4 Exercises

Exercise 163. Let G be a non-trivial finite group. Prove that G is a p-group if and only if every element of G has
order a power of p.

Exercise 164. (a) Show that ifH is a Sylow p-subgroup of G and g ∈ G, then gHg−1 is also a Sylow p-subgroup.

(b) Show that if G has only one Sylow p-subgroup H , then H is normal.

Exercise 165. Let G be a group with |G| = pq where p, q ∈ N are primes and p < q. Show that G has exactly one
subgroup of order q.

Exercise 166. Let G be a group of size 255 = 3× 5× 17. Show that the Sylow 17-subgroup is normal in G.
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Appendix A

Linear algebra revision

1 Vector spaces and subspaces

We begin with the formal definition of vector spaces.

Definition A.1. LetK be a field. A vector space overK is a set V with two binary operations, addition V ×V → V
(the image of (u, v) will be denoted u+ v) and scalar multiplication K × V → V (the image of (a, v) being denoted
av). These are required to satisfy the following axioms:

Properties of addition:

(1) u+ (v+w) = (u+ v) +w for all u, v, w ∈ V

(4) u+ v = v + u for all u, v ∈ V

(2) there is an element 0 ∈ V satisfying
0 + v = v + 0 = v for all v ∈ V

(3) for each v ∈ V , there is an element −v ∈ V
such that v + (−v) = (−v) + v = 0

Properties of scalar multiplication:

(5) a(u+ v) = au+ av for all a ∈ K, u, v ∈ V

(6) (a+ b)v = av + bv for all a, b ∈ K, v ∈ V

(7) (ab)v = a(bv) for all a, b ∈ K, v ∈ V

(8) 1v = v for all v ∈ V

Example A.2. 1. Set K = R and V = {(x, y, z) | x, y, z ∈ R} with addition and scalar multiplication defined
by:

(x, y, z) + (x′, y′, z′) = (x+ x′, y + y′, z + z′) and c(x, y, z) = (cx, cy, cz).

This is the standard vector space R3.

2. LetK be an arbitrary field and V = {(a1, a2, . . . , an) | a1, . . . an ∈ K}with addition and scalar multiplication
defined by:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , , an + bn)

c(a1, . . . , an) = (ca1, . . . , can).

Denote this vector space by Kn. The first example is a special case of this.

3. LetK = R and letMm×n(R) denote the set ofm×nmatrices with entries from R. ThenMm×n(R), furnished
with the usual addition and scalar multiplication of matrices, is a vector space. This example also works
when we replace R by any field.

4. Let K be a field. Then the set of polynomials with coefficients in K, with the usual addition and scalar
multiplication of polynomials, forms a vector space K[X]. It is also denoted P(K).

5. As in the previous example, but consider only polynomials of degree at most d, for some fixed natural
number d. Call the resulting space K[X]≤d. It is also denoted Pd(K).

6. The setRR = F(R,R) of all functions f : R→ R forms a vector space over the field of real numbers. Addition
of two such functions f and g is given by:

f + g is the function defined by (f + g) : x 7→ f(x) + g(x)

and scalar multiplication, for a ∈ R is given by:
af is the function defined by (af) : x 7→ af(x).
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7. As in the previous example, but allow the set KS = F(S,K) of functions f : S → K, where S is an arbitrary
set and K is a field. This is a vector space over K.

8. The set of solutions y of the differential equation

d2y

dx2
+ 7

dy

dx
+ 23y = 0

forms a vector space if we use the addition and scalar multiplication of functions defined above.

9. LetK = R and let V = R∞ be the set of all sequences {an}, an ∈ R. Define addition and scalar multiplication
by:

{an}+ {bn} = {an + bn} and x{an} = {xan}.

Note that this is really a special case of Example 7 since we can regard a sequence as a function N→ R.

10. As above but restrict to sequences that satisfy limn→∞ an = 0.

11. If we restrict Example 9 to sequences that satisfy limn→∞ an = 1 then we do not obtain a vector space.

Definition A.3. Let V be a vector space over the field K. A subspace of V is a subset W of V such that W is itself
a vector space using the operations of addition and scalar multiplication from V .

If we take a subset of R3, say {(a, b, c) | a, b, c ∈ R, a + b + c = 0} and start checking whether it is a subspace, we
find that many of the checks are essentially trivial. Briefly, we know that the operations behave well because the
ambient space, in this case R3, is a vector space. When we eliminate all the things we don’t need to check for this
reason, we are left with the following.

Lemma A.4 (Subspace theorem). Let V be a vector space over K. A subset W of V is a subspace if and only if the
following three conditions are satisfied:

1. 0 ∈W

2. if u,w ∈W , then u+ w ∈W

3. if a ∈ K and w ∈W , then aw ∈W

Example A.5. 1. The set W = {(a, b, c) | a, b, c ∈ R, a+ b+ c = 0} is a subspace of R3.

2. The set of matrices of trace zero is a subspace of Mn×n(R).

3. The set of polynomials with zero constant term is a subspace of K[x].

4. The set of differentiable functions is a subspace of RR = F(R,R).

5. The set of sequences with limn→∞ an = 0 is a subspace of the space of all sequences.

2 Spanning, linear dependence, bases

Definition A.6. If S is a subset of a vector space V then a linear combination of S is a finite sum of the form

n∑
i=1

aivi where ai ∈ F, vi ∈ S.

The set of all linear combinations of elements of S is called the span of S and is denoted by 〈S〉. We also say that
S is a spanning set for 〈S〉.

Lemma A.7. If S is a non-empty subset of V , then 〈S〉 is a subspace of V .

Example A.8. 1. The set of all linear combinations of the vectors (1,−2, 3) and (0, 2, 1) inR3 is the set {(a,−2a+
2b, 3a+ b) : a, b ∈ R}.

2. The set of all linear combinations of the matrices0 1 0
0 0 0
0 0 0

 0 0 0
0 0 1
0 0 0

 0 0 1
0 0 0
0 0 0
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in M3×3(R) is the set of all matrices of the form 0 a c
0 0 b
0 0 0


where a, b, c ∈ R.

Definition A.9. We say that a subset S of a vector space V is linearly dependent if some non-zero linear combi-
nation gives the zero vector:

∃a1, a2, . . . , an ∈ F ∃v1, v2, . . . , vn ∈ S,
n∑
i=1

aivi = 0 and not all ai are zero.

Otherwise, S is said to be linearly independent.

Example A.10. 1. The set {(1, 2, 3), (2,−1, 0), (−1, 8, 9)} is linearly dependent in R3.

2. The set {1, x, x2, 1 + x3} is linearly independent in R[X].

3. The set
[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
2 −29
0 0

]
} is linearly dependent in M2×2(R).

Lemma A.11. A subset S of a vector space V is linearly dependent if and only if some element s of S is a linear combination
of the others.

In this case removing s from S gives a smaller spanning set for the subspace 〈S〉. Making the spanning set as small
as possible leads to the idea of basis.

Definition A.12. A basis for a vector space V is a linearly independent spanning set.

Example A.13. 1. The standard basis for Fn is the set

{e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1)}.

2. The set {(2, 1, 3), (1, 2, 3), (1, 0, 0)} is a basis of R3.

3. The set {1, x, x2, 1 + x3} is a basis of P3(R).

4. The set {1, x, x2, x3, x4, . . . , xn, . . . } is a basis of P(R).

Theorem A.14. Every vector space has a basis. In fact, every spanning set contains a basis and every linearly independent
set can be extended to a basis.

Theorem A.15. If B1 and B2 are two bases of a vector space then they have the same cardinality. (This is, there exists a
bijective function f : B1 → B2.)

Definition A.16. The dimension of a vector space V is the number of elements in a basis. We usually write this as
dimV .

By Theorem A.15, we know that this number will not depend on the particular choice of basis.

Example A.17. For the examples after Definition A.1:

1. R3 has dimension 3.

2. Fn has dimension n.

3. Mm×n(R) has dimension mn.

4. Pn(F ) has dimension n+ 1.

5. Example 8 has dimension 2 (although this needs a bit of work).

6. All of the other examples have infinite dimension.
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Combining subspaces: Let U and W be subspaces of a vector space V . Then the intersection U ∩W = {v ∈ V :
v ∈ U and v ∈ W} and the sum U + W = {u + w : u ∈ U,w ∈ W} are both subspaces of V . In fact U + W is the
smallest subspace containing both U and W .

Lemma A.18. Let U and W be subspaces of a vector space V and assume that U +W is finite dimensional. Then

dim(U +W ) + dim(U ∩W ) = dimU + dimW.

Proof. Let {v1, . . . , vl} be a basis of U ∩W . Then {v1, . . . , vl} is a linearly independent set in U and so can be ex-
tended to a basis {v1, . . . , vl, u1, . . . , um} ofU . Similarly {v1, . . . , vl} can be extended to a basis {v1, . . . , vl, w1, . . . , wn}
of W . We claim that {v1, . . . , vl, u1, . . . , um, w1, . . . , wn} is a basis of U +W .
Since every element of U is a linear combination of {v1, . . . , vl, u1, . . . , um} and every element of W is a linear
combination of {v1, . . . , vl, w1, . . . , wn}, it is clear that the sum of an element of U and an element of W is a linear
combination of {v1, . . . , vl, u1, . . . , um, w1, . . . , wn}. So {v1, . . . , vl, u1, . . . , um, w1, . . . , wn} spans U +W .
Suppose that we have ∑

i

aivi +
∑
j

bjuj +
∑
k

ckwk = 0 with ai, bj , ck ∈ F.

Then
∑
k ckwk is a linear combination of elements of U and so lies in U ∩W . Thus

∑
k ckwk can be written as a

linear combination of the basis {v1, . . . , vl} of U ∩W . Thus we have∑
k

ckwk =
∑
i

divi for some di ∈ F.

But {v1, . . . , vl, w1, . . . , wn} is a basis of W and so linearly independent. Thus each ck and each di is zero. Now we
have

∑
i aivi +

∑
j bjuj = 0. But {v1, . . . , vl, u1, . . . , um} is a basis of U and so linearly independent. Thus each ai

and bj is zero. Hence {v1, . . . , vl, u1, . . . , um, w1, . . . , wn} is linearly independent and so is a basis for U +W .
We now have dim(U ∩W ) = l, dimU = l + m, dimW = l + n and dim(U + W ) = l + m + n. The result follows
immediately.

3 Linear transformations

Informally, a linear transformation is a function between vector spaces over the same field which preserves the
operations of addition and scalar multiplication.

Definition A.19. Let V and W be vector spaces over the same field F . A function f : V → W is a linear
transformation if

1. f(u+ v) = f(u) + f(v) for all u, v ∈ V ;

2. f(av) = af(v) for all a ∈ F, v ∈ V .

Example A.20. 1. Rotation about the origin through a fixed angle θ is a linear transformation on R2.

2. Rotation about any line through the origin and through a fixed angle θ is a linear transformation on R3.

3. Differentiation is a linear transformation on P(R).

4. Let C denote the subspace of RR consisting of continuous functions. Let the function I : C → C be given by
defining I(f) to be the function whose value at t is

I(f)[t] =

∫ t

0

f(x) dx.

Then I is a linear transformation.

5. The functions f, g : R→ Rwhere f(x) = x2 and g(x) = x+ 2 are not linear transformations.

Definition A.21. Let f : V → W be a linear transformation. The nullspace (or kernel) of f is {v ∈ V : f(v) = 0}.
The range (or image) of f is {f(v) : v ∈ V }.

Example A.22. 1. Rotation in R2 has nullspace 0 and range the whole of R2.
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2. Differentiation on P(R) has nullspace 〈1〉 and range P(R).

The following should not be too surprising, nor too hard to prove.

Lemma A.23. Let f : V → W be a linear transformation. The nullspace of f is a subspace of V and the range of f is a
subspace of W .

Definition A.24. Let f : V → W be a linear transformation. The dimension of the nullspace of f is called the
nullity of f and the dimension of the range of f is called the rank of f .

Lemma A.25. Let f : V →W be a linear transformation and assume that V is finite dimensional. The nullity of f plus the
rank of f is equal to the dimension of V .

Sketch of proof. Denote the nullspace of f by N . Since it is a subspace of V it will have a basis B = {v1, . . . , vm}. So
m is the nullity of f . Since B is a basis of N , it is linearly independent in N . Since N is a subspace of V , B is also
linearly independent in V . So we can extend B to a basis of {v1, . . . , vm, vm+1, . . . , vn} of V . So the dimension of
V is n.
We claim that {f(vm+1), . . . , f(vn)} is a basis of the range of V . We must show that {f(vm+1), . . . , f(vn)} is
linearly independent and that every element of the range of V can be expressed as a linear combination of
{f(vm+1), . . . , f(vn)}. We leave the details as Exercise A.16.
We will have shown that f has nullitym and rank n−mwhere n is the dimension of V . The result now follows.

4 Matrix representations

Any n ×m matrix A ∈ Mn×m(F ) gives a linear transformation fA : Fm → Fn defined by matrix multiplication:
fA(x) = Ax for x ∈ Fm where we think of vectors in Fm, Fn as column vectors. Note that the ith column of A is
fA(ei) where ei is the ith standard basis vector for Fm.
Conversely, any linear transformation f : V → W between finite dimensional vector spaces V and W over a field
F can be represented by a matrix: Let BV = {v1, v2, . . . , vm} be an ordered basis for V and BW = {w1, w2, . . . , wn}
be an ordered basis for W . Then f(vi) ∈ W for each i = 1, . . . ,m and we can write f(vi) uniquely as a linear
combination of the basis vectors in BW . We form an n×m matrix A with these coefficients as the ith column.

Definition A.26. This matrix A is called the matrix of f with respect to the bases BV and BW .

Explicitly, if
f(v1) = a11w1 + a21w2 + . . . + an1wn
f(v2) = a12w1 + a22w2 + . . . + an2wn

... =
...

...
...

f(vm) = a1mw1 + a2mw2 + . . . + anmwn

with each aij ∈ F . Then A = (aij).
It is often the case that V = W and BV = BW . Then we say that f has matrix A with respect to BV .

Example A.27. 1. The rotation about the origin through an angle of θ in R2 is a linear transformation taking
(1, 0) to (cos θ, sin θ) = cos θ(1, 0) + sin θ(0, 1) and (0, 1) to (− sin θ, cos θ) = − sin θ(1, 0) + cos θ(0, 1). So its
matrix with respect to the basis {(1, 0), (0, 1)} is[

cos θ − sin θ
sin θ cos θ

]
.

2. Differentiation gives a linear transformation D : P3(R) → P2(R). The matrix with respect to the bases
{1, x, x2, x3} and {1, x, x2} is 0 1 0 0

0 0 2 0
0 0 0 3


Interpretation of the matrix representation:
Given an (ordered) basis BV = {v1, v2, . . . , vm} for a vector space V , each vector v ∈ V can be written uniquely as
a linear combination

v = a1v1 + . . .+ amvm, αi ∈ F.
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This allows us to introduce coordinates on V : the column vector

[v]BV
=

a1...
am

 ∈ Fm
is called the coordinate vector of v with respect to the basis BV .
Then the effect a linear transformation f : V → W on coordinate vectors is just multiplication by the matrix A
representing f :

[f(v)]BW
= A[v]BV

.

In summary, we have

v ∈ V apply f−−−−→ f(v) ∈W

take coords

y ytake coords

[v]BV
∈ Fm mult byA−−−−−−→ [f(v)]BW

∈ Fn.

5 Change of basis

Any linear transformation will have different matrices for different bases of the underlying vector spaces. It is
very useful to be able to choose a basis so that the matrix is as simple as possible. To do this, we need to be able to
see the effect on the matrix of changing the basis.
Let V,W be finite dimensional vector spaces over a field F and let f : V →W be a linear transformation. Let BV =
{v1, v2, . . . , vm} be a basis for V and BW = {w1, w2, . . . , wn} be a basis for W . Suppose that B′V = {v′1, v′2, . . . , v′m}
is a new basis for V and B′W = {w′1, w′2, . . . , w′n} is a new basis for W . Then we can convert BV -coordinates
to B′V -coordinates using the matrix P with ith column [vi]B′V . Similarly we can convert BW -coordinates to B′W -
coordinates using the matrix Q with ith column [wi]B′W .
Explicitly, P = (pij) and Q = (qij) where

vi =

m∑
j=1

pjiv
′
j and wi =

m∑
j=1

qjiw
′
j .

Theorem A.28. The matrices P and Q are invertible and the matrix of f with respect to the bases B′V and B′W is

QAP−1,

where A is the matrix of f with respect to the bases BV and BW .

Thus we have the following diagram:

[v]BV

A−−−−→ [f(v)]BW

P

y yQ
[v]B′V

QAP−1

−−−−−→ [f(v)]B′W .

In the most important case where V = W and BV = BW , we also have P = Q and so, if A is the matrix of f with
respect to the old basis then PAP−1 is the matrix of f with respect to the new basis.

Example A.29. Let f : R2 → R2 be the linear transformation defined by
f(x, y) = (3x− y,−x+ 3y). Using the standard basis B = {(1, 0), (0, 1)}we find the matrix of f is

A =

[
3 −1
−1 3

]
.

Now let’s calculate the matrix with respect to the basis B′ = {(1, 1), (−1, 1)}. We have

f(1, 1) = (2, 2) = 2(1, 1) + 0(1,−1)

and
f(−1, 1) = (−4, 4) = 0(1, 1) + 4(−1, 1).
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Thus the matrix for f with respect to basis B′ is the diagonal matrix

A′ =

[
2 0
0 4

]
.

This makes it easy to understand the effect of the transformation f . It just stretches by a factor 2 in the (1, 1)
direction and by a factor 4 in the (−1, 1) direction.
Alternatively we can use the change of basis formula in the previous theorem. The transition matrix from B′ to

the standard basis B is
[
1 −1
1 1

]
so the transition matrix from B to B′ is the inverse of this:

P =

[
1 −1
1 1

]−1
=

1

2

[
1 1
−1 1

]
Then

A′ = PAP−1 =
1

2

[
1 1
−1 1

] [
3 −1
−1 3

] [
1 −1
1 1

]
=

[
2 0
0 4

]
as before.

Definition A.30. Two n× n matrices A and B are said to be similar if B = PAP−1 for some invertible matrix P .

Thus similar matrices represent the same linear transformation with respect to different bases.

6 Exercises

Exercise A.1. If U and W are subspaces of a vector space V , show that U +W = {u+ w : u ∈ U,w ∈W} is also a
subspace.

Exercise A.2. Show that, if U1 and U2 are subspaces of a vector space V then U1 ∩ U2 is also a subspace.

Exercise A.3. If U1 and U2 are subspaces of a vector space V and U1∪U2 = V , show that either U1 = V or U2 = V .

Exercise A.4. Decide whether the following sets of vectors are (i) linearly dependent and (ii) a basis, in F47.

(a) {(1, 3, 0, 2), (2, 1, 3, 0)}

(b) {(1, 2, 3, 1), (4, 6, 2, 0), (0, 1, 5, 1)}

(c) {(1, 2, 3, 1), (4, 6, 2, 0), (0, 1, 5, 2), (0, 1, 0, 0), (0, 1, 0, 1)}

Exercise A.5. Decide whether the following sets of matrices are linearly independent in the space M2×2(R):

(a)
{[

1 0
0 1

]
,

[
1 1
0 1

]
,

[
0 0
1 0

]}

(b)
{[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}

(c)
{[

2 0
1 4

]
,

[
1 3
0 2

]
,

[
4 −6
3 8

]}
Exercise A.6. Show that any subset of a linearly independent set is also linearly independent.

Exercise A.7. Let F be a field and let Eij ∈ Mm×n(F ) be the matrix with 1 in the i, j position and 0 elsewhere.
Show that {Ei,j : 1 6 i 6 m, 1 6 j 6 n} is a basis of Mm×n(F ).

Exercise A.8. Show that the space P(F ) does not have finite dimension.

Exercise A.9. What is the dimension of the space M3×3(F5)?

Exercise A.10. Let B be the matrix
[
2 1
3 −1

]
. Show that the function g : M2×2(R) → M2×2(R) given by A 7→ AB

for A ∈M2×2(R) is a linear transformation.
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Exercise A.11. Find the matrix of the linear transformation of Exercise A.10 with respect to the basis{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
found in Exercise A.7.

Exercise A.12. Find the matrix, with respect to the standard basis of R2, of the reflection across the x-axis. Now
let B be the basis {(a, b), (c, d)}, where a, b, c, d ∈ R satisfy ad− bc 6= 0 of R2. Write down a change of basis matrix
for the change from the standard basis to B and so calculate the matrix of the reflection with respect to this new
basis.

Exercise A.13. Calculate the nullity and rank of the linear transformation f on R3 determined by (here {e1, e2, e3}
is the standard basis)

f(e1) = e1 − e2
f(e2) = e2 − e3
f(e3) = e1 − e3

Exercise A.14. Calculate the nullity and rank of the linear transformation f on F37 determined by

f (([1]7, [0]7, [0]7)) = ([1]7, [2]7, [3]7)

f
(
([0]7, [1]7, [0]7])

)
= ([3]7, [4]7, [5]7)

f (([0]7, [0]7, [1]7)) = ([5]7, [1]7, [4]7)

Exercise A.15. Let f : V → V be a linear transformation on a finite dimensional vector space V . Show that the
nullity of f is zero if and only if f is surjective.

Exercise A.16. Complete the proof of Lemma A.25.
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Appendix B

Answers and hints to some exercises

Modular arithmetic and fields

1) Let E ⊂ Z be a subset of Z that is bounded below. We need to show the following:

∀F ⊆ E F 6= ∅ =⇒ F has a minimal element

Proof. Let k ∈ Z be such that ∀e ∈ E, e > k. Let F ⊆ E be a non-empty subset of E. Note that

f ∈ F =⇒ f ∈ E =⇒ f > k =⇒ f − k + 1 > 1 =⇒ f − k + 1 ∈ N

Letting F ′ = {f − k + 1 | f ∈ F} we have that F ′ ⊆ N and F ′ 6= ∅. Therefore F ′ has a minimal element, m′ ∈ F ′
say. Let m = m′ + k − 1. Then m ∈ F and for any f ∈ F we have

f − k + 1 > m′ =⇒ f > m

That is, m is a minimal element of F .

2) We want to show
∀a, b ∈ Z (gcd(a, b) = 1 ⇐⇒ (∃x, y ∈ Z, xa+ yb = 1))

Let a, b ∈ Z. That gcd(a, b) = 1 =⇒ (∃x, y ∈ Z, xa+ yb = 1) is Bézout’s Theorem (1.6).
For the converse, suppose that x, y ∈ Z are such that xa+yb = 1 and let d = gcd(a, b). Since d is a common divisor
of a and b we have that d | (xa+ yb) (Lemma 1.3). But then we have that d ∈ N and d | 1, which implies that d = 1.

3) (a) q = 8, r = 1 (b) q = 9, r = 5 (c) q = −5, r = 2

5) Suppose that qd+ r = q′d+ r′ with 0 6 r, r′ < d. Then

qd+ r = q′d+ r′ =⇒ (q − q′)d = r′ − r (∗)
=⇒ |(q − q′)d| < d

=⇒ |q − q′| < 1

=⇒ q = q′

=⇒ r = r′ (from ∗)

6) Let x, y, α, β ∈ Z be such that c = αa = βb and xa+ yb = 1. Then

xa+ yb = 1 =⇒ xαa+ yαb = α

=⇒ α = xβb+ yαb

=⇒ α = b(xβ + yα)

=⇒ c = b(xβ + yα)a

=⇒ ab | c

8) (a) 7 (b) 15 (c) 143 (d) 8 (e) 1

9)

B1
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(a) gcd(27, 33) = 3 = 5× 27 + (−4)× 33

(b) gcd(27, 32) = 1 = 11× 32 + (−13)× 27

(c) gcd(312, 317) = 13 = 5× 377− 6× 312

13)

(a) For the forward implication

[a]m = [b]m =⇒ a ∈ [b]m =⇒ a ≡ b (mod m)

For the converse, suppose that a ≡ b (mod m). Then

x ∈ [a]m ⇐⇒ x ≡ a (mod m)

⇐⇒ x ≡ b (mod m) (transitivity, Lemma 1.16)
⇐⇒ x ∈ [b]m

Therefore [a]m = [b]m.

(b) Suppose that [a]m ∩ [b]m 6= ∅ and let x ∈ [a]m ∩ [b]m. Then x ≡ a (mod m) and x ≡ b (mod m). Since the
congruence relation is transitive (Lemma 1.16), we have a ≡ b (mod m) and hence [a]m = [b]m by part (a).

(c) Let a ∈ Z. By Theorem 1.1 there exists q, r ∈ Z such that a = qm + r and r ∈ {0, 1, . . . ,m − 1}. Then note
that a ∈ [r]m since m | (a− r).

14) Suppose that b, c ∈ Z are such that [b]m[a]m = [1]m and [c]m[a]m = [1]m. Then we have

[b]m = [b]m[1]m = [b]m[c]m[a]m = [b]m[a]m[c]m = [1]m[c]m = [c]m

15)
(Z/7Z,×)

0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2
6 0 6 5 4 3 2 1

(Z/8Z,×)
0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

16)

(a) 3 ≡ 42 (mod 13)

(b) 2 ≡ −20 (mod 11)

(c) 26 6≡ 482 (mod 14)

(d) −2 ≡ 933 (mod 5) as 935 is a multiple of 5.

(e) −2 ≡ 933 (mod 11) as 935 is a multiple of 11.

(f) As 933 is a multiple of 5 and 11, it is a multiple of 55, hence −2 ≡ 933 (mod 55).

17)

(a) 6 (mod 14)

(b) 7 (mod 9)

(c) 0 (mod 11)

(d) 933 ≡ −2 ≡ 53 (mod 55)

© University of Melbourne 2021



MAST20022 Group Theory and Linear Algebra, 2019 B3

(e) 5 (mod 10)

(f) 57102725 ≡ 5 + 7 + 1 + 0 + 2 + 7 + 2 + 5 ≡ 29 ≡ 2 (mod 9)

18)

(a) 24× 25 ≡ 3× 4 ≡ 12 (mod 21)

(b) 0 (mod 210)

(c) 7 (mod 9)

(d) 5 (mod 11)

(e) 1× (2× 3)× (4× 5)× 6 ≡ −1×−1×−1 ≡ −1 ≡ 6 (mod 7)

(f) 1× 2× 3× . . .× 20× 21 ≡ (2× 11)× (3× . . .× 10)× (12× . . .× 21) ≡ 0× (. . .)× (. . .) ≡ 0 (mod 22)

19) We have that 326 ≡ (3 + 2 + 6) ≡ 11 ≡ (1 + 1) ≡ 2 (mod 9), and 4471 ≡ (4 + 4 + 7 + 1) ≡ (16) ≡ 7 (mod 9).
Therefore (326× 4471) ≡ (2× 7) ≡ 14 ≡ 5 (mod 9). But 1357546 ≡ (1 + 3 + 5 + 7 + 5 + 4 + 6) ≡ 31 ≡ 4 (mod 9).
Therefore 326× 4471 6= 1357546.

20) Consider the possible values of [x]2m + [y]2m + [z]2m

21)

(a) Z/7Z has the set of multiplicative units {1, 2, 3, 4, 5, 6}

(b) Z/8Z has the set of multiplicative units {1, 3, 5, 7}

(c) Z/12Z has the set of multiplicative units {1, 5, 7, 11}

(d) Z/13Z has the set of multiplicative units {1, 2, . . . , 12}

(e) Z/15Z has the set of multiplicative units {1, 2, 4, 7, 8, 11, 13, 14}

22)

(a) 32 in Z/27Z has inverse 11 as 1 ≡ 11× 32− 13× 27 ≡ 11× 32 (mod 27).

(b) 32 in Z/39Z has inverse 11.

(c) 17 in Z/41Z has inverse −12 ≡ 29 (mod 41).

(d) 18 in Z/33Z has no inverse as 3 = gcd(18, 33).

(e) 200 has inverse 41 in Z/911Z.

23) 52

25) We need to show that
(x+ y = 0) ∧ (x+ z = 0) =⇒ y = z

Suppose that x+ y = x+ z = 0. We have

x+ y = 0 =⇒ (x+ y) + z = 0 + z

=⇒ (y + x) + z = z (addition is commutative, property of additive identity)
=⇒ y + (x+ z) = z (addition is associative)
=⇒ y + 0 = z (x+ z = 0)
=⇒ y = z (property of additive identity)

27) Suppose that 1 = 0, and let a ∈ R. Then a = 1× a = 0× a = 0. Therefore R = {0}.

29) For example, ( 3
√

2)2 is not in the set. Set α = 3
√

2 and suppose that α2 = a+ bα for some a, b ∈ Q. Then

2 = α3 = aα+ bα2 = aα+ b(a+ bα) = ab+ (a+ b2)α.
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It would follow that α = (2− ab)/(a+ b2) and so that α is rational, which we know to be false.
If we take the set of all a+ b 3

√
2 + c( 3

√
2)2 with a, b, c ∈ Q then we do obtain a field.

30)
[1]7 = [3]67 [2]7 = [3]27 [3]7 = [3]17 [4]7 = [3]47 [5]7 = [3]57 [6]7 = [3]37

31) The polynomial X , for example, does not have a multiplicative inverse.

32) Showing closure under addition and subtraction is relatively straightforward. It is reasonably easy to convince
yourself of closure under multiplication. The problem is with multiplicative inverses. (I do not recommend
attempting detailed proofs of all of the axioms!)
To see that

c−kt
−k + c−k+1t

−k+1 + · · ·+ c0 + c1t+ · · ·+ cst
s + . . .

has an inverse, assume that c−k 6= 0 and write the above as ckt−kg where g is a power series involving only
non-negative powers of t and with constant term 1. Now show g has an inverse in this set of power series.

33) The polynomial X2 + 1 has no root in the field Q[
√

2].

35) (a) m = 57, n = 36 (b) 5 is relatively prime to 36 (c) 32 15 24 18 (d) d = 29 (e) 49 8

36) (a) n = 40 (b) (c) 17 14 48 25 17 15 2 15 (d) d = 27, rosebud

Linear algebra I

37) Suppose that A,B,C ∈Mn(K). Suppose that A ∼ B and B ∼ C. Let P,Q ∈ GL(K) be such that B = P−1AP
and C = Q−1BQ. Then we have

(a) A ∼ A since A = I−1AI

(b) B ∼ A since B = P−1AP =⇒ (P−1)−1BP−1 = A

(c) A ∼ C since C = Q−1P−1APQ = (PQ)−1A(PQ)

38) Let P ∈ GLn(K) and fix a basis B′ for V . Since P is invertible, its columns form a basis for Mn,1. Let bj ∈ V be
such that [bj ]B′ is the j-th column of P . Then B = {b1, . . . , bn} is linearly independent and therefore a basis for V .
Finally note that [IdV ]B′,B = P .

39) Let {u1, . . . , uk} be a basis for ker(f). Extend to a basis B = {u1, . . . , uk, v1, . . . , vm} of V . For each 1 6 i 6 m
define wi = f(vi). Then {w1, . . . , wm} is linearly independent since

m∑
i=1

αiwi = 0 =⇒
m∑
i=1

αif(vi) = 0 =⇒ f(

m∑
i=1

αivi) = 0 =⇒
m∑
i=1

αivi ∈ ker(f)

=⇒
m∑
i=1

αivi =

k∑
j=1

βjuj =⇒
m∑
i=1

αivi +

k∑
j=1

(−βj)uj = 0

=⇒ ∀i, αi = 0 (since B is linearly independent )

Extend to a basis B′ = {b1, . . . , bk, w1, . . . , wm} of V . Then [f ]B′,B is a diagonal matrix with the diagonal entries
being k zeros followed by m ones.

40) Note that, from the definition of an eigenvalue, there exists v ∈ Vλ \ {0}. In particular, Vλ 6= ∅. Now let
u, v ∈ Vλ and k ∈ K. Then f(u + v) = f(u) + f(v) = λu + λv = λ(u + v) and f(ku) = kf(u) = kλu = λku.
Therefore u + v ∈ Vλ and ku ∈ Vλ. It follows that Vλ is a subspace. Since Vλ \ {0} 6= ∅, V 6= {0} and therefore
dim(Vλ) > 1.

41) Let P be an invertible matrix such that B = P−1AP . Then

Bu = λu =⇒ PBu = λPu =⇒ APu = λPu

Since P is invertible, u 6= 0 =⇒ Pu 6= 0. Therefore, if u is an eigenvector forB having eigenvalue λ, then Pu is an
eigenvector for A having eigenvalue λ. Reversing the roles of A and B, we can conclude that λ is an eigenvalue
for A iff λ is an eigenvalue for B.
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42) We need to show that f(f(v)) = λf(v). Note that f(f(v)) = f(λv) = λf(v). Therefore f(Vλ) ⊆ Vλ.

44) The proofs given for 1 =⇒ 2 and 2 =⇒ 3 did not assume that V is finite dimensional. We need only prove
3 =⇒ 1.
Assume that B and C are as in 3. Since B ∪ C is a spanning set, we have that V = U +W . It remains to show that
U ∩W = {0}.
Let v ∈ U ∩ W . Then, since v ∈ U we have v =

∑m
i=1 βibi for some m ∈ N, βi ∈ K and bi ∈ B. Similarly,

v =
∑n
j=1 γjci for some n ∈ N, γj ∈ K and cj ∈ C. Then

m∑
i=1

βibi =

n∑
j=1

γjci =⇒
m∑
i=1

βibi +

n∑
j=1

(−γj)ci = 0

=⇒ ∀i∀j (βi = 0 and γj = 0) (since B ∪ C is linearly indepemdent)
=⇒ v = 0

45) Let V1 = {v ∈ V : f(v) = −v} and V−1 = {v ∈ V : f(v) = −v}. We need to show that V = V1 + V−1 and that
V1 ∩ V−1 = {0}. For the second note that

v ∈ V1 ∩ V−1 =⇒ v = −v =⇒ 2v = 0 =⇒ v = 0

The last implication above requires the hypothesis that 2 6= 0 in the field of scalars.
We need now to show that V = V1 + V−1. Note that since X2 − 1 is the minimal polynomial of f , we have that
f2 = IdV . Given any v ∈ V we have that v = 2−1(v + f(v)) + 2−1(v − f(v)) (we have again used that 2 6= 0).
Finally, note that 2−1(v + f(v)) ∈ V1 and 2−1(v − f(v)) ∈ V−1 since

f(2−1(v + f(v))) = 2−1f((v + f(v))) = 2−1(f(v) + f2(v)) = 2−1(f(v) + v) = 2−1(v + f(v))

and

f(2−1(v − f(v))) = 2−1f((v − f(v))) = 2−1(f(v)− f2(v)) = 2−1(f(v)− v) = −2−1(v − f(v))

If B is a basis for V1 and C is a basis for V−1, then [f ]B∪C will be diagonal with all diagonal entries ±1.

47) From Theorem 2.18, there are q(X), r(X) ∈ K[X] such that p(X) = q(X)(X − k) + r(X) and deg(r(X)) = 0.
We need to show that r(X) = 0. Let a ∈ K be such that r(X) = a. Then

p(k) = q(k)(k − k) + a =⇒ 0 = q(k)0 + a = a

Therefore r(X) = 0 and p(X) = q(X)(X − k).

48)

(a) 1
b−a (X − a) + 1

a−b (X − b) = 1

(b) First we will show that (X − a) is prime. That is, we show that

∀p(X), q(X) ∈ K[X] (X − a) | p(X)q(X) =⇒ (X − a) | p(X) ∨ (X − a) | q(X) (∗)

To prove this we have

(X − a) | p(X)q(X) =⇒ p(X)q(X) = (X − a)r(X) (for some r(X) ∈ K[X])
=⇒ p(a)q(a) = 0

=⇒ p(a) = 0 ∨ q(a) = 0 (using that K is a field)
=⇒ (X − a) | p(X) ∨ (X − a) | q(X) (by Exercise 47)

Using (∗), the desired result can then be established using induction on m. Here’s the outline.

d(X) | (X − a)m =⇒ d(X)e(X) = (X − a)m (some e(X) ∈ K[X])
=⇒ (X − a) | d(X)e(X)

=⇒ (X − a) | d(X) ∨ (X − a) | e(X)
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and

(X − a) | d(X) =⇒ d(X) = d′(X)(X − a) (some d′(X) ∈ K[X])

=⇒ d′(X)e(X) = (X − a)m−1

=⇒ d′(X) = (X − a)k
′

(for some 1 6 k′ 6 m− 1)

=⇒ d(X) = (X − a)k (with 2 6 k 6 m)

and

(X − a) | e(X) =⇒ e(X) = e′(X)(X − a) (some e′(X) ∈ K[X])

=⇒ d(X)e′(X) = (X − a)m−1

=⇒ d(X) = (X − a)k (for some 1 6 k 6 m− 1)

50) (X − 2)(X + 1), X2 +X − 1, X3 − 1, (X − 1)3

51) The minimal polynomial of either matrix is (X − 1)(X − 2).
The characteristic polynomials are (X − 1)2(X − 2)2 and (X − 1)3(X − 2), respectively.

52) Check by direct computation that A2 − 2A − 8I3 = 0. Since this polynomial has distinct roots, it must be the
minimal polynomial of the matrix. Note that

A2 − 2A− 8I = 0 =⇒ A
1

8
(A− 2I) = I

The above calculation shows that A−1 exists and is equal to 1
8 (A− 2I).

53) If the minimal polynomial has non-zero constant term, use the idea of the previous question to show there is
an inverse.
If the minimal polynomial has zero constant term, then it is of the form m(X) = Xp(X) for some polynomial
p(X). Since p(f) 6= 0, there is a vector v such that w = p(f)(v) 6= 0. But f(w) = f(p(f)(v)) = m(f)(v) = 0. If f had
an inverse f−1 we could deduce that w = f−1(f(w)) = f−1(0) = 0 which is a contradiction.

54) You can do this by taking a power of an appropriate matrix. But the ‘slick’ way to do it is to use the linear
transformation f which corresponds to A, using the standard basis {e1, . . . , en}. Note that f(ei) can be written as
a linear combination of those ej with j < i. Now show that f2(ei) can be written as a linear combination of those
ej with j < i− 1 and then work out what happens for fn(ei).

55)

(a) The characteristic polynomial is (X−2)3. The only
eigenvalue is 2.

(b) The minimal polynomial is (X − 2)2 ∈ F5[X]

(c) B = {(1, 0, 1), (−2, 1, 0), (1, 0, 0)}

[f ]B =

 2 0 3
0 2 2
0 0 2


56) Let P be an invertible matrix such that B = P−1AP . Using standard properties of the determinant, we have

cA(X) = det(XI −A) = det(P−1P ) det(XI −A) = det(P−1) det(XI −A) det(P )

= det(P−1(XI −A)P ) = det(XP−1IP − P−1AP ) = det(XI − P−1AP )

= det(XI −B)

= cB(X)

58) Suppose that T : V → V is nilpotent, and let n ∈ N be minimal with the property that that Tn = 0. Since
Tn−1 6= 0, there exists v ∈ V such that w = Tn−1(v) 6= 0. However, T (w) = Tn(v) = 0.

63) [
−2 1
0 −2

]
,

2 0 0
0 −1 1
0 0 −1

 ,
−2 0 0

0 −2 0
0 0 4


64) Recall that J(a, n) represents the Jordan block with size n and diagonal entry a.

© University of Melbourne 2021



MAST20022 Group Theory and Linear Algebra, 2019 B7

(a) one J(0, 2) plus two J(−1, 2) or one J(0, 2) plus one J(−1, 2) plus two J(−1, 1)

(b) two J(3, 2) plus one J(3, 1) or one J(3, 2) plus three J(3, 1)

(c) two J(0, 3) plus one J(0, 1) or one J(0, 3) plus two J(0, 2) or one J(0, 3) plus one J(0, 2) plus two J(0, 1) or
one J(0, 3) plus four J(0, 1)

(d) two J(1, 2) plus two J(−1, 2) or two J(1, 2) plus one J(−1, 2) plus two J(−1, 1) or one J(1, 2) plus two
J(1, 1) plus two J(−1, 2) or one J(1, 2) plus two J(1, 1) plus one J(−1, 2) plus two J(−1, 1)

65) (a) no (b) yes (c) yes

66) Remember that the minimal polynomial divides the characteristic polynomial and has the same roots (possibly
with different multiplicity). Then use Exercise 59. Note that if the characteristic polynomial has the form (X − a)4

and the minimal polynomial has the form (X − a)2 then there are two possibilities which we cannot distinguish
without more information. In the following list, a, b, c, d are distinct scalars.

characteristic polynomial minimal polynomial JNF
(X − a)(X − b)(X − c)(X − d) (X − a)(X − b)(X − c)(X − d) J(a, 1)⊕ J(b, 1)⊕ J(c, 1)⊕ J(d, 1)
(X − a)2(X − b)(X − c) (X − a)(X − b)(X − c) J(a, 1)⊕ J(a, 1)⊕ J(b, 1)⊕ J(c, 1)

(X − a)2(X − b)(X − c) J(a, 2)⊕ J(b, 1)⊕ J(c, 1)
(X − a)2(X − b)2 (X − a)(X − b) J(a, 1)⊕ J(a, 1)⊕ J(b, 1)⊕ J(b, 1)

(X − a)2(X − b) J(a, 2)⊕ J(b, 1)⊕ J(b, 1)
(X − a)(X − b)2 J(a, 1)⊕ J(a, 1)⊕ J(b, 2)
(X − a)2(X − b)2 J(a, 2)⊕ J(b, 2)

(X − a)3(X − b) (X − a)(X − b) J(a, 1)⊕ J(a, 1)⊕ J(a, 1)⊕ J(b, 1)
(X − a)2(X − b) J(a, 1)⊕ J(a, 2)⊕ J(b, 1)
(X − a)3(X − b) J(a, 3)⊕ J(b, 1)

(X − a)4 (X − a) J(a, 1)⊕ J(a, 1)⊕ J(a, 1)⊕ J(a, 1)
(X − a)2 J(a, 1)⊕ J(a, 1)⊕ J(a, 2) OR J(a, 2)⊕ J(a, 2)
(X − a)3 J(a, 1)⊕ J(a, 3)
(X − a)4 J(a, 4)

67) Set D to be the diagonal part of J and set N = J − D. Then Exercise 54 shows that N is nilpotent. For the
second part, choose a basis so that f is represented by a JNF matrix J . Write J = D +N as in the first part. Then
let d and n be the linear transformations corresponding to the matrices D and N .

68) Show that JD = DJ first (you can easily reduce it to the case where J is just a single Jordan block.) Then
JN = NJ follows quickly. The last part is now immediate.

Groups

70)

(a)

e′ = e ∗ e′ (since ∀g ∈ G, e ∗ g = g)
= e (since ∀g ∈ G, g ∗ e′ = g)

(b)

h′ = (h ∗ g) ∗ h′ (since h ∗ g = e)
= h ∗ (g ∗ h′)
= h (since g ∗ h′ = e)

(c) Note that

(g ∗ h) ∗ (h−1 ∗ g−1) = g ∗ (h ∗ h−1) ∗ g−1 = g ∗ g−1 = e

(h−1 ∗ g−1) ∗ (g ∗ h) = h−1 ∗ (g−1 ∗ g) ∗ h = h−1 ∗ h = e

and apply the previous part.
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72) Let I = [ 1 0
0 1 ], −I =

[−1 0
0 −1

]
, A =

[−1 0
0 1

]
, −A =

[
1 0
0 −1

]
, B =

[
0 −1
1 0

]
, and −B =

[
0 1
−1 0

]
.

V I A −I −A
I I A −I −A
A A I −A −I
−I −I −A I A
−A −A −I A I

C4 I B −I −B
I I A −I −B
B B −I −B I
−I −I −B I B
−B −B I B −I

73) For the second part, note that the product of two reflections having the same centre, is a rotation.

74) Use w = yx−1 and z = x−1y. For uniqueness, suppose that, also, w1x = y. Then wx = w1x and so wx(x−1) =
w1x(x−1). Then w(xx−1) = w1(xx−1) and so weG = w1eG. That is, w = w1. A similar argument works to show
the uniqueness of z. For the final sentence, choose x and y which do not commute to show that the answer is no.

75) For example,

h (g(x)) =
1
x−1
x

=
x

x− 1
= k(x)

so that hg = k. The simplest way to do this question is to construct a multiplication table:

f g h i j k

f g i k f h j
g i f j g k h
h j k i h f g
i f g h i j k
j k h g j i f
k h j f k g i

The operations is associative because it is composition of functions. The identity is i and it is easy to check from
the table that every element has an inverse.

76) Let g, h ∈ G. Then

ghgh = g2h2 =⇒ g−1ghghh−1 = g−1g2h2h−1 =⇒ hg = gh

77)

(a) (264)(35) (b) (1356724) (c) (1456)

78) Let H = ∩i∈IHi.

h, k ∈ H =⇒ ∀i ∈ I, h ∈ Hi ∧ k ∈ Hi

=⇒ ∀i ∈ I, hk−1 ∈ Hi (since Hi is a subgroup)

=⇒ hk−1 ∈ H

79) {0}, {0, 6}, {0, 4, 8}, {0, 3, 6, 9}, {0, 2, 4, 6, 8, 10}, Z/12Z.

80)

(a) No (b) No (c) Yes

81) Let H = {z ∈ C | ∃n ∈ N, zn = 1} and let h, k ∈ H . Note that H 6= ∅ since 1 ∈ H . Let m,n ∈ N be such that
hm = 1 and kn = 1. Then hk−1 ∈ H since (hk−1)mn = (hm)n(kn)−m = 1n1−m = 1. Apply Lemma 3.12.

84)

(a) 12

(b) 10

(c) 2

(d) infinite order

(e) 10, 5, 20, 10

(f) 12, 2, 4
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85) Note that for any m ∈ N.
gm = e =⇒ (g−1)m = (gm)−1 = e−1 = e

Similarly, (g−1)m = e =⇒ gm = e. That |g| = |g−1| is then immediate from the definition of order.

86) Let g, h ∈ G and m,n ∈ Nwith gm = hn = e. Then (gh)mn = gmnhmn = enem = e.

87)

A 6= I A2 =

[
−1 −1
1 0

]
6= I A3 = I

B 6= I B2 =

[
−1 0
0 −1

]
6= I B3 =

[
0 −1
1 0

]
6= I B4 = I

AB =

[
−1 0
1 −1

]
6= I (AB)2 =

[
1 0
−2 1

]
6= I (AB)3 =

[
−1 0
3 −1

]
6= I

(AB)m = (−1)m
[

1 0
−m 1

]
6= I (for all m ∈ N)

89) |e| = 1. For 1 6 i 6 n we have: |ris| = 2, |ri| = n/ gcd(i, n).
To show that |ri| = n/ gcd(i, n) we can argue as follows. Let d = gcd(i, n) and let i′, n′ ∈ N be such that i = di′ and
n = dn′. Note that i′ and n′ are relatively prime since

d = xi+ yn (for some x, y ∈ Z)
= xdi′ + ydn′

=⇒ 1 = xi′ + yn′

Note that

(ri)n
′

= rdi
′n′ = (rn)i

′
= ei

′
= e

and for m ∈ N

(ri)m = e =⇒ rim = e =⇒ n | im (|r| = n)
=⇒ n′ | i′m
=⇒ n′ | m (i′ and n′ are relatively prime)

Therefore |ri| = n′.

90)

(a) See Lemma 3.30.

(b) From Lemma 3.30 we have that |ϕ(g)| | |g| and |g| = |ϕ−1(ϕ(g))| | |ϕ(g)|.

91) By definition SO(2) = {A ∈ M2(R) | ATA = I}. Each element of SO(2) is of the form A =
[
cos(θA) − sin(θA)
sin(θA) cos(θA)

]
for some θA ∈ (−π, π]. Show that the map ϕ : SO(2)→ S1, ϕ(A) = θA is an isomorphism.

92) If n = mk, then we can draw a regular m-gon inside the regular n-gon. Use this to show that a subgroup of
Dn can be identified with (i.e., is isomorphic to) the symmetries of a regular m-gon.

93)

(a) The element −1 ∈ R× has order 2. No element in (R,+) has order 2.

(b) Suppose that ϕ : Z → Q is an isomorphism. Consider the element z = ϕ−1(ϕ(1)/2) ∈ Z. Then ϕ(z + z) =
ϕ(z) + ϕ(z) = ϕ(1), which implies that 2z = 1. Contradiction.

(c) Suppose that ϕ : (Q,+) → (Q+,×) is an isomorphism. Consider the element q = ϕ(ϕ−1(2)/2) ∈ (Q+,×).
Then q2 = ϕ(ϕ−1(2)/2)ϕ(ϕ−1(2)/2) = ϕ(ϕ−1(2)/2 + ϕ−1(2)/2) = ϕ(ϕ−1(2)) = 2. Contradiction.
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96) The order of H ∩K must divide both 7 and 29.

97) Each right coset

H

[
x0 y0
0 1

]
=

{[
zx0 zy0
0 1

]
| z > 0

}
can be identified with a half-line through a point (x0, y0) with x0 > 0 and the origin (that is, with a non-vertical
half-line through the origin). Each left coset[

x0 y0
0 1

]
H =

{[
x0z y0
0 1

]
| z > 0

}
can be identified with a horizontal half-line.

98) This is exactly the argument that each solution of the inhomogeneous set of equations is the sum of a solution
of the corresponding homogeneous set and a fixed solution of the inhomogeneous set (a coset representative).

99)

(a) The cosets of H are H and Hb. Now show that if ab ∈ Hb, then a ∈ H .

(b) Consider cosets H,Hx,Hy with H 6= Hx and H 6= Hy. So x, y /∈ H and therefore x, y−1 /∈ H . Thus
xy−1 ∈ H and so Hx = Hy. Thus there can be at most one coset different from H .

100) Suppose that r is a rotation through 2π/5 and s is a reflection. Then the subgroups are

{e}, 〈r〉, 〈s〉, 〈rs〉, 〈r2s〉, 〈r3s〉, 〈r4s〉, D5

101)

(a) D4 = {e, r, r2, r3, s, rs, r2s, r3s}. The cyclic subgroups are: 〈e〉, 〈r〉 = 〈r3〉, 〈r2〉, 〈s〉, 〈rs〉, 〈r2s〉, 〈r3s〉.

(b) The idea is to find two reflections that commute.

One such pair is s and r2s. This subgroup is 〈s, r2s〉 = {e, s, r2s, r2}. Observe that no element has order 4.

Another pair of reflections that commute is rs and r3s. This subgroup is 〈rs, r3s〉 = {e, rs, r3s, r2}. Observe
that no element has order 4.

(c) The subgroup of all rotations is cyclic and so any non-cylic subgroup must contain at least one reflection.
Since groups of order 2 are cyclic, it must also contain at least one more non-identity element. If this is
another reflection then the product of these two different reflections is a non-identity rotation. Thus the
subgroup must contain a non-identity rotation. A little checking should now convince you that the subgroup
is either one of the two subgroups above or the whole group.

102) For the subgroups of orders 2,3, take cyclic subgroups generated by rotations about the midpoint of an edge
and a vertex (respectively). For the subgroup of order 4, consider the set of all rotations about axes connecting the
midpoints of opposite sides (you need to show it gives a subgroup). For the last part, first establish that there is
no element of order 6 and so no cyclic subgroup of order 6.

103) Let p = 29 and note that p is prime. An element of G must have order dividing p2 and so must have order 1,
p or p2. If there is an element of order p2, then G is cyclic.

105) Check explicitly that ∀σ ∈ S4 ∀h ∈ H, σhσ−1 ∈ H . Alternatively, show that for a, b, c, d ∈ {1, 2, 3, 4} distinct,
we have

σ(a, b)(c, d)σ−1 = (σ(a), σ(b))(σ(c), σ(d))

106) Let g ∈ G\H . The two left cosets are {H, gH}. The two right cosets are {H,Hg}. Since the left cosets partition
G and the right cosets partition G, it must be the case that gH = Hg. Therefore H is normal.

110) Let H 6 G have order n. Show that, for any g ∈ G, gHg−1 has the same order as H by showing that the map
H → gHg−1 given by h 7→ ghg−1 is a bijection. So, by assumption gHg−1 = H .

111) The normal subgroups of D4 are:

{e}, 〈r2〉, 〈r〉, 〈s, r2s〉, 〈rs, r3s〉, D4

112)
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(a) This is essentially straight calculation.

(b) There are five cyclic subgroups. They are

〈U〉, 〈−U〉, 〈I〉 = 〈−I〉, 〈J〉 = 〈−J〉, 〈K〉 = 〈−K〉.

(c) If we are to find a non-cyclic subgroup of Q8 then we must include at least two elements out of ±I,±J,±K
and not two of the form {I,−I} etc. But then it is not too hard to check that we can generate every element
and so the subgroup is the whole group.

(d) From the pervious parts we know that all subgroups aside from 〈U〉, 〈−U〉 and Q8 have size 4. They are
therefore of index 2 and hence normal. The subgroups 〈U〉 and Q8 are obviously normal. That 〈−U〉 is
normal is an easy check.

(e) No. All proper subgroups of Q8 are cyclic but this is not true for D4. (Alternatively, all subgroups of Q8 are
normal but this is not true for D4.)

114)
Q/Z = {a+ Z : a ∈ Q} 6 {a+ Z : a ∈ R} = R/Z.

For the second part, a+Z has finite order if and only if n(a+Z) = 0 +Z if and only if na ∈ Z. That is, if and only
if a ∈ Q.

115)

(a) It’s enough to note that sr4s−1 = sr4s = r4 ∈ H and rr4r−1 = r4 ∈ H .

(b)
H Hr Hr2 Hr3 Hs Hrs Hr2s Hr3s

H H Hr Hr2 Hr3 Hs Hrs Hr2s Hr3s
Hr Hr Hr2 Hr3 H Hrs Hr2s Hr3s Hs
Hr2 Hr2 Hr3 H Hr Hr2s Hr3s Hs Hrs
Hr3 Hr3 H Hr Hr2 Hr3s Hs Hrs Hr2s
Hs Hs Hr3s Hr2s Hrs H Hr3 Hr2 Hr
Hrs Hrs Hs Hr3s Hr2s Hr H Hr3 Hr2

Hr2s Hr2s Hrs Hs Hr3s Hr2 Hr H Hr3

Hr3s Hr3s Hr2s Hrs Hs Hr3 Hr2 Hr H

117) From the first isomorphism theorem, we know that im(ϕ) ∼= (Z/8Z)/ ker(ϕ). The possibilities for ker(ϕ) are:

{e}, 〈4〉, 〈2〉, 〈1〉

(These are the only subgroups. All subgroups are normal because the group is abelian.) Then note that (Z/8Z)/{e} ∼=
(Z/8Z), (Z/8Z)/〈4〉 ∼= (Z/4Z), (Z/8Z)/〈2〉 ∼= (Z/4Z), and (Z/8Z)/〈1〉 ∼= {e}.

Linear algebra II

120)

(a)
√

19 (b)
√

11
30

(c)
√

30

121) If u = v then the claim gives ‖2u‖ = 4‖u‖, which is false if u 6= 0. Try proving ‖u + v‖2 + ‖u − v‖2 =
2‖u‖2 + 2‖v‖2 by expanding into inner products.

122) For the third part, note that

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈x, y〉+ 〈y, y〉
= ‖x‖2 + 2<(〈x, y〉) + ‖y‖2 6 ‖x‖2 + 2|〈x, y〉|+ ‖y‖2 6 ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

The required inequality then follows by taking x = u− w and y = w − v.
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124) We know from Exercise 123 that W ⊆ (W⊥)⊥ and that dimV = dimW + dimW⊥ = dimW⊥ + dim(W⊥)⊥.
Therefore dimW = dim(W⊥)⊥ and W ⊆ (W⊥)⊥. It follows that W = (W⊥)⊥.

126) Suppose that A = [Id]C,B for orthonormal bases C and B = {b1, . . . , bn}. The j-th column of A is equal to
[bj ]C . The i-th row of A∗ is equal to ([bi]C)

∗. Therefore the ij-th entry of A∗A is equal to ([bi]C)
∗[bj ]C . Then note

that ([bi]C)
∗[bj ]C = 〈bi, bj〉 because C is orthonormal.

127) Let λ ∈ C and v ∈ V \ {0} be such that f(v) = λv.

(a) If f∗ = f , then
λ〈v, v〉 = 〈λv, v〉 = 〈f(v), v〉 = 〈v, f(v)〉 = 〈v, λv〉 = λ〈v, v〉

Therefore λ = λ.

(b) If f∗f = Id, then
λλ〈v, v〉 = 〈λv, λv〉 = 〈f(v), f(v)〉 = 〈v, f∗f(v)〉 = 〈v, v〉

Therefore λλ = 1.

128) Let K = ker(f). Let k ∈ ker(f) and u ∈ V . Then 〈f∗(u), k〉 = 〈u, (f∗)∗(k)〉 = 〈u, f(k)〉 = 〈u, 0〉 = 0. Therefore
im(f∗) ⊆ K⊥. Further, (im(f∗))⊥ ⊆ K since

w ∈ im(f∗)⊥ =⇒ ∀v ∈ V, 〈w, f∗(v)〉 = 0

=⇒ ∀v ∈ V, 〈f(w), v〉 = 0

=⇒ 〈f(w), f(w)〉 = 0

=⇒ f(w) = 0

It follows that im(f∗) = (im(f∗)⊥)⊥ ⊇ K⊥.

rank(f∗) = dim(im(f∗)) = dim(K⊥) = V − dim(K) = dim(im(f)) = rank(f)

131) Suppose that {v1, . . . , vn} is an orthonormal basis of V . Suppose that w =
∑
i aivi and that f(vj) =

∑
i bijvi.

Then 〈f(vj), w〉 =
∑
i bijai. Set w1 =

∑
k ckvk where ck =

∑
i bikai. Note that 〈vj , w1〉 = cj = 〈f(vj), w〉.

For the uniqueness, note that if w2 also satisfies the conditions, then 〈v, w1〉 = 〈v, w2〉 for all v ∈ V .

132)

(a) 〈g(u+ w), u+ w〉 = 0 =⇒ 〈g(u) + g(w), u+ w〉 = 0 =⇒ 〈g(u), w〉+ 〈g(w), u〉 = 0

(b) Observe that 〈g(w), u〉 = 〈w, g∗(u)〉 = 〈w, g(u)〉 = 〈g(u), w〉 = 〈g(u), w〉 to show that 2〈g(u), w〉 = 0. Now
deduce that g is zero.

(c) As in the previous part but deduce that the real part of 〈g(u), w〉 is 0.

(d) If 〈g(iu), w〉 is imaginary for all u,w ∈ V , then 〈g(u), w〉 = i〈g(u), w〉 is both real and imaginary and so zero.

(e) Take w = g(u).

135) You can solve this by writing the matrix as
[
a b
c d

]
. Then multiply this by its transpose and equate the result to

the identity. It will be useful to observe that if x2 + y2 = 1, then there is an angle θ so that x = cos θ and y = sin θ.

136) Show that AA∗ = UDD∗U∗ = UD∗DU∗ = A∗A.

137)

ff∗ = f∗f ⇐⇒ ∀v ∈ V, ff∗(v)− f∗f(v) = 0

⇐⇒ ∀u, v ∈ V, 〈u, ff∗(v)− f∗f(v)〉 = 0

⇐⇒ ∀u, v ∈ V, 〈u, ff∗(v)〉 − 〈u, f∗f(v)〉 = 0

⇐⇒ ∀u, v ∈ V, 〈f∗(u), f∗(v)〉 − 〈f(u), f(v)〉 = 0

138) Find a diagonal matrix similar to A, take the square root of that and use that to find a square root of A.
The matrix [ 0 1

0 0 ] (which is not normal) has no square root.

139)
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(a) No; different eigenvalues (b) No; different eigenvalues (c) Yes

140) No; they may have different eigenvalues.

142) Choose a diagonal matrix A to represent f . Find a polynomial p(X) so that p(λ) = λ for each eigenvalue λ of
A. Then p(A) = A∗ and so p(f) = f∗.

143) If f, g are normal, they can be simultaneously diagonalised to two matrices A and B say. Then the matrix of
f∗ is A∗ and A∗ is diagonal. Thus A∗B = BA∗ and so f∗g = gf∗.

144)

(a) (f∗f)(f∗f)∗ = (f∗f)(f∗f) and (f∗f)∗(f∗f) = (f∗f)(f∗f).

(b) Use the Spectral Theorem and group together equal eigenvalues.

(c) Let B denote the matrix for f with respect to the basis used in the previous part. Write B as an m×m block
matrix and then use the fact that this matrix commutes with the matrix found in the previous part.

(d) The first part is immediate. For the second part, firstly recall that Ai = λiImi . Thus, if λi 6= 0 then B∗i =
λiB

−1
i and the result follows. If λi = 0, then B∗iBi is the zero matrix. Check that this implies that Bi = 0 and

so again the result follows.

(e) The matrix of f has the required property and hence so also does f .

Groups II

145)

(a) (i) For injectivity:

ϕg(x) = ϕg(y) =⇒ g·x = g·y =⇒ g−1·(g·x) = g−1·(g·y) =⇒ (g−1g)·x = (g−1g)·y =⇒ e·x = e·y =⇒ x = y

For surjectivity: given y ∈ X let x = g−1 · x. Then ϕg(x) = g · (g−1 · y) = (gg−1) · y = e · y = y

(ii) Let g, h ∈ G. For all x ∈ X we have

ϕgh(x) = (gh) · x = g · (h · x) = g · ϕh(x) = ϕg(ϕh(x)) = ϕg ◦ ϕh(x)

Since this holds for all x ∈ X , we have Φ(gh) = ϕgh = ϕg ◦ ϕh = Φ(g)Φ(h)

(b) Since Ψ is a homomorphism, Ψ(eG) = eSX
= IdX . Therefore, for all x ∈ X we have

eG · x = Ψ(eG)(x) = IdX(x) = x

Let g, h ∈ G. Then
(gh) · x = Ψ(gh)(x) = Ψ(g)Ψ(h)(x) = Ψ(g)(h · x) = g · (h · x)

147)

(a) Orbits: {1, 2, 3}, {4}; stabilisers, Stab(1) = Stab(2) = Stab(3) = {e},Stab(4) = G

(b) Orbits: {1, 2, 3, 4}; stabilisers, Stab(1) = Stab(2) = Stab(3) = Stab(4) = {e}

(c) Orbits: {1, 2}, {3, 4}; stabilisers, Stab(1) = Stab(2) = 〈(34)〉,Stab(3) = Stab(4) = 〈(12)〉

(d) Orbits: {1, 2, 3, 4}; stabilisers, Stab(i) is the set of all permutations not involving i (which is isomorphic to
S3)

(e) Orbits: {1, 2, 3, 4}; stabilisers, Stab(1) = Stab(3) = 〈(24)〉,Stab(2) = Stab(4) = 〈(13)〉. (It’s convenient to
think of {1, 2, 3, 4} as the vertices of a square.)

149) {U}, {−U}, {I,−I}, {J,−J}, {K,−K}

150)
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(a) (123), (132)

(b) (123), (132), (124), (142), (134), (143), (234), (243)

(c) (1234), (1243), (1324), (1342), (1423), (1432)

(d) all 4-cycles

(e) all m-cycles

151) Suppose that σ(i) = j. Then
τστ−1 (τ(i)) = τσ(i) = τ(j).

Thus if j follows i in the cycle decomposition of σ then τ(j) follows τ(i) in the cycle decomposition of τστ−1.
With suitable adaptations for the elements preceding a right parenthesis, this gives the general answer.

152) Show that if g = khk−1, then CG(g) = kCG(h)k−1. In more detail,

x ∈ CG(g) ⇐⇒ xg = gx ⇐⇒ xkhk−1 = khk−1x ⇐⇒ k−1xkh = hk−1xk ⇐⇒ k−1xk ∈ CG(h)

153) This can be done by direct computation. We do the first one as an example. Suppose that a matrixa b c
d e f
g h i


commutes with the matrix of part (a). Then we havea b c

d e f
g h i

1 0 0
0 2 0
0 0 3

 =

1 0 0
0 2 0
0 0 3

a b c
d e f
g h i


Thus a 2b 3c

d 2e 3f
g 2h 3i

 =

 a b c
2d 2e 2f
3g 3h 3i


and so,comparing coefficients, we obtain b = c = f = d = g = h = 0; that is, the centraliser of the given matrix
consists only of (invertible) diagonal matrices.

(a) {A ∈ GL(3,R) | A is diagonal}

(b) {A ∈ GL(3,R) | ∃B ∈ GL(2,R)∃C ∈ GL(1,R), A = B ⊕ C}

(c) {A ∈ GL(3,R) | ∃a, b, e ∈ R, A =
[
a b 0
0 a 0
0 0 e

]
}

(d) {A ∈ GL(3,R) | ∃a, b, c, d, e ∈ R, A =
[
a b c
0 a 0
0 d e

]
}

(e) {A ∈ GL(3,R) | ∃a, b, c ∈ R, A =
[
a b c
0 a b
0 0 a

]
}

154) The orbits are {1, 2, 7, 12}, {3, 6, 10}, {4, 8, 14}, {5, 9, 11, 13, 15}. The orbit-stabiliser relation implies that the
order of the group is divisible by the size of the orbits. Thus |G| is a multiple of 3 and 4 and 5 and so of 60.

155) Since G has order 5, each orbit has size 1 or 5. The size of X is the sum of the sizes of these orbits. So at least
one orbit has size one; that is, some point of X is fixed by every element of G.
For the second part, consider G = 〈(123)(45678)〉 6 S8 acting on
X = {1, 2, 3, 4, 5, 6, 7, 8}. There is no element of X fixed by every element of G (the orbits have size 5 and 3).

157) Choose h so that G/Z is generated by hZ. Then each element of G can be written in the form hiz for some
z ∈ Z and some i ∈ Z.

158) Note that {eG} is always a conjugacy class. So if there is only one class, then G is the identity group.
If there are two classes {eG} and C, say, then |G| = 1 + |C| and |C| divides |G| by the orbit-stabiliser relation.
Therefore |C| = 1 and |G| = 2. Thus G is (isomorphic to) the cyclic group of order 2.
If there are three classes, {eG}, C and D say with |C| 6 |D|, then |G| = 1 + |C|+ |D| and both |C| and |D| divide
|G|. Show that the only solutions to this equation are |C| = |D| = 1 or |C| = 1, |D| = 2 or |C| = 2, |D| = 3. The
first possibility corresponds to the cyclic group of order 3. The third possibility corresponds to S3. The second

© University of Melbourne 2021



MAST20022 Group Theory and Linear Algebra, 2019 B15

possibility does not occur because if |G| = 4, then G is abelian and therefore the number of conjugacy classes if
|G| = 4.

159) Use Cauchy’s Theorem to show that the group has an element of order p and so a subgroup of order p. Since
this subgroup has index 2p/p = 2, it is normal.

160) Use the previous exercise to show that there is a normal subgroup of order p, generated by x say. By Cauchy’s
themorem there is an elment of order 2. Let y be an element of order 2. Since 〈x〉 is normal, yxy−1 ∈ 〈x〉. Show
that yxy−1 = x or yxy−1 = x−1. Then show that the former case corresponds to the cyclic group of order 2p and
the latter to Dp.

161)
g ∈ D8 e r, r3, r5, r7 r2, r6 r4 s, r2s, r4s, r6s rs, r3s, r5s, r7s
|Xg| 70 0 2 6 6 6

There are 1
16 (70 + 2× 2 + 6 + 4× 6 + 4× 6) = 8 orbits.

162) Consider the homomorphism ϕ : L→ K given by ϕ(g) = π(g). Then im(ϕ) = K and ker(ϕ) = N . By the first
isomorphism theorem we have that K ∼= L/N and therefore, using Lagrange, |L| = |K| × |N | = ps−1p.

163) If |G| = pn, then it follows from Lagrange’s theorem that for all g ∈ G |g| divides pn and is therefore a power
of p.
For the converse, suppose that all elements of G have order that is a power of p. If G were not a p-group then
there is a prime q ∈ N such that q | |G| and q 6= p. But then by Cauchy’s theorem (or the first Sylow theorem),
there would be an element g ∈ G of order q.

164)

(a) This follows from the fact that gHg−1 is a subgroup of G and has the same size as H .

(b) If H is the only Sylow p-subgroup, then from the previous part we have that gHg−1 = H for all g ∈ G.

165) LetH be a Sylow q-subgroup ofG. Then |H| = p. By the third Sylow theorem we have that nq | pq and nq ≡ 1
(mod q). The only divisors of pq are 1, p, q, and pq. Since p < q, p 6≡ 1 (mod q). Also, pq ≡ q ≡ 0 6≡ 1 (mod q). The
only possibility is therefore that nq = 1.

166) This is very similar to the previous exercise. We have that n17 | (3 × 5 × 17) and n17 ≡ 1 (mod 17). The
divisors of 255 that are not divisible by 17 are: 1,3,5, and 15. Of these, the only value that is congruent to 1 modulo
17 is 1. Since n17 = 1, the Sylow 17-subgroup is normal (see Exercise 164).
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Linear algebra revision

A.1) A typical element of U+W has the form u1 +w1 where u1 ∈ U and w1 ∈W . If α is a scalar, then α(u1 +w1) =
αu1 + αw1. Since U and W are subspaces, αu1 ∈ U and αw1 ∈ W . Hence α(u1 + w1) ∈ U + W . We have shown
that U +W is closed under scalar multiplication. The argument that it is closed under addition is similar.

A.2) Use the definition of subspace, as in the previous question.

A.3) If neither U1 nor U2 is V , then neither can lie inside the other. Consider an element of V of the form u1 + u2
with u1 ∈ U1 but u1 /∈ U2 and u2 ∈ U2 but u2 /∈ U1. Does it lie in U1 or in U2?.

A.4)

(a) linearly independent, not a basis;

(b) linearly independent, not a basis;

(c) linearly dependent, not a basis.

A.5) (a) yes (b) yes (c) no

A.8) {1, X,X2, X3, . . . } is an infinite linearly independent set in F [X]. In a finite dimensional vector space every
linearly independent set is finite.

A.9) 9

A.10) Given A1, A2 ∈M2×2 and α ∈ Rwe have

g(A1 +A2) = (A1 +A2)B = A1B +A2B = g(A1) + g(A2)

g(αA1) = (αA1)B = α(A1B) = αg(A1)

(Notice that it doesn’t matter what matrix B is.)

A.11)


2 3 0 0
1 −1 0 0
0 0 2 3
0 0 1 −1


A.12) The matrix is

[
1 0
0 −1

]
. The matrix with respect to the new basis is

1

ad− bc

[
ad+ bc 2cd
−2ab −(ad+ bc)

]

A.13) The nullity is 1; the rank is 2.

A.14) The nullity is 1; the rank is 2.

A.15) Briefly, f is surjective if and only if the range of f equals V if and only if the rank of f equals the dimension
of V if and only if the nullity of f is zero.
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Jordan block, 27
Jordan normal form, 27
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self-adjoint, 53
similar, A7
similar matrices, 16
span, A2
stabiliser, 60
standard inner product, 49
strong mathematical induction, 1
subgroup, 36
subgroup generated, 36
subspace, A2
Sylow p-subgroup, 65
symmetric, 53
symmetric group, 34

transitive, 60
trivial subgroup, 36

unitarily equivalent, 56
unitary, 53

vector space, A1

well-ordering property, 1
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