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LECTURE 1

Rings

We investigate the properties of rings — general algebraic structures in which there are two opera-
tions. Good examples to keep in mind are the integers Z and the ring of polynomials R[X]. After
some general considerations, such as subrings and quotients, we’ll look at particular properties that
a ring may (or may not) possess. For example, we know that in the integers every element can be
written as a product of primes. This turns out not to be true in every ring, but is true of R[.X] for
example. We will define and consider various classes of rings: integral domains, unique factorisation
domains, principal ideal domains and Euclidean domains.

1.1 Definition

Many familiar mathematical structures consist of a set on which two binary operations can be per-
formed. You probably recognise all the following examples:

Examples 1.1.

Number systems: 7, Q, R, C
Polynomials: R[X]|={ap+ a1 X +---+a, X" |n €N, a; € R}
Integers modulo n:  Z/nZ (also denoted by Z,, or Z/n or Z/(n))
Square matrices: M, (R)

All have the property that there are two binary operations, (addition” and ‘multiplication’) and that
the two obey some modest and natural conditions such as the distributive law. Writing down a list
of their common properties leads us to the following:

Definition 1.2

Aring is a set R together with two binary operations + and X, called addition and multiplication
respectively, that satisfy the following conditions:

1) (R,+) forms an abelian group (with the identity element being denoted by 0)

2) multiplication is associative: rx (yxz)=(xxy)xz forall z,y,2 € R
3) thereisanelement 1 € R thatsatisfies: zx1=1xx==x forallz € R
4) distributive laws: rx(y+z)=(xxy)+(xxz) forallz,y,z€ R

(x4+y)xz=(rxz)+(yxz) foralzx,y,ze€R

The ring will be denoted (R, +, x) or simply R if the operations are clear from the context.

Remark.
» Multiplication will often be represented by concatenation, that is we write ab in place of a x b.
» The additive inverse of an element a is denoted —a.
» If we were to drop the condition that there is a multiplicative identity, the resulting structure is

called a “pseudo-ring’. An example is the even integers.

Exercise 1. Suppose that R is a ring and e € R satisfies Vo € R, ex = xe = . Show thate = 1.
(The point is that there is a unique multiplicative identity, and it is uniquely determined by the
property in axiom 3 in the definition of a ring.)
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Exercise 2. Let R be aring, and z,y € R any two elements. Show that

(@) 0z =20=0 (b) z(~y) = (-2)(y) = —(zy)  (© (—2)(~y) ==y

Justify every step using the axioms from the definition of a ring.

Exercise 3. Let R be a ring. Show thatif 1 = 0 in R (i.e., the additive and multiplicative identities
coincide), then R consists of a single element.

Remark. From now on, all rings will be assumed to be non-trivial in the sense of having at least two
elements.

Aring (R, +, x) is said to be commutative if multiplication is commutative:

rxy=yxax foralzx,y,€R

Examples 1.4 (Some rings).

1.

Let X be a nonempty set and denote by P(X) the power set of X. Define operations on P(X)
by

A+B=(AUB)\ (ANB)
AxB=ANB

Then (P(X), +, x) is a commutative ring.

. Let R be the set of all functions from R to R. Defining operations in the usual pointwise way,

(f x g)(x) = f(z)g(x)
(f +9)(x) = f(z) + 9(z)

makes R into a commutative ring.

. Consider the following subset of M3(C):

= {[5 s

With the usual matrix operations, H forms a (non-commutative) ring, called the quaternions.

The subset of the complex numbers given by Z[i]| = {m + in: m,n € Z} with the operations
from C forms a commutative ring. It is called the Gaussian integers.

. Consider the set (Z/6Z)[v/5] := {a + b\/5 : a,b € Z/6Z}. The operations

(a+bV5) + (a4 BV5) = (a+a)+ (b+B)V5
(a4 bV5) X (a+ BV5) = (ac + 5bB) + (af + ba) V5

make R into a commutative ring.

. Let R = {0,2,4} C Z/6Z. With the operations coming from Z/6Z, R forms a commutative ring.

What is the multiplicative identity ?

© University of Melbourne 2025
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1.2 Units and zero-divisors

Let R be aring. An element z € R is called a unit (of an invertible element) if there exists y € R
such that xy = yz = 1. The element y is called the multiplicative inverse of x and is denoted
271, The set of units in R, together with the operation of multiplication, forms a group called
the group of units. We denote it R*.

Remark.

» The multiplicative identity is always a unit.

» The zero element is never a unit (see Exercise 2(a)).
Examples 1.6.

1. The unitsin Z are 1, —1.

2. The units in Z /67 are 1 and 5.

3. The units in R[X] are the non-zero constant polynomials.

A ring R is called a division ring if every non-zero element is a unit. A field is a commutative
division ring.

Examples 1.8.
1. Q R, C are all fields.

2. For any prime integer p, Z/pZ is a field. We will use the notation F,, to denote the field Z/pZ.
We will see later that any field having p elements is isomorphic to I, and that there are other
finite fields. Finite fields are used extensively in cryptography and coding theory.

3. The following addition and multiplication tables define a field having four elements. It is not
isomorphic to the ring Z /47 (which is not a field).

tolt|z]y] x||of1]a]y|
00|12 |y 010[{0]|0]0
1|10y |z 101z |y
zllxz|y|0]1 z||0jz|y|l
yllylx|1]0 y|0|ly|1l]|=x

We will see later that this field is isomorphic to a quotient ring of a polynomial ring, namely
Fo[X]/{(1 + X + X?). The notion of a quotient ring will be discussed shorty, but essentially
this is the the ring of all polynomials with coefficients from 3, modulo the condition that
1+ X +X*=0.

4. Z/6Z is not a field.

5. The ring of quaternions H is a division ring, but is not a field.

© University of Melbourne 2025
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If a,b € R are non-zero elements in a ring R satisfying ab = 0 then they are called zero-divisors.

Remark. This is not quite the same as being a ‘divisor of zero.” According to Exercise 2(a), everything
divides zero.

Example 1.10. In Z/6Z the zero-divisors are 2, 3, 4. There are no zero-divisors in R, Z or R[X].

Exercise 4. Let R be aring, and « € R. Show that x cannot be both a unit and a zero-divisor.

Let R be a ring. Then R has no zero-divisors if and only if the following condition holds for all
z,y,2 € Rwithxz # 0

TY=2 — Y=2
Yr =20 — Yy==2

Remark. We are not assuming that x is a unit, merely that it is non-zero.

Proof (of Lemma 1.11). First note that zy =2z <= 2y —22=0 <= z(y —2) =0.

Suppose there are no zero-divisors. Then zy = 22 = 2(y—2) =0 = z=0o0ry—2z=0.If
x # 0, we therefore have xy = vz = y = 2. The second condition follows in exactly the same way.

Now suppose that both conditions hold. If z # 0 and 2y = 0, then we have zy = 20 = y = 0.
Similarly if yz = 0. O

1.3 Exercises

5. Let ¢ € C be the root of the polynomial X? + X + 1 given by ¢ = (=1 + v/=3)/2. Define the
Eisenstein Integers as Z[¢] = {a + b | a,b € Z}. Show that Z[¢] is a ring (the operations are
those inherited from C).

6. List all units in the following rings:
(@) Z (©) Z/5Z (€ Q
(b) Z x 7 (d) Z/15Z (f) RIX]
7. True or false?

(a) Every field is also a ring.

(b) Every ring has a multiplicative identity.

(c) Every ring with a multiplicative identity has at least two elements.
(d) The non-zero elements in a field form a group under multiplication.
(e) Addition in a ring is always commutative.

8. Give the multiplication table for the multiplicative group of units in Z/12Z. To which group of
order 4 is it isomorphic?

9. Determine all the units of Z[i]. (Hint: Use the absolute value.)

© University of Melbourne 2025
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10. Consider the ring Z[v/2] = {a + bv/2 | a,b € Z} C R (with the operations come from R).

(a) Find a unit in Z[v/2] other than +1.

(b) Use your answer from (a) to produce infinitely many units in Z[v/2].

© University of Melbourne 2025
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LECTURE 2

Integral domains, subrings and ideals, homomorphisms

2.1 Integral domains

An integral domain is a non-zero (i.e.,, 0 # 1) commutative ring in which there are no zero-
divisors.”

"Sometimes the term ‘domain’ is used rather than ‘integral domain’.

Examples 2.2. The rings Z,Z/3Z, R, R[X] are integral domains. The rings Z/6Z, M>(R) are not inte-
gral domains.

Every field is an integral domain.

Proof. Every field is commutative. It follows from Exercise 4 that there are no zero-divisors. O

The converse of this proposition is false: Z is an example of an integral domain that is not a field. If
we add the condition that the ring be finite, then the converse does hold (Theorem 2.4). Of course,
although Z is not a field, it can be embedded into the field Q. It is true in general that every integral
domain can be embedded in a field called its field of quotients.

Every finite integral domain is a field.

Proof. Let R be a finite integral domain, and let a € R be a non-zero element. Defineamap f, : R = R
by fu(b) = ab. Since R is an integral domain, f, is injective: f,(b) = fo(V/) = ab=abl = b=V
by Lemma 1.11. An injective map from a finite set to itself is necessarily bijective. Therefore, since f,
is surjective, there is an element b € R such that f,(b) = 1. Since ab = 1, a is a unit. Having shown
that every non-zero element of R is a unit, we conclude that R is a field. O

Note. It’s possible to adapt the above proof to remove the hypothesis that the ring be commutative.
In that slightly stronger form it’s called Wedderburn’s Little Theorem.

If p is prime, then Z/pZ is easily shown to be an integral domain, and therefore (as already noted)
7/pZ (which we will often denote IF,) is a field. These are not the only finite fields (as we will see
later).

Example 2.5. Let

o o) 1) Goo) () e

With the usual matrix operations, and remembering that the entries are from Z/2Z, this set forms a
field. This is definitely not the same as the ring Z/4Z (which has zero-divisors). We will see later
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that for any prime p and any n > 1 there is a field having p" elements, and that it is unique up to
isomorphism. We will consider finite fields in more detail in a later section.

2.2 Subrings and ideals

A subring of a ring R is a non-empty subset S C R which contains the multiplicative identity of
R and, when equipped with the operations from R, forms a ring.

We will denote this by S < R (meaning S is a subring of R).

A non-empty subset S C R of aring (R, +, x) is a subring if and only if it satisfies the following:

(@) 1e€8 (b) a—beS Va,beS (c) axbeS Va,beS

Remark. The second condition is equivalent to requiring that (S, +) is a subgroup of (R, +). In par-
ticular, 0 € S.

Exercise 11. Prove Lemma 2.7.

An ideal in a ring R is a non-empty subset I C R that satisfies the following;:

@ a—-bel Vabel (b) rxaelandaxrel VYael VreR
We will denote this by I <t R (meaning [ is an ideal in R).

Remark. 1f R is commutative, the two parts of the second condition are equivalent. It is possible
to consider left ideals (or right ideals) that satisfy only the first (second, respectively) part of this
condition. We will rarely do so.

Examples 2.9.

1. ThesetI = {3, ;X" | n > 1,0; € R} C R[X] of polynomials having constant term equal to
zero is an ideal in R[X].

2. J={3" X" |n>0,0; € Z,ais even} C Z[X] is an ideal in Z[X].
Example 2.10. Z C R is a subring of R, but not an ideal in R.

Remark. 1If S is a subring of R and R is a subring of T, then S is a subring of 7. However the
corresponding statement is not true of ideals.

2.3 Homomorphisms

As with groups, or any other algebraic structure, it is natural consider maps that preserve the under-
lying structure. For a ring, this means that the maps preserve products and sums.

© University of Melbourne 2025
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A ring homomorphism (or simply a homomorphism if the context is clear),isamap ¢y : R — S
between rings such that for all a, b € R:

(@) pla+0b) =p(a)+ »(b) (b) ¢(ab) = p(a)p(b) (© f(1)=1

An isomorphism of rings is a bijective homomorphism. If there exists an isomorphism between
two rings, they are said to be isomorphic.

Remark. The first condition is equivalent to requiring that ¢ be a homomorphism of the underlying
abelian groups (R, +) and (S, +).

Let ¢ : R — S be a ring homomorphism.

1. The kernel of ¢, ker(p) = {r € R | ¢(r) = 0}, is an ideal in R.

2. The image of ¢, im(yp), is a subring of S. (But not necessarily an ideal.)

Proof. Let a,b € ker(¢) and r € R. Then a — b € ker(y) since

o(a —b) = ¢(a) + o(—b) (since ¢ is a homomorphism)
= p(a) — ¢(b) (since ¢ is a homomorphism)
=0-0=

For the second condition in the definition of an ideal we note that

o(ra) = o(r)p(a) (since ¢ is a homomorphism)
=¢@(r)x0=0
and
olar) = p(a)p(r) (since ¢ is a homomorphism)
=0Xx¢(r)=0

Now to show that im(y) is a subring of S. Let s,t € im(y) be two elements in the image. Then
s = ¢(c) and t = ¢(d) for some ¢, d € R. It follows that

s —t=(c) — p(d) = p(c — d) € im(p)
st = p(c)p(d) = p(cd) € im(p)
O

Example 2.13. Fix a € R and define a map ¢, : R[X] — R by ¢,(> g s X*) = > a,a’, that is, the
image of a polynomial is given by evaluating at X = a. Then ¢, is a surjective ring homomorphism
with kernel ker(p,) = {p € R[X] | ais aroot of p}. Choosing a = 0 gives the ideal I of Example 2.9.

© University of Melbourne 2025
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A homomorphism ¢ is injective if and only if ker(y) = {0}.

Proof. Recall that, by definition, ¢ is injective if, for all « and b in its domain
pla) =p(b) = a=b

Clearly, if ¢ is injective, then ker(y) = {0}.

For the converse, suppose that ¢(a) = ¢(b). Then p(a — b) = p(a) — ¢(b) = 0, which implies that
a — b € ker(y). Since ker(yp) = {0}. we conclude that a — b = 0. O

2.4 Exercises

12. Show that if R is an integral domain, then R[X] is an integral domain.

13. Let R be an integral domain such that 2> = z for all z € R. Show that R has exactly two
elements.

14. Let R be aring and I an ideal in R. Show that if I contains a unit from R, then I = R.

15. Show that a field F" has only two ideals, namely F and {0}. Conversely, show that if a commu-
tative ring has exactly two ideals, then it is a field.

16. Find an example of a ring R and a subset I C R such that I is left ideal but not a right ideal.
17. Find an example of a homomorphism whose image is not an ideal in the codomain.

18. The direct product R x S of two rings is a ring given by the set {(r,s) | r € R,s € S} with
operations defined by

(r1,s1) + (re, s2) = (r1 +r r2, $1 +5 S2)
(r1,81) X (rg,s2) = (r1 Xgre,$1 Xg S2)

(a) Is the map r — (r,0) from R to R x S a ring homomorphism ?

(b) What about the diagonal map r — (r,7) from Rto R x R?

19. (a) Is Z/8Z isomorphic to Z /27 x Z/AZ (as rings)?
(b) Is Z/15Z isomorphic to Z/37Z x Z/5Z (as rings)?

20.* The characteristic of a (non-zero) ring R is the smallest n € N* such that

1+14---+1=0
| S

n times

if such an n exists; otherwise the characteristic is defined to be 0.

(a) Show that the characteristic of an integral domain is either zero or a prime.

(b) Let R be a ring with characteristic n. Verify that the map from Z — R that sends 17 to 1
and mto (g +1r+ -+ 1g) (m times) is a homomorphism with kernel equal to nZ, and
that R therefore contains a subring isomorphic to Z/nZ.

(c) Conclude that every integral domain either contains a subring isomorphic to Z, or contains
a subring isomorphic to the field IF,,. (For some prime p € N.)

21.* A prime field is a field with no proper subfields. Show that a prime field is isomorphic to
either Q or I, for some prime p (corresponding to the characteristic of the field being 0 or p).

© University of Melbourne 2025
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22.* Let R be a commutative (non-zero) ring of prime characteristic p. Show that, for all x,y € R
and n € N, the following holds:
(@ +y)" =a? +y”

Notice that this shows that the map F' : R — R given by F'(z) = 2P is a ring homomorphism
(called the Frobenius map).

23.* In this exercise we will prove that every integral domain can be embedded in a field. The
construction mimics the way in which Q is built from Z.

Let D be an integral domain and define
F={(a,b) |a,be D,b# 0}/ ~ where (a,b)~ (¢c,d) if ad=bc.

Define operations on F' by:

(a,b) + (¢,d) = (ad + bc, bd)
(a,b)(c,d) = (ac, bd)

(Where (a, b) denotes the equivalence class of (a,b) € D? with respect to ~.)
Show that:

(a) These operations on F' are well-defined;
(b) F, with these operations, is a ring;
(c) Fisafield;

(d) The map ¢ : D — F, given by ¢(a) = (a, 1) is an injective homomorphism (and therefore
its image is isomorphic to D).

)
)
)
)

(e) Show that any field that contains a subring D’ that is isomorphic to D contains a subfield
isomorphic to F' (and containing D’).

The field F is called the field of quotients of the integral domain D.

© University of Melbourne 2025
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LECTURE 3

Quotient rings and the isomorphism theorems

3.1 Quotient rings

The lemma that the kernel of a ring homomorphism is an ideal can be compared to the statement that
the kernel of a group homomorphism is a normal subgroup. For groups we can form the quotient of
a group by a normal subgroup. Similarly, we can quotient a ring by an ideal.

Let I < R be an ideal in a ring R. Denote by R/I the set of (additive) cosets of I in R
R/I={a+1]|ac R}
Define operations on this set by
(a+D)4+OG+I)=(a+b)+1
(a+1)x (b+I)=ab+1

Let’s check that the second operation is well-defined (meaning that it is independent of the choice of
coset representative). Suppose that (a + I) = (¢’ + I) and (b + I) = (V' +I). Thend' = a + z and
b = b+ y for some z,y € I. Therefore

dtV +I=(a+z)b+y)+I=ab+abt+ay+azy+I=ab+1
We used that because [ is an ideal xb, ay, zy € I and hence zb + ay + zy € I.

Exercise 24. Check that the first operation above is also well-defined, and that with these operations
R/I is a ring. What are the additive and multiplicative identities in R/I?

The ring R/ defined above is called the quotient ring.

Examples 3.2.

1. For any m € Z we can form the quotient Z/mZ.
2. RIX]/(X?+1)=C (where (X? +1) = {f(X)(X?+1) | f(X) € RIX]} <R[X])
There is a direct relationship between ideals in R, quotients of R and kernels of homomorphisms

from R onto another ring. We have already seen that the kernel of a homomorphism is an ideal. The
following can be regarded as a kind of converse.

Let R be aring. Given an ideal I < R, the (natural projection) map

¢:R—R/I, ¢la)=a+1

is a (surjective) ring homomorphism with ker(y) = 1.

\ J
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Proof. Let a,b € R be two elements of R. Then

pla+b)=(a+b)+I=(a+1)+(b+1)=¢(a)+ pb)
p(ab) =ab+1 = (a+1)(b+ 1) = p(a)p(b)

So ¢ is a homomorphism, and ker(yp) = I since

¢(a) =0gyr <= a+I=0r+1 <= acl

3.2 Isomorphism theorems

We know that the kernel of a homomorphism is an ideal in the domain, and that the image is a
subring of the codomain. They are related by the following

Let ¢ : R — S be a ring homomorphism. Then

R/ ker(p) = im(p)

An explicit isomorphism is given by a + ker(¢) — ¢(a).

Proof. Denote by K the kernel ker(y). Define a map f : R/K — im(y¢) by f(a + K) = ¢(a). This is
well-defined since

a+K=d+K = d =a+k (forsomekc K)
= p(d) = pla+k) = p(a) + ¢(k) = p(a) + 0 = ¢(a)

We will show that f is an isomorphism. That f is a homomorphism follows from the fact that ¢ is
a homomorphism, and the way in the which the operations in R/K are defined. It is clear that f is
surjective. For injectivity,

fla+ K)=0 < ¢(a) =0 < a€ K < a+ K =0g/
O

The First Isomorphism Theorem can be used to prove the following, which we give here for com-
pleteness.

Let R be aring.

1. Suppose I < Ris anideal and S < R is a subring. Then
(S+1)/1=5/(SNI)
2. Suppose that I, J < R are ideals in R, and I C J. Then

(R/1)/(J/I) = R/J

Where it is understood that part of the assertion being made is that each expression makes sense,
e.g., that J/I is anideal in R/I.

Exercise 25. Write out a proof of second and third isomorphism theorems.

© University of Melbourne 2025
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3.3 Correspondence Theorem

Given a homomorphism, there is a correspondence between subrings (ideals) of the image and sub-
rings (ideals) in the domain that contain the kernel of the homomorphism. This innocuous looking
result is surprisingly useful.

We noted in Lemma 2.12 that the image of a homomorphism is always a subring of the codomain.
We start by giving an extension of that result to all subrings and ideals of the domain.

Let ¢ : R — R’ be a ring homomorphism.

1. If S is a subring (or ideal) in R, then ¢(S) is a subring (ideal) in im(y).

2. If §" is a subring (or ideal) in im(¢), then p~1(S’) is a subring (ideal) in R.

Proof. Given a/,b' € ¢(S), we have that ' = ¢(a) and b’ = ¢(b) for some a,b € S. Since S is
asubring a —b € S, and o' — b = ¢(a) — o(b) = p(a —b) € ¢(S). Also ab € S implies that
ad'tl = ¢(a)p(b) = p(ab) € ¢(S). Noting that ¢(5) is non-empty given that S is, we conclude that
©(S) is a subring of R'. If, further, S is an ideal in R and ' € im(y), then ' = ¢(r) for some r € R
and 'a’ = ¢(r)p(a) = p(ra) € p(S). Similarly a’r" € ¢(S), and we conclude that ¢(S) is an ideal in
im(ep).

For the second part, let a,b € ¢~1(S’). Then p(a), p(b) € S’, which implies that p(a — b) = ¢(a) —
©(b) € S"and p(ab) = p(a)p(b) € S'. As ¢~1(S') is non-empty (it contains O since p(0gr) = Og/),
we conclude that it is a subring of R. If, further, S’ is an ideal in im(¢) and r € R, then ¢(ra) =
o(r)p(a) € ', which implies that ra € »~1(S’). The argument that ar € ¢~ 1(9’) is exactly the
same. ]

Remark. Of course, in the first part of the lemma, we can conclude that the image of a subring in R is
a subring of R'. However, the image of an ideal in R is not always an ideal in R'.

Different subrings in the domain can have the same image in the codomain. However, if we restrict
to only those subrings in the domain that contain the kernel, then we get a correspondence.

Let ¢ : R — R’ be a ring homomorphism. The maps

©:{S< R|ker(p) €S} = {S"< R'[ &' Cim(p)}, ®(5) = ¢(9)

U:{I<R|ker(p) CI} = {I'CR|I'<xim(p)}, U(I) = (I)

are inclusion-preserving bijections.

\ J

Proof. We give the argument for ¥ and leave the other case as an exercise. Given I’ <im(y), we know
from the preceding lemma that ¢~ !(I’) is an ideal in R that contains the kernel of . It follows that
U is surjective, since ¥ (¢~ 1(I")) = p(p~1(I")) = I'. For injectivity first note that if I < R contains the
kernel of ¢, then

pla) € o(I) = ¢(a) = ¢(i) forsomeie I
= pla—1i)=0
= a—1i € ker(yp)
= a €l (sinceker(p) CI)
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Now suppose that I and J are ideals in R that contain the kernel of ¢, and that ¥(I) = ¥(J). Then

acl < gla)ep(l) < ¢(a) e V(I) <= ¢(a) €eV(J) <= acJ

We have shown then that ¥ is bijective. Its inverse is the map I’ — ¢ 1(I’). That ¥ preserves
inclusions then follows from the fact that I C J — ¢(I) C ¢(J) and I' C J' C im(p) =
eI ST, O

3.4 Exercises

26. If 1, J are ideals in R, the sum of I and J denoted I + J is defined by
I+J={z+yl|leel,yecJ} CR

(a) Show that I + J is again an ideal in R.
(b) Show thatif I +J = R,thenR/(INJ)= R/I x R/J.

27. Using the above exercise 26 show that Z,,,, = Z,, x Zy, if and only if ged(m,n) = 1.

28. Complete the prove the Correspondence Theorem.
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LECTURE 4

Constructions and generating sets

4.1 Constructions

We record here some standard ways of combining rings to produce new ring. Some have been men-
tioned already and will be used extensively in the sequel.

Direct product. Given two rings R and S, their direct product is ring given by the set
RxS={(r,s)|reR,se S} (theusual cartesian product of two sets)
equipped with the operations
(r,s)+ (r',s)=(r+7r',s+ ) (r,s)(r',s") = (rr', s5)

These operations are sometimes said to be defined ‘pointwise” or ‘coordinatewise’. The operation of
taking direct products is (up to isomorphism) associative and commutative; that is, R x (S x T') =
(RxS)xTand Rx S=S x R.

We use the usual convention of denoting R x R by R?. Similarly we will speak about R", the direct
product of n copies of R. If we take infinitely many rings R;, then we can form the direct sum or the
direct product.

Polynomial rings. Let R be a commutative ring. Elements of the ring R[X] are of the form

ao+ a1 X +as X’ + -+ a, X" wheren > 0,a; € Rand a,, # 0

The degree of such a polynomial f is equal to n and is denoted deg(f). The ring R embeds in R[X]
as the degree zero polynomials, and we will make this identification without comment. The units in
R[X] are precisely the degree zero polynomials that are units in R. Since R[X] is itself a ring, this
construction can be iterated to give R[X,Y| = (R[X])[Y] and R[X}, ..., X,].

Matrix rings.  Let R be a commutative ring and n € N*. An n x n matrix over R is a square
array of elements from R. With addition and multiplication of matrices defined as usual, this forms
a ring which we denote M,,(R). The standard definition of determinant works in A, (R), and the
determinant is an element of R. If A, B € M,,(R) are two matrices, then det(AB) = det(A) det(B). A
matrix A € M, (R) is invertible if and only if det(A) is a unit in R.

Ring of endomorphisms. Let R be a ring. The set of all ring homomorphisms from R to itself forms
a ring. The operations are pointwise addition and composition, that is, for f, g : R — R define

(f +9)(a) = fla) +g(a)  (fg)(a) = (fog)(a)
Group rings. Let G be a group, and R a commutative ring. The group ring (of G over R) is the set
R(G) = {a1g1 + -+ angn | n € NT a; € R, g; € G distinct }

of all finite formal sums, with addition defined in the obvious way, and multiplication given by

(Z aigi)(z bih;) = (aib;)(gih;)

irj
4.2 Generating sets

Noting that the intersection of two subrings (or ideals) is a subring (ideal) enables us to make the
following definition.
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Let R be a ring, and A C R be a subset. The subring generated by A is the intersection of all
subrings of R that contain A. Similarly, the ideal generated by A is the intersection of all ideals
in R that contain A.

In the case that A = {ay, ..., a;} we denote the ideal generated by A by (ai,...,ax) or (a1, ...,ax).

Anideal I < R satisfying I = (a) for some a € R is called a principal ideal.

Notice that if v € R is a unit, then (u) = R. The following lemma states that the ideal generated by
A C R is the set of all R-linear combinations of elements from A.

Let R be a commutative ring and A C R. Then

(A) ={ria1 + - +ran [ n EN,r; € R,a; € A}

Proof. As theset I = {ria; +---+rpa, | n € N,y € R,a; € A} is clearly an ideal, we know that
(A) C I. Conversely, any R-linear combination of elements from A will lie in every ideal that contains
A. It follows that I C (A). O

Examples 4.4.

1. We have already seen that all ideals in Z are principal.

2. Allideals in R are principal as {0} and R itself are the only ideals.

3. Theideal (2, X') <1 Z[X] is not principal.
Proof. Let I = (2, X) and suppose that I = (f) for some f € Z[X]. Using Lemma 4.3, since
2 € I we know that 2 = fg for some g € Z[X]. It follows that deg(f) = 0 and that either f = +1

or f = £2. If f = £1, then (f) = Z[X]. This can not be the case if (f) = (2, X) since (for
example) 1 ¢ I. Similarly I # (+2) since2+ X € I, but 2+ X ¢ (2). O

4.3 Exercises
29. Let 1 : R — Sy and ¢ : R — S be ring homomorphisms. Show that the map ¢ : R — 57 x S
given by ¢(a) = (p1(a), p2(a)) is a ring homomorphism.
30. Let ¢ : R — S be a homomorphism, and define a map ¢ : R[X] — S[X] by
D(ap+ a1 X + -+ anX") = @(ag) + p(a) X + - - + p(an) X"
Show that ® is a homomorphism.
31. Show that the units in F'[X]|, where F'is a field, are the elements of F' \ {0}.

32. Suppose that R is a commutative ring and a € R a fixed element. Show that the map from R[X]
to itself defined by

ag+ar X+ +ap X" —=ag+a(X —a)+--+a (X —a)"
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is an isomorphism of rings. Deduce that if f(X) € R[X], then f(X) can be expressed in the form
f(X) =>b;(X — a)’ for suitable b; € R.

33. Let R b a commutative ring and » € R a fixed element. Show that there is exactly one homomor-
phism ¢ : R[X] — R satisfying ¢(a) = aforalla € Rand p(X) =r.

34. Are the following matrices invertible?

@ |7 5| € Ma(z/32)
) |1 3| € Mao(z/62)
© |o 3| €M@

(d)
(e)

(f)

) 3| €M@ ® o | e pmmin)
_; §:| EMQ(Z)
5 ] e i)

35. Show that the ideal (X,Y) < R[X, Y] is not principal.
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LECTURE 5

PIDs and divisors in IDs

5.1 Principal ideal domains

We come now to the definition of an important class of rings. We have observed that all ideals in Z
are principal, and we shall shortly see that the same is true in other rings such as R[X] and Z][i].

A principal ideal domain (PID for short) is an integral domain in which all ideals are principal.

Examples 5.2.

1. Any field F' is (trivially) a PID, as there are only two ideals, {0} and F, both of which are
principal: {0} = (0) and F' = (1).

2. The ring of polynomials R[X] is a PID, as we shall see shortly.

3. Z[X] is not a PID since the ideal (2, X) is not principal.

Exercise 36. Show that every ideal in Z /127 is principal. Is Z /127 a PID?

5.2 Divisors in integral domains

Continuing to generalise properties from the integers, we will define divisors in an integral domain.
This will lead to two versions of what a “prime” is. In this section the ring R will always be an integral
domain. Many of the definitions make sense in a more general setting.

Let a,b € R. We say that a divides b (or a is a divisor of b) if there exists ¢ € R such that b = ac.
We write a | b to mean that a divides b. We say that a and b are associates if both a | band b | a.
This will sometimes be denoted by a ~ b.

Notice that a | b is the same as b € (a).

Examples 5.4.
1. InR[X], (X — 1) | (X5 —1). 3. 2,—2 € Z are associates.
2. 2,—3 € Z are not associates. 4. 2, -3 € QQ are associates.

Exercise 37.

a) Show thatifa |band b | ¢, then a | c. (That s, it is a transitive relation.)
b) Show that if a divides a unit, then a is a unit.

¢) Show that if a is a unit, then a | b for all b.



5-2 MAST30005 Algebra, 2025

d) Show that a | bif and only if (b) C (a)

Exercise 38. Check that the relation of being associates defines an equivalence relation on R.

That is, show that for all a, b, ¢ € R:
1. a~a 2.a~b = b~a 3.a~bandb~c = a~c
Exercise 39. Show that

a~b <= (a) = (b) <= thereisaunitu € R, such thata = bu

5.3 Irreducible elements

We now generalise the notion of a prime integer. A prime integer can be defined as one having no
proper divisors, that is, it cannot be written as a product of two integers, unless one of the factors is
1 or —1. We make this a definition.

An element a € R is called irreducible if a is not a unit and the following holds

a = bc = bisaunitor cis a unit

This is the same as saying that all divisors of a are either units or associates of a.
Example 5.6.
1. The irreducibles in Z are exactly the prime integers (where we allow negative primes, eg —5).

Any degree 1 polynomial in F'[X] is irreducible, where here F' can be any field.
Both X2 +1and X% + X + 1 are irreducible in R[X].

Ll

X2 4 11is not irreducible in Fo[X], since X? +1 = (X + 1)(X + 1) and X + 1 is not a unit. The
polynomial X% + X + 1 is irreducible in Fo[X].

5. Neither X2 + 1 nor X? + X + 1 is irreducible in C[X] since X? + 1 = (X — i)(X + i) and
X2+ X +1=(X-i1+iV3)(X - 11-iv3)).

5.4 Prime elements

Another characterisation of the prime integers is that if p is prime and p | ab then p divides one of a
or b. Let’s make this a definition.

An element a € R\ {0} is called prime if a is not a unit and the following holds for all b, c € R:

albc = alb or alc
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Example 5.8.
1. The primes in Z are exactly the ‘usual’” primes: £2, +3, £5, £7, . ..

2. The element X — 1 € R[X] is prime.

We've generalised the notion of a prime integer in two ways. The next result says that one implies
the other.

Let R be an integral domain and = € R. If = is prime, then z is irreducible.

Proof. Let p be a prime, and suppose that p = bc. Then p | bc and so we have that either p | borp | c.
Suppose that p | b. Then p = pdc for some d € R, and therefore 1 = dc, since R is an integral domain
(noting that p # 0). It follows that c is a unit. Thus p is irreducible.

O]

The next example demonstrates that the converse to the above result does not hold.

Example 5.10 (Irreducible but not prime). Consider the subring Z[/—5] = {a+bv/—5 | a,b € Z} of C.
We show that the element 2 is irreducible in Z[+/—5], but not prime. To do this we will use a function
that, in some sense, measures complexity.

Define a function N : Z[/—5] — Z by N(a + by/—5) = a? + 5b. Notice that N is simply the square
of the magnitude of the complex number a + bv/—5. It follows that N is multiplicative: N(zy) =
N(z)N(y). If x is a unit, then N(x) = 1, since it must divide 1. It follows that 1 and —1 are the only

units in Z[v/—5].

To see that 2 is irreducible, note first that it is not a unit. Now suppose that 2 = uv for some u,v €
Z[\/—5]. We then have that N(u)N(v) = 4, from which it follows that N(u) = 1 or N(v) = 1.
Therefore one of u or v must be a unit.

To see that 2 is not prime, note that 2 | (1++/—5)(1 —+/—5). However 2 divides neither of the factors,
since if it did we would obtain N(2) | N(1 + /—5), thatis 4 | 6.

The idea of a function that measures the complexity of elements is something we shall return to when
we consider Euclidean domains.

5.5 Exercises

40. Let D be an integral domain, and p, ¢ € D with ¢ | p. Show that:

(a) If p is a unit, then ¢ is a unit.
(b) If p is irreducible, then either ¢ is a unit or p and ¢ are associates.
(c) If p and g are associates, then p is irreducible iff ¢ is irreducible.

41.* Let d € Z be square-free, and R = Z[\/d] C C.
(a) Show thatz + yvd = a—l—b\/aonlyifzv =aand y =b.
Define N : R — Nby N(z + yvd) = |2® — ¢?d|

(b) Show that N(T‘ﬂ"g) = N(Tl)N(T’g).
(c) Show thatr € R is a unit if and only if N(r) = 1.

(d) Use induction on N(r) to show that all non-unit elements » € R\ {0} can be written as a
product of irreducibles.
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LECTURE 6

Unique factorisation domains and prime and maximal ideals

6.1 Definition of a UFD

In the integers the ‘fundamental theorem of arithmetic” states that every integer can be written as a
product of irreducibles and that this factorisation is essentially unique. Not all integral domains have
this property.

An integral domain R is called a unique factorisation domain (UFD for short) if the following
hold:

1. Existence of factorisation: Every element a € R that is nonzero and not a unit can be written
as a product of irreducibles:
a=aiag---a,

2. Uniqueness of factorisation: If a = by ...b,, is another factorisation of a into a product of

irreducibles, then m = n and there is a permutation 7 of {1,2,...,n}, such that b; ~ a.
That is, the two factorisations differ only by re-ordering and replacing each factor by an
associate.

Examples 6.2. 1. Zis a UFD. This is the Fundamental Theorem of Arithmetic.
2. Q, R are UFDs since there are no elements that are nonzero and non-unit.
3. F5[X], R[X] are UFDs (we will show later that they are PIDs)
4. Z[X], R[X,Y] are UFDs (even though they are not PIDs)

Exercise 42. Show that in a UFD irreducible elements are prime.

It follows from this and Example 5.10, that Z[v/—5] is not a UFD. More explicitly, 2 x 3 = (1 —/=5) x
(1 4+ v/=5) and all four elements are irreducible in Z[\/—5]. The ring Z[/—5] is therefore not a UFD
because it fails the second part of the definition (uniqueness), although it does satisfy the first part
(existence).

Example 6.3. Here is an example in which the first part (in the definition of UFD) fails to hold. Let
R =R[X1, X2,...],and let I < R be the ideal generated by the set { X3 — X1, X3 — X2, X7 — X3,...} C
R. Then in R/I the element X + I has no factorisation as a product of irreducibles (and is not a unit):

Xi+I=(X+D(Xo+1)= (X3 + DX+ DXz + ) (X3 +1) =
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6.2 Prime and maximal ideals

Let R be a commutative ring, and / # R an ideal in R.

1. I is said to be prime if it satisfies the condition: Va,b € R, abe I — ac€lorbel

2. I is said to be maximal if it satisfies the condition: VJ <R, ICJ — J=ITorJ=R

Let R be a commutative ring and I < R an ideal in R. Then

1. I'is prime <= R/I is an integral domain;

2. Iismaximal <= R/I is a field.

Proof. Let I be any ideal in R. Note that since R is commutative, so toois R/I. If I # R, then R/I is
non-zero. Denote by ¢ : R — R/I the natural projection map.

1) Suppose I is prime. We need to show that R/I has no zero-divisors. Let z,y be two elements in
R/I with x # 0. There are a,b € R with ¢(a) = z and ¢(b) = y, and since z # 0, we have a ¢ I.
Then,

zy =0 = p(a)p( = p(ab) =0 = abel = bel (sincelisprimeanda ¢ I)

b) =0
= pb)=0 = y=0

Now suppose that R/ has no zero-divisors. We need to show that I is prime. Let a,b € R be such
thatab € I and a ¢ I. Then ¢p(a) # 0, and

abel = ¢(ab) =0 = ¢(a)p(b) =0 = ¢(b) =0 (since R/IisanID and ¢(a) # 0)
= bel

2) Since R/I is commutative, it is a field if and only if its only ideals are itself and {0} (Exercise 15).
We have

I is maximal <= R/I contains only two ideals (Correspondence Theorem 3.7)
<= R/Iisafield (Exercise 15)

O

Since every field is an integral domain, we have the following as an immediate consequence.

Every maximal ideal is prime. O
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Let R be an integral domain and a € R\ {0}.

1. If the ideal (a) is maximal, then a is irreducible.

2. Suppose that R is a PID. If a is irreducible, then the ideal (a) <1 R is maximal.

Proof. Suppose that (a) is maximal. Then (a) # R, so a is not a unit. Now
a=bc = (a) C(b) = (a)=(b) or (b)=R (since (a) is maximal)
If (b) = R, then b is a unit. On the other hand

(b) = (a) = b= auforsomeu € R
= a=auc = 1=uc (since Ris an ID and a # 0)
= c€e R*®

It follows that « is irreducible.

Now suppose that R is a PID and that a is an irreducible. Since a is not a unit we have that (a) # R.
Let J < R be an ideal satisfying (a) C J C R. Since R is a PID, J = (b) for some b € R. Then

(a) C (b) = a=bcforsomecc R
= beR* or ceR”"
Exercise 43. = (B)=R or (b)=a) O

a) The hypothesis that R is an ID is necessary in the first part of the above lemma. To demonstrate
this, find an element a € Z/6Z such that (a) is maximal and a is not irreducible.

b) Give an example of an ID R, and an element a € R such that a is irreducible but (a) is not
maximal.

Let R be an integral domain and a € R\ {0}. The ideal (a) < R is a prime ideal if and only if a is
a prime element.

Proof. Suppose that (a) is prime. Then
albc = bce(a) = (be(a) or ce€(a)) = (a]|b or alc)
Conversely, if a is prime, then

bce(a) = albc = (a|b or alc) = (be(a) or ce(a)) O
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6.3

44.

45.

46.
47.

48.

49.

Exercises
Show that the following is equivalent to the definition of Unique factorisation Domain. R is an
integral domain is which

1. Every element a € R that is nonzero and not a unit can be written as a product of irre-
ducibles:
a = a1ag...an

2’. Every irreducible element of R is prime.

Let R be a PID, S and integral domain and ¢ : R — S a surjective homomorphism. Show that
either ¢ is an isomorphism or S is a field.

Let I, J, and P be ideals in R, with P prime. Show that if /J C P, then either ] C Por J C P.

Determine the maximal ideals in the following rings:
@ R (b) Z () Z/11Z (d) Z/127
(a) Show that (2) <1 Z[v/—5] is not prime.
(b) Show that (11) < Z[\/—5] is prime.

Given two ideals I, J C R we define their product IJ to be the ideal generated by the set
{ij|iel,je J} CR.Consider the ring Z[/—5].

(a) Show that (2) = (2,1 + /=5)(2,1 — /=5).
(b) Show that (2,1 + /—5) is prime.
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F[X]is a PID

We will show that for any field F, the ring of polynomials F'[X] is a PID. For the rest of this lecture,
F denotes a field.

7.1 Division with remainder in F[X]

We state and prove a direct analogue of the ‘division algorithm” in Z. Both the statement and the
proof of the theorem follow closely the situation for Z.

Given f, g € F[X]| with g # 0, there exist polynomials ¢, » € F[X] such that f = gg +r and either
deg(r) < deg(g) or r = 0. Moreover, the polynomials ¢ and r are unique.

Proof. Let S = {f —gs | s € F[X]}, and let r € S be an element having the minimum degree possible
amongst elements of S. Since r is in S, it is clear that f = gq + r for some ¢ € F[X]. We need to
show that either deg(r) < deg(g) or r = 0. If 0 € S, then we can take » = 0. Suppose that 0 ¢ S.
Let t = deg(r) and let ¢ € F be the coefficient of X in r. Similarly let m = deg(g) and let b € F be
the coefficient of X™ in g. Note that b (and ¢) is nonzero and therefore a unit. If it were the case that
t > m, then the polynomial

f—glg+Xtmeh™) = — gXtmeb!

is an element of S and has degree strictly less than that of . (The only way the we could have
deg(r) = deg(r — gX?"™cb™1) is if m = t = 0 which would imply that r — gX*"™ch~! = 0 € S.) Since
this contradicts the choice of r, we conclude that t < m.

To see that g and r are uniquely determined by f and g, suppose that ¢/, 7" are polynomials in F[X]
that satisfy the conclusion of the theorem. Then gq +r = g¢' + ' which implies that g(¢ — ¢') = r' —r.
If r = ' = 0, then we must also have ¢ — ¢ = 0, as g # 0. If at least one of r and 7’ is nonzero, then
deg(r’ — r) < deg(g) and it must be the case that ¢ — ¢’ = 0, and therefore also r — r’ = 0. O

Remark. The condition that F' is a field can be relaxed. It is enough to insist that it be an ID and that
b, the leading coefficient of g, be a unit.

Let f € F[X]. Then a € F is aroot of f if and only if (X —a) | f.

Proof. If f = (X — a)q, it is clear that a is a root of f. Conversely, suppose that a is a root of f. Let
g = (X —a) and apply the theorem to conclude that f = (X —a)q+r, where either » = 0 or deg(r) < 1.
The expression for f gives f(a) = r since deg(r) = 0, and therefore r = 0 and f = (X — a)q. O

An immediate consequence is the following.
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A polynomial equation of degree n over a field has at most n roots. O

7.2 F[X]isaPID

Let F' be a field. The polynomial ring F'[X] is a PID.

Remark. The polynomial ring in two (or more) variables, is not a PID, although it is, as we shall see
shortly, a UFD. The ideal (X,Y") <R[X, Y] is not principal.

Proof. We know that F'[X] is an ID since F, being a field, is an ID (see Exercise 12). We need to show
that all ideals in F'[X] are principal.

Let I be an ideal in F[X]|. We need to show that I is principal. If I = {0}, then we are done as
I = {0} = (0). So assume that I # 0, and let g € I — {0} be an element of minimal degree amongst all
elements of I — {0}. If deg(g) = 0, then g is a unit (since F'is a field) and I = (¢g) = R, so we are done.
We may assume then that deg(g) > 1. Let f € I. By Proposition 7.1, we know that f = gg + r with
deg(r) < deg(g). Butsincer = f —qg, f,g € I and I is an ideal, we know that r € I. We conclude that
r = 0, since g has minimal degree in I — {0}. Having shown that any element f € I can be written as
a multiple of g, we know that I = (g), and therefore I is principal. O

Remark. The above proof is entirely analogous to the proof that Z is a PID.

Example 7.5. Since R[X]isa PID and X? + X + 1 € R[X] is irreducible, the ideal it generates (X2 +
X + 1) is maximal, and therefore the quotient ring R[X]/(X? + X + 1) is a field.

Similarly the quotient ring Fy[X]/(X? + X + 1) is a field. It has exactly 4 elements. The ring
F3[X]/(X?% + X — 1) is also a field. It has 9 elements.

In general, if F is a field and f € F[X] is irreducible, then the quotient ring F[X]/(f) is a field.
Moreover, if F is a finite field, then F[X]/(f) is finite and has |F|4¢&(/) elements.

7.3 Exercises
50. Let f,g € F5[X] be given by f = X* - 3X3 +2X? + 4X —land g = X? — 2X + 3. Find
q,r € F5[X] such that deg(r) < deg(g) and f = qg + r.
51. Show that X2 — 2 is irreducible in Q[X]. Show that X2 — 2 is not irreducible in R[X].
52. Show that X3 + 3X + 2 is irreducible in F5[X].
53. Let R be an integral domain. Show that R[X]/(X — a) is isomorphic to R for any a € R.

54. If we regard the reals R as a subring of the complex numbers C, we can extend the inclusion to a
homomorphism ¢ : R[X| — C by defining ¢(X) = i € C. Show that ¢ induces an isomorphism
R[X]/(X?+1) = C.

55. Let R be an integral domain. If f,g € R[X] and if the highest order coefficient of g is a unit,
show that 3 ¢,r € R[X] such that
(@ f=gq+r,and
(b) either = 0 or deg(r) < deg(g).

56. Show that if R[X] is a PID, then R is a field. (This is the converse of Theorem 7.4)
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57.
58.

59.

Which are fields? (a) Q[X]/(X? —5X +6) (b) Q[X]/(X?—6X +6)

(Rational Root Test) Show that if the reduced fraction /s is a root of f(X) = ap + a1 X +--- +
an X" € Z[X], then r|ap and s|a,,. Deduce that if f is monic and has a rational root, then it has
a root that is an integer that divides ay.

List all the maximal ideals in the following rings:

(a) RIX]/(X?) (b) RIX]/(X?+1) (0) CIX]/(X?+1)

© University of Melbourne 2025
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LECTURE 8

Every PID is a UFD

To show that an integral domain is a unique factorisation domain we need to establish that every
(non-unit, non-zero) element can be written as a product of (finitely many) irreducibles, and that
this factorisation is essentially unique. For existence we use the ‘ascending chain condition’, and for
uniqueness the property that every irreducible element is prime (in a PID).

8.1 Ascending chain condition

Let R be acommutative ring. Then we say that R satisfies the ascending chain condition (ACC)
if for every chain of ideals in R
LCLC---CLC---

there exists N € Nsuch that I; = Iy foralli > N.

Rings that satisfy the ACC (or equivalent) are called Noetherian.

L J

Remark. The famous Hilbert Basis Theorem states that if R is Noetherian, then so too is R[X]. See, for
example, Artin p.469.

Examples 8.2.

1. Z satisfies the ACC. Every ideal is of the form (m) for some m € Z and (m) C (n) iff n | m.
2. R[X] satisfies the ACC, as we shall see shortly.

3. R[X1, X3, ...], the polynomial ring on infinitely many variables, is not Noetherian. The chain
of ideals
(X1) € (X1, X9) C (X7, X0, X3) C---

never stabilizes.

4. Another example of a non Noetherian ring is C'(R) the ring of all continuous functions from R
to itself. Defining I; = {f : R - R | f(x) =0 forall |z| < ¢} gives a chain of ideals that does
not stabilize.

There is a natural process by which we can try to decompose an element as a product of irreducibles —
just keep writing each factor as a product. When we do this in the integers, we know the process must
eventually terminate because each factor has strictly smaller magnitude. The following proposition
says that in a ring that satisfies the ACC, the process always eventually halts.

Let R be an integral domain. If R satisfies the ascending chain condition, then every non-unit,
non-zero element of R can be written as a product of irreducibles.

Proof. Let a € R be non-zero and not a unit. Suppose that we had an infinite sequence of non-trivial
factorisations. Then we would have elements ag = a,a1,as ... such that a;+1 | a; and a;41 % a;. But
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this would give an infinite ascending chain of ideals
{a) & {a1) G (ag) & -+

contradicting the hypothesis that R satisfies the ACC. O

Let R be a PID. Then R satisfies the ascending chain condition.

Proof. Givenideals I; < Rwith Iy C I, C ..., let I = U$°, I;. Since I is an ideal, it is given by I = (a)
for some a € R. Then a € U$°, I; implies that a € Iy for some N, which implies that (a) C Iy. Then
forany i > N wehave I C Iy C I; C I, which implies that [; = I = I. O

Exercise 60.* Adapt the above proof to show that if R is a commutative ring in which all ideals are
finitely generated, then R satisfies the ACC. Then prove the converse!

8.2 Prime versus irreducible

We saw in Proposition 5.9 that, in an integral domain, prime elements are irreducible. The converse
does not hold in general (see Example 5.10). We saw in Exercise 42 that it holds in any UFD. Of
course, we can’t use that result here, as we have not yet shown that every PID is a UFD.

The following lemma says that if irreducible elements are prime, then factorisations are essentially
unique.

Let R be an integral domain in which all irreducible elements are prime.
Suppose that ai,...,ap,b1,...,by € R are irreducible elements such that

aias...am ~ biby... by,

Then m = n and there is a permutation 7 of {1,2,...,n}, such that b; ~ a.

Proof. If either m or n is equal to 1, then the result holds by the definition of irreducible element.

Suppose then that m,n > 2. Clearly, a; | a1az...an, so we must have that a; | bibs...b,. Since a;
is prime, this implies that a; | b; for some i € {1,...,n}. By re-ordering, we can assume that i = 1.
Since a; | by and b is irreducible, we have that a; ~ b;. The cancellation law then tells us that

ag...amwbg...bn

and, by induction, we are done. O

In a PID irreducible elements are prime.

Proof. Applying Lemma 6.7, Corollary 6.6 and Lemma 6.8 gives

p irreducible = (p) ismaximal = (p) isprime = p isprime
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Remark. Once we have established that all PIDs are UFDs the above lemma follows from Exercise 42.
However, we need the lemma in order to prove that PIDs are UFDs.

8.3 PID implies UFD

Assembling the results of the previous sections we have the following

Every principal ideal domain is a unique factorisation domain.

Proof. Let R be a PID and @ € R a non-zero non-unit element. By Proposition 8.4, R satisfies the
ascending chain condition, and therefore a can be written as a product of irreducibles by Proposition
8.3. That the second part of the definition of UFD is satisfied, is precisely the statement of Lemma
8.5, which applies by Lemma 8.6. O

For any field F, the polynomial ring F'[X] is a unique factorisation domain. O

8.4 Exercises

61. If Risa PID and 0 # p € R, then the following are equivalent:

(a) theideal (p) is prime;

(b) pis an irreducible element;

(c) (p)is a maximal ideal in R;

(d) R/(p)is a field;

(e) R/(p)is an integral domain.
This statement collects the results of several earlier exercises and results. For this exercise you
should write out a proof of these implications in the indicated order: each implies the next and

the last implies the first. Note that this result applies to the case R = F[X] where F' is a field
and p is a non-constant polynomial.

62. Factor the following into irreducibles in Z[i]: (a) 5 (b) 7 (c) 4+3i

© University of Melbourne 2025
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LECTURE 9

If Ris a UFD, then R|X]|is a UFD

We show that if R is a UFD, then R[X] is a UFD. It follows that R[X,Y]| = (R[X])[Y] is a UFD, and
R[Xy,...,X,] is a UFD. The tools we will use in the proof are greatest common divisors and the
Gauss Lemma.

9.1 Greatest common divisors

In Z the greatest common divisor of two elements is often defined to be the largest amongst all
common divisors. In other rings we do not have an ordering, and so can’t use exactly the same
definition.

Let R be an integral domain. A greatest common divisor (or gcd) of a finite number of elements
ai,...,an, € Risan element d € R satisfying:

1. dis a common divisor: d | a; foralli € {1,...,n}

2. If d’ is another common divisor, then d’ | d

It is clear from the second part of the definition that any two gcds are associates, but they need not
be equal. In Z, both 2 and —2 are gcds of the elements 4 and 6. In general, there does not always exist
a ged.
Exercise 63. Let a1, a2 € Z[\/—5|be a; = 6 and ay = 2 + 2/—5.

(a) Use the function IV from Example 5.10 to list all common divisors of a; and as.

(b) Show that a; and a2 do not have a greatest common divisor.

However, in a UFD any collection of elements does have a gcd.

Let Rbea UFD and ay, ..., a, € R (not all zero). There exists a gcd of the elements aq, ..., ay.

Proof. We first show that for any two elements a,b € R (that aren’t both zero), a gcd exists. If either
element is a unit, then 1 is a greatest common divisor since anything that divides a unit divides 1.
(Any other unit will also be a gcd.) If one of the elements is zero, then the other is a gcd. So suppose
that both a and b are non-zero, and not units. Since R is a UFD, we have factorisations of ¢ and b as
products of irreducibles. Rearranging, we can write these factorisations as

m m
a=p" .. .p"
3 U
b=p"...p,"u
where each p; is irreducible, m;,n; > 0, u is a unit and no two of the p; are associates (i.e., p; ~ p;

implies i = j). Letd = p?in{ml’"l} . .pznin{m’“"’“}. It is clear that d divides both a and b. To see that is
a ged, suppose that d’ is another common divisor. We have an irreducible factorisation d’ = ¢; ... ¢,
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which can be rewritten as d’ = qil e qff’i' where no two of the irreducibles ¢; are associates. Since d’ is
a common divisor of a and b, we must have that for all i € {1,...%'} thereisa j € {1,...k} such that
¢ ~ pj and l; < min{m;, n;}. It follows that d' | d, and d is a gcd of a and b.

The case in which there are three or more elements follows by induction and the observation that if d,,,
isaged of {ai,...,an} and d,, 11 is a ged of {dy,, a1}, then dp, 1 isaged of {a1,...,am, amy1}. O

Example 9.3. The polynomial X — 1isa ged of X% — 1, X3 — 2X? - 5X + 6 € C[X]

A collection of elements in a UFD is called relatively prime if a gcd is a unit.

Example 9.5. The polynomials 2X — 2 and 2X? — 2X — 4 are relatively prime in C[X].

9.2 Primitive polynomials and the Gauss Lemma

A polynomial ap + a1 X + -+ + a, X" € R[X] is called primitive if it is non-constant and
{ao, ..., an} is relatively prime in R.

Remark. Notice that an element in R[X] that is non-constant and irreducible is necessarily primitive.

Exercise 64. Prove the following lemma.

Let ? be a UFD. Let f € R[X] be a non-constant polynomial. Then there exist a € R and a
primitive polynomial f € R[X] such that f = af. Moreover, a and f are unique up to associates.

The following lemma allows us to relate factorisation in Q[X] and factorisation in Z[X].

Let Rbe a UFD. If f, g € R[X] are primitive, then so too is their productfg.

Proof. Let h = fg. Suppose that p € R is an irreducible that divides all the coefficients of 4. The
natural projection homomorphism R — R/(p) induces a homomorphism ¢ : R[X] — (R/(p))[X] (as
in Exercise 30). Since R is a UFD and p is irreducible, p is prime (Exercise 42), which in turn implies
that R/(p) is an integral domain (Lemma 6.8 and Proposition 6.5). Since p divides every coefficient in
h, ¢(h) = 0, which implies that ¢(f)¢(g) = 0. Therefore, one of ¢(f) or ¢(g) must equal zero, which
contradicts the hypothesis that they are primitive. O

Let R be a UFD and F its field of quotients. Let f € R[X], and g1,92 € F[X] be such that
[ = g1g2. Then there exist ¢/, g5 € R[X]| with f = ¢| g5 and g} ~ g;. Moreover, if ¢; is in R[X] and
is primitive, we can take ¢} = g;.
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Proof. Note first that if any of f, g1 or g is degree zero, then the result holds. We assume then that
each has degree at least 1.

For each i there is a non-zero element d; € R such that h; = d;g; is in R[X]. (This is sometimes
referred to as ’clearing denorpinators.’) Write each of f, hy and hs as a constant multiple of a primitive
polynomial: f = cf, h; = c;h;. Then
f=91920 = didaf = hihs

- dldgcf = ClcghjlhAQ

= f ~ h}h} by Lemmas 9.7 and 9.8

— f = uhyhs for some unitu € R

— f = cuiil th

= f=4\¢) where ¢} = h; and g = cuhs

Note that if g; is in R[X] and is primitive, then we may choose d; = ¢; = 1 and hi=hy = gi. O

If f € R[X]isirreducible in R[X] and deg(f) > 1, then f is irreducible in F[X]. O

To see that the hypothesis that deg(f) > 1 is necessary consider f = 2 € Z[X].

Let f,g9 € R[X] with f primitive. If f divides g in F[X], then f divides g in R[X]. O

9.3 If R a UFD, then R[X] a UFD

We will show that every polynomial in R[X] is a product of irreducibles, and that in R[X], irreducible
elements are prime. As in the previous lecture, this is enough to show that R[X]is a UFD.

To show that an element can be written as a product of irreducibles we will think if it as an element
of F[X], where F is the field of quotients of R. We know that F'[X] is a UFD, and so we have a
factorisation as a product of irreducibles in F[X]. In order to obtain irreducibles in R[X] we use the
following technical lemma.

If f € R[X]1is primitive in R[X] and irreducible in F'[X], then it is irreducible in R[X].

Proof. Suppose that we have f = ghin R[X]. Considering this equation as being in ' X] we conclude
that one of g or h must be a unit in F'[X]. Suppose g is a unit in F'[X]. Then deg(g) = 0, and since f is
primitive and f = gh it follows that g is a unit in R. O

Every non-zero, non-unit element in R[X] can be written as a product of irreducibles.

© University of Melbourne 2025
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Proof. Let f € R[X| be non-zero, non-unit. If deg(f) = 0 then, since R is a UFD, we can factorise as
a product of irreducibles in R. Note that if a € R is irreducible, then it is also irreducible in R[X].
So assume that deg(f) > 1. As an element of F[X], f is non-zero and non-unit and can therefore be
written as a product of elements that are irreducible in F'[X]. We have

f=fH-f (where each f; € F[X]is irreducible in F[X])
— f=f1---ft  (fl € R[X], Lemma 9.9, irreducible in F[X])
= f/ is primitive (since f is) and irreducible in R[X] for all i (by Lemma 9.12)

Irreducible elements in R[X] are prime.

Proof. Let f € R[X] be irreducible, and suppose that f | g1g2. The case in which deg(f) = 0 follows
from the fact that R is a UFD, and therefore irreducible elements in R are prime in R. So we assume
that deg f > 1. Then f is irreducible in F'[X] by Corollary 9.10 and therefore prime (in F'[X]) as F'[X]
is a PID. Therefore, in F[X], f divides one of the g;. It follows that f divides one of the the g; in R[X]
by Corollary 9.11. O

If R is a unique factorisation domain, then so too is R[X].

Proof. Follows from Lemma 8.5 and Propositions 9.13 and 9.14. O

Examples 9.16. It follows from this theorem that Z[X], Z[ X, Y], R[X, Y], R[ X}, ..., X,,] are all UFDs.
(None of them are PIDs.)

9.4 Exercises

65. True or false:

(a) Every field is a UFD.

(b) Every field is a PID.

(c) Every PID is a UFD.

(d) Every UFD s a PID.

(e) Ina UFD, any two irreducibles are associates.

(f) If D is a PID, then D[X] is a PID.

(g) If Disa UFD, then D[X]is a UFD.

(h) Irreducible elements in an integral domain are prime.

(i) In a UFD, if p is irreducible and p|a, then (an associate of) p appears in every factorisation
of a.

66. Express the following as the product of a constant polynomial and a primitive polynomial:

(a) 18X2 — 12X + 48 in Z[X]
(b) 18X2 — 12X + 48 in Q[X]
(c) 2X2 —3X +6in Z/7Z[X]
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67.

68.

69.

70.
71.
72.

73.
74.

75.

Factor 4X? — 4X + 8 into a product of irreducibles in:

(a) Z[X] (b) Q[X] () Fi[X]

Prove thatif Ris a PID and a, b € R, then any gcd of a, b can be written as an R-linear combina-
tion of a, b. That is, show that if d is a gcd of @ and b, then d = aa + Sb for some «, 5 € R. (Hint:
consider the ideal I = (a, b) generated by a and b.)

Let R be a PID and let S be an integral domain containing R. Let a,b,d € R. If dis a gcd of a, b
in R, show that dis a gcd of a,bin S.

Show that if p, ¢ € Z are relatively prime in Z, then they are relatively prime in Z]z].
Show that in a UFD a gcd of da, db is d times a gcd of a, b.

Let R be an integral domain, and a,b,d,d" € R. Show that if d ~ d’ and d is a gcd of a and b,
then d’ is a gcd of a and b.

Show that if a = gb + r, then d is a gcd of @ and b if and only if d is a gcd of b and 7.

Consider the homomorphism ¢ : Z[X] — R which is the identity on Z C Z[X], and takes X to
(1 +1/2). Show that the kernel of ¢ is a principal ideal and find a generator for this ideal.

Show that Z[X|/(2X —1) = Z[1/2], where Z[1 /2] denotes the smallest subring of Q that contains
Z and 1/2. Note that Z[1/2] = {m/2¥ | m € Z,k € N}.
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LECTURE 10

Irreducible polynomials

Later we will be interested in rings of the form F[X]/(f). This is a field if and only if f € F[X] is
irreducible. Deciding whether or not a polynomial in F'[X] is irreducible is not trivial.

Any linear polynomial in F[X] is irreducible. Suppose f € F[X| has degree at least 2. Then if it has a
root in I, it is not irreducible since it has a linear factor. This follows from 7-1 7.2. The converse is, in
general, false: the polynomial X + 2X? + 1 is not irreducible in R[X], but has no roots in R. For low
degree polynomials, however, the converse does hold.

Exercise 76. Let f € F[X] have degree 2 or 3. Show that f is irreducible if and only if it has no roots
in F\.

10.1 Eisenstein’s Irreducibility Criterion

This gives a sufficient condition for an element in Z[X] to be irreducible in Q[X], and hence in Z[X]
if it is primitive.

Although the results of this sections are stated for Z and Q, they apply equally well to any UFD (in
place of Z) and its field of quotients (in place of Q).

Let f =ag+ a1 X + - + a, X" € Z[X] with n > 1. Suppose there is a prime integer p € Z such
that:

1) pdivides a; foralli € {0,...,n — 1}
2) p does not divide ay,
3) p? does not divide ag

Then f is irreducible in Q[X].

Proof. Suppose, for a contradiction, that f is reducible in Q[X]. It follows from Lemma 9.9 that f = gh
for some g, h € Z[X] with g and h of degree at least 1. Consider the homomorphism ¢ : Z[X] — F,[X]
induced by the projection Z — Z/(p), a — @ = a+ (p) (see Exercise 30). The conditions of the theorem
ensure that @, # 0 and ¢(f) = @, X". Since ¢ is a homomorphism, ¢(g)¢(h) = @, X™. This implies
that p(g) = aX* and ¢(h) = BX™ with k +m = n. Note that k = deg(g) > 1 and m = degh > 1.
It follows that both the constant term of g and the constant term of & are divisible by p. But then the
constant term of f would be divisible by p?. O

Example 10.2. Using Eisenstein’s criterion we conclude that the polynomial X* + 50X? + 30X + 20
is irreducible in Q[X]. (Since it’s primitive, it is also irreducible in Z[X].)

Let p € N be prime. The polynomial X?~! + XP=2 + ... + X + 1 is irreducible in Q[X].
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Proof. Let f(X) = (XP~!+ XP~2 +... 4+ X 4 1). Substituting X =Y + 1 gives

(X — 1)f(X) = X? — 1
—= VY +1) =Y +1P—-1

:yp_|_<p)yp—1_|_...+( p )y
1 p—1

= f(Y+1)=YP—1+<]19>YP‘2+~-+(pﬁl)

The last polynomial is irreducible by Theorem 10.1. To see that it satisfies the hypotheses, note that
since (¥) =p(p—1)...(p—i+1)/(i!) is an integer, if i < p, then ¢! divides (p —1)...(p — i+ 1). It
follows that (?) is divisible by p whenever 1 < i < p. Also, ( o 1) = pis not divisible by p?.

Having shown that f(Y + 1) is irreducible, we conclude that f(X) is irreducible, since otherwise the
isomorphism of Exercise 32 would give a contradiction. O

Remark. The factorisation X? — 1 = (X — 1)(XP~! + XP=2 4 ... + X + 1) is therefore a factorisation
into irreducibles.

10.2 Computation modulo p

Let f =ap+a1 X + -+ a, X" € Z[X] withn > 1 and p € N a prime that does not divide a,,. If
ay+ X + -+ a, X" € F,[X] is irreducible, then f is irreducible in Q[X].

Proof. Suppose f is reducible in Q[X]. Then f = gh with g, h € Z[X] each of degree at least 1, and
f = gh which, since f is irreducible, implies that one of g or h is a unit in F,[X]. Say g is a unit.
It follows that the highest order coefficient in g is divisible by p. This contradicts the fact that the
highest order coefficient of f is not divisible by p. O

Example 10.5. f = X* +9X3 +2X2 46X + 1 € Z[X] is irreducible in Q[X] since f = X* + X3 +1 ¢
Fy[X] is irreducible.

10.3 A factorisation algorithm for Z[X]

There is a systematic, though possibly very long, method to factorise any polynomial in Z[X]. We
outline it here for interest. Given f € Z[X] \ {0, 1, —1} with deg(f) = n we can proceed as follows:

1. If n = 0, then factorise in Z.
2. Otherwise, let m = | 5] € N, and calculate f(0), f(1),..., f(m).
(@) If f(a) = 0 for some 0 < a < m, then (X — a) is a factor of f. If f = £(X — a), then f is
irreducible. If not, f is reducible. Write f = (X — a) f’ and start again.

(b) If f(a) # Oforalla € {0,1,...,m},letD = {(do,dy1,...,dn) € Z™ | d; is a divisor of f(i)}.
This is a finite set. For each d = (do, d1,...,dn) € D let g5 € Q[X] be the unique polyno-
mial with deg(gq) < mand g(i) = d; foralli € {0,1,...,m}.

i) If there is a d € D such that g, is a proper factor of f in Z[X], then we write f = g, f’
and start again.
ii) If no g4 is a proper factor of f, then f is irreducible.

It is left to the reader to convince themselves that this procedure works.
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10.4 Exercises

77.

78.

78

D=

79.

80.

81.
82.
83.

84.
85.

Show that the following are irreducible in Q[X:

(a) X2 —-12 (b) 8X3 +6X%2 - 9X + 24 (c) 2X19 —25X3 +10X2 —30

Determine which of the following is irreducible in Q[X]:

(@) X*—16X2+4 (b) X*—32X2+4

. Test for irreducibility the following polynomials Q[X]:

(@ X*-X3-X?2-X-2 () TX3+6X%2+4X +4
(b) 2X*4 —5X3 +3X%2+4X -6 (d) 9X* +4X3 - X 47

Test each of the following for irreducibility in Q[X]:
(@) X° —4X +22 () X*+1
(b) 2X° +12X* —15X3 +18X% — 45X + 3

Letn > 1.

(a) Show that there is an irreducible polynomial of degree n in Q[X].

(b) Show that there are infinitely many (non associate) irreducible polynomials of degree n in

QLX].
Factor X° + 5X + 5 into irreducible factors in Q[X] and in Fo[X].
Factorise X® + X2 + 1in F,[X], for p = 2, 3.

List all monic polynomials of degree < 2 in F3[X]. Determine which of these polynomials are
irreducible.

Determine all irreducible polynomials of degree at most 4 in F5[X].

By considering images in F2[X], show that the following are irreducible in Q[X]:

(@) X2 +2345X 4125 (b) X3 +5X24+10X +5
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LECTURE 11

Euclidean Domains

The greatest common divisor of two integers can be efficiently calculated using the well-known Eu-
clidean Algorithm. The essential tool is the idea of division with remainder, with the remainder
being ‘simpler’ than the original. In Z ‘simpler’ means it has smaller absolute value. In R[X] ‘sim-
pler’ means it has lower degree (see section 7.1). We make a definition of this property.

11.1 Definition of Euclidean domain

A Euclidean Domain (or ED for short) is an integral domain R such that there exists a function
o: R\ {0} — N satisfying

Va,be R with b#0, Jq,r € R such that a = bg+ r and either »r =0or o(r) < o(b)

The function o is called a norm function.

\ J

Note.

1. The definition does not require that ¢ and r be unique.
2. There can be many different maps o that show that R is a Euclidean domain.

3. Given such a o, define a new function o’ : R\ {0} — Nby ¢'(a) = min{o(ab) | b € R\ {0}}. Then
o’ satisfies the above property plus the additional property:

Va,be R\ {0}, o'(a) < o'(ab)

This additional property can be useful when considering units in R.

To see that ¢’ is a norm function: Let a, b € R with b # 0 and suppose that b does not divide a. Let
¢ € R\ {0} be such that o’ (b) = o(bc). Then 3 ¢,7" € R such that (ac) = ¢(bc)+71" and o (1) < o(bc).
Letting r = a — gb we have: 7’ = rcand a = ¢b+ r and 0/(r) < o(rc) = o(r') < o(be) = o’ (b).

Example 11.2. It follows from Proposition 7.1 that, for any field F, F[X] is a ED, with a suitable
function being o (f) = deg(f).

Example 11.3 (cf. Example 5.10). We show that the Gaussian integers, Z[i| = {x + iy | z,y € Z}, form
a Euclidean domain. Let’s define o : Z[i] — N by o(z + iy) = |x + iy|> = 2? + y>. Let a,b € Z]i] be
given by a = a; +iag, b = by +iby, b # 0. Define w € C by w = ab~!, where we regard Z[i] as a subset
of C in the obvious way. Choose ¢ € Z[i] such that |w — ¢| < 1/v/2. Then a = bw = bq + b(w — q)
and o(b(w — q)) = |b]*|w — ¢|? = o (b)|w — q|* < o(b)/2 < o(b). Setting r = b(w — ¢), and noting that
b(w — q) = a — bq € Z]i], we are done. Notice that the choice of ¢ is not, in general, unique.

Every Euclidean domain is a principal ideal domain.

Proof. The argument is essentially the same as the one used to show that F'[X] is a PID (Theorem 7.4).
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Suppose that R is a ED with o : R\ {0} as in the definition. Let I < R be an ideal. We need to show
that I is principal. If I = {0}, there is nothing to show, so assume that I # 0. Choose b € I such that
b# 0and o(b) = min{o(c) | c € I\ {0}}. We will show that I = (b). For any a € I, we have that there
are ¢, € R such that a = bg + r and either r = 0 or o(r) < o(b). Since r = a — bg € I, it must be that
r = 0. Therefore a € (b). O

Remark. We have now shown the following implications:
ED =— PID =— UFD = ID

None of the reverse implications hold. The only counterexample we haven’t seen is that of a PID that
is not a ED. Such an example is given in the exercises.

11.2 The Euclidean algorithm

This algorithm for finding the greatest common divisor of two elements in a Euclidean Domain pro-
ceeds exactly as for the integers, with the usual “division algorithm’ replaced by the defining property
of a ED. Our main application will be to polynomials over a field.

' Euclidean Algorithm
Let R be a ED with norm function o. Given two elements a, b € R with b # 0, proceed as follows:
0. Leti =0,a90 =a, by =b.
1. Write a; = bjq; + r; withr; = 0 or o(r;) < o(b;).
If r; = 0, then stop with answer b;.

Otherwise, let a; 11 = b; and b; 11 = ;.

- W N

Increment ¢ by one, and go to step 1.

Proof. We will prove that this procedure eventually terminates, and that the answer produced is a
ged(a, b). From Exercise 73 we know that gcd(ait1,bi+1) = ged(as, b;). Noting that a; is a ged of
a; and 0, we see that if the procedure stops, then the output is indeed a gcd of a and b. That the
procedure stops follows from the fact that 0 < o(biy1) < o(b;) < o(b). O

By working back through the algorithm we can find an expression for the gcd as an R-linear combi-
nation of a and b.

Example 11.5. To illustrate, we use the algorithm to find a ged of X3+2X24+4X —7, X2+ X -2 € R[X].
Using ‘long division” we obtain:

X?P42X? 44X - 7= (X?+ X -2)(X +1) + (5X —5)

1 2
X2+X—2:(5X—5)(3X+5)+0
Soagedis (5X —5) and

5X —5=(X?4+2X2 44X - 7) - (X + 1)(X2+ X -2)

© University of Melbourne 2025



MAST30005 Algebra, 2025 11-3

11.3 Exercises

86. Show that every field is a ED (you should give an explicit norm function).

87. Let ¢ € C be the root of the polynomial X2 + X + 1 given by ¢ = (=1 + y/—3)/2. Define the
Eisenstein Integers as Z[¢] = {a + b¢ | a, b € Z}. Show that Z[¢] is a Euclidean domain.

88. Find a gcd of X3 — 6X? + X +4and X° — 6X + 1in Q[X].

89. Consider the polynomials f = X — 6X%2+ X +4and g = X? — 6X3 + 5in Q[X]. Find a gcd d
of f and g and then find polynomials ¢ and b in Q[X] such that d = af + bg.

90. Use the Euclidean algorithm to calculate ged(X?3 + 2X2 + 4X — 7, X% + X — 2) in Q[X], and
express it as a linear combination of the two polynomials.

91. (This is a long question! Feel free to skip it. It is here mainly so that we have an example to
show that not every PID is a ED. )
Let n = (1 4+ +/—19)/2. Using the following steps, show that Z[n] = {z + yn | z,y € Z} is a PID
but not a ED.

(a) Show that the only units in Z[n] are 1 and —1.

(b) Show that 2 and 3 are irreducible in Z[7).

(c) Now suppose the Z[n] is a ED with norm function ¢ satisfying o(a) < o(ab). Show that the
set of elements in Z[n] \ {0} that minimize o is exactly {1, —1}.

(d) Let m be an element of Z[n] \ {0,1, —1} that achieves the minimum of ¢ on that set. By
writing 2 = mgq + r with o(r) < o(m) or r = 0, show that m € {-2,2, -3, 3}.

(e) By writing n = mq + r with o(r) < o(m) or r = 0, derive a contradiction.
This establishes that Z[n] is not a ED. Now to show that it is a PID.

(f) Let N : C — R be given by N(z) = 2% (i.e., the square of the absolute value). Show
that given a,b € Z[n] with N(b) > N(a) and a t b, there exist ¢,d € Z[n] such that 0 <
N(ad —bc) < N(a).

(g) Use the preceding part to show that every ideal in Z[n] is principal as follows: Given a
non-zero ideal I < Z[n), let a € I minimize N among nonzero elements of I. Show that
any other element of I is a multiple of a.

© University of Melbourne 2025
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LECTURE 12

Modules

12.1 Definition

A module is a generalisation of a vector space in which the scalars do not necessarily form a field,
but may be any commutative ring. Roughly speaking, an R-module is an abelian group on which
the ring R acts linearly. A module in which the scalars are a field is the same as a vector space. A
module in which the scalars are the integers is the same as an abelian group.

The main result we will obtain is a structure theorem for finitely generated modules in the case where
the scalars are a PID. This is then used to obtain the structure theorem for finitely generated abelian
groups. Using the same techniques we derive the Jordan Normal Form of a linear transformation of
a complex vector space.

Let R be a commutative ring. An R-module M is an abelian group (whose operation will be
denoted by addition) together with a map R x M — M (the image of (p, u) being denoted pu)
that satisfies the following for all p,oc € Rand all u,v € M:

1) lu=u

(2) (po)u = p(ou)

Q) (p+o)u=pu+ou
(4) plu+v) = pu+pv

We also call M a ‘module over R’, or simply a ‘module’. The elements of the ring R and of M will
often be referred to as scalars and vectors respectively. We will sometimes denote an R-module
M by rM.

Note. In this section on modules the ring R is always assumed to be commutative.

Examples 12.2.

1. If R is a field then an R-module is simply a vector space over R, since the definition then
becomes exactly that of a vector space.

2. Aring Ris an R-module. If I < R is an ideal, then I is an R-module.

3. R" = {(r1,...,mn) | 7 € R} is an R-module. The operations are the usual coordinatewise
addition and scalar multiplication:

(riy..oyrn) + (815 80) = (r1+ 81, .-, Tn + Sn)

T(r1y ..o mn) = (rry, ..., rry)

4. Any abelian group can be regarded as a Z-module, and vice-versa.

5. R[X] forms a module over R.
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12.2 Submodules, homomorphisms, quotients and products

A submodule of an R-module M is a subset that itself forms an R-module when using the
operations inherited from M.

Exercise 92. Show that a subset N C M is a submodule if and only if the following hold
(a) IV is non-empty
(b) u,v € N = u+wv € N (closed under vector addition)
() ue N,pe R = pu € N (closed under scalar multiplication)

Example 12.4. 1. If ] < Ris an ideal, then [ is a submodule of rR.

2. If S is a commutative ring and R is a subring of .S, then S is an R-module.

An R-module homomorphism is a map ¢ : V. — W between R-modules such that for all
u,v € Vandall p € R:

(1) p(u+v)=p(u) +pv) (2) p(pu) = pp(u)

A bijective homomorphism is called an isomorphism.

Exercise 93. Show that ker(¢p) is a submodule of V' and that im(y) is a submodule of V.

Given a submodule W of V, the quotient module V/W is given by the (additive) cosets {v+W |
v € V'} with the operations:

1 w+W)+@w+W)=(u+v)+ W 2) plo+W)=pv+W

Let U and V be two R-modules. The direct product of U and V, denoted U ®V, is the R-module
with underlying set {(u,v) | u € U,v € V'} and the operations given by

(u,v) + (z,y) = (u+ 2,0 +y)
p(u,v) = (pu, pv)

The direct product of a finite number of R-modules is defined similarly.
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12.3 Exercises

94. Let M be an R-module. Show that for all p € R and v € M we have:
(@) Opu = 0py (b) p0prs =0y (©) (—p)u=—(pu) = p(—u)

95. State and prove module versions of the three isomorphism theorems, and the correspondence
theorem.
96. (a) Let M be an R-module. Suppose that U and V' are two submodules of M satisfying
i) UNV = {0}, and
ii) U+V =M.
Show that M = U ¢ V.

(b) Let U and V be R-modules and M = U & V. Define submodules U’ and V' of M by U’ =
{(u,0) |uw € U} and V' = {(0,v) | v € V'}. Show that

i)y U'nv’' =40},
ii) U+ V' =M, and
i) U'=U, V' =2V
97. Show thatif N; C M;, 1 < i < 2 are R- modules, then

Mo My My My
Ni®Ny, Ny Ny

98. Let R be a PID, p € R an irreducible element, k¥ > 1 and let M be the R-module R/(p"). Let
N =pr1M.

(a) Show that N is a submodule of M.

(b) Show that NN is contained in every non-zero submodule of M.
(Hint: Consider the surjective homomorphism R — M, a — a + (p*).)

© University of Melbourne 2025



12-4 MAST30005 Algebra, 2025

© University of Melbourne 2025



LECTURE 13

Free modules and bases

The notion of a basis is extremely useful when studying vector spaces,. We now consider the corre-
sponding notion in a module.

Let S be a subset of a module M. The submodule generated by S is the intersection of all
submodules of M that contain S. This is easily seen to be a submodule of M and is denoted by
(S). If (S) = M we say that S is a generating set for M.

Exercise 99. Show that (S) = {p1u1 +--- + prur | k € N, p; € R, u; € S}.

A subset S C M is called linearly dependent if there exist p1, ..., pr € R at least one of which
is non-zero, and wy,...,ur € S such that pju; + --- + prur = 0. A subset that is not linearly
dependent is called linearly independent.

A subset of M that is linearly independent and which is a generating set for M is called a basis
of M. If there exists a basis for M, M is called a free module.

Remark.

1. All modules over a field (i.e., all vector spaces) are free.
2. For any R, R" is a free R-module. A basis is {(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}.

3. To see that, in general, not all modules are free consider the Z-module Z/27Z. Since 2u = 0 for all
u, we see that every nonempty subset is linearly dependent. There can not be a basis because
there are no (non-empty) linearly independent sets.

4. Here is another example of a non-free module. Let R = Z[X| and I < R the ideal generated by
{2, X}. Then I can be regarded as an R-module. It is not free however. It follows from the fact
that / is not a principal ideal, that any generating set of rpI must contain at least two elements.
But if u,v € gI are two distinct elements, the identity vu + (—u)(v) = 0 implies that no linearly
independent subset of gl can contain two or more elements.

5. The ring Z/mZ is free when considered as a module over itself, but is not free when considered
as a Z-module.

Let M be an R-module. A subset S of M is a basis of M if and only if every element of M can be
written uniquely as a linear combination of elements from S.
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Exercise 100. Prove Lemma 13.4.

Module homomorphisms from a free module to another module are determined by their effect on
the elements in a basis.

Let M be an R-module and S C M a basis of M. Then any map from S to an R-module N
extends uniquely to a homomorphism from M to N. That is, givenamap f : S — N, there is a
unique R-module homomorphism ¢ : M — N such that p|s = f.

Proof. An element v € M can be written uniquely as a linear combination v = ) _quss, where
us € R and only finitely many of them are non-zero. Define a map ¢ : M — N by (3, g uss) =
Y scs Usf(s). To see that this is a homomorphism, let u,v € M be such that u = _quss, v =
Y scg Uss, then

Plutv) = (Y uss +Y_vs8) = 9D (us +s)s)

seES seS seS
=Y (us+vs)f(5) =D _usf(s) + Y vsf(s)
seS seS seS
= oD uss) +9(Y vss) = p(u) + ¢(v)
seS seS
p(pu) = o(p Y uss) = () puss)
seS seS
= pusf(s) = pd usf(s) = pp(u)
seS seS

Suppose that ¢ : M — N were another homomorphism satisfying )|s = f. Then

P(u) = 1/)(2 UsS) = Z usth(s) (since 1 is a homomorphism)
ses seS
=S uf(s) (since ¥s = /)
seS
= ¢(u)

The following is a direct analogue of the result for vector spaces.

If M is a free R-module with basis {u1, ..., u,}, then M = R"™.

Proof. Themap ¢ : M — R™ givenby ¢ (> piui) = (p1, ..., pn) is readily seen to be an isomorphism.
O

Remark. Free modules share many of the properties of vector spaces, but not all. For example, even
if a module is free, not every generating set necessarily contains a basis. Consider, for example, the
generating set {2, 3} for the Z-module Z. No subset of {2, 3} is a basis for Z. Also, the subset {2} C Z
is a linearly independent set that can not be extended to a basis.

© University of Melbourne 2025
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Suppose that R is an integral domain and m,n € N. Then R™ = R" (as R-modules) if and only
if m=n.

Proof. We will show that any linearly independent set in R has at most m elements, from which it
follows that if R = R" then m = n. We use induction on m. The identity uv — vu = 0 shows that
any subset of R that contains at least two elements is linearly dependent.

Now suppose that any linearly independent subset of R™~! contains at most m — 1 elements, and
let S C R™ be linearly independent. We want to show that |S| < m. Let7® : R™ — R be the
module homomorphism given by projection onto the first factor, thatis, 7(ry, ..., ry) = 1. Note that
ker(r) & R™ 1. If S is contained in ker(r), then we have that |S| < m — 1, so we may assume that
there exists s € S\ ker(w). To each element of S\ {s} we add a multiple of s so that the result lies
in ker(m). To this end, note that if x € S\ {s} then n(s)z — 7(z)s € ker(m). Now consider the set
S'={n(s)r —m(x)s | x € S\ {s}}. Then S’ C ker(w) and S’ is linearly independent since

Z e (m(s)z — m(z)s) =0 (for elements yi, € R)
= > per(s)e — (3 pum(a))s = 0
=V, pym(s) =0 (since S is linearly independent)
=V, ty; =0 (since 7(s) # 0 and R is an ID)

As §' is a linearly independent subset of ker(w), we have |S’| < m — 1 and therefore |S| = |S'| + 1 <
m. |

Remark. The theorem is false without the hypothesis that R be an integral domain. On the other
hand, if R is finite, then the result holds whether or not R is an integral domain.

It follows from the previous two results that, when R is an integral domain, any two bases of a free
R-module have the same number of elements.

The number of elements in a basis is called the rank of the free R-module.

Every finitely generated R-module is a homomorphic image of a free R-module of finite rank.

Proof. Let M be an R-module, and {uy,...,un} € M a generating set. Fix a basis {ey,..., e} for
R™. Define a homomorphism ¢ : R™ — M by extending the map that sends e; to u; (Lemma 13.5).
Since im(¢) contains a generating set, ¢ is surjective. O

Remark. It follows that every (finitely generated) R-module is isomorphic to F//N for some free mod-
ule I and submodule N of F.

© University of Melbourne 2025
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13.1 Exercises

101. Let R be a ring (commutative) and V' a free module of finite rank over R.
Prove or disprove:
(a) Every set of generators of V' contains a basis of V;
(b) Every linearly independent set in V' can be extended to a basis of V.

102. Let R be an integral domain and / an ideal in R. Show that [ is free, when considered as an
R-module, if and only if it is principal.

103. Let F' and G be two free R-modules of rank m and n respectively. Show that the R-module
F @ G is free of rank m + n.

104. Show thatif N and M/N are finitely generated as R-modules, then M is also a finitely generated
R-module.

105. Show that Q is not finitely generated as a Z-module.
106. A module is called cyclic if it has a generating set with one element.

(a) Is a quotient module of a cyclic module cyclic?

(b) Is a submodule of a cyclic module cyclic?

107. In each case write the Z-module M /N as a direct sum of cyclic submodules.

(@) M =Z @ Z and N the submodule generated by (0, 3).
(b) M =Z @& Z and N the submodule generated by (2, 0)
() M =Z ®Zand N the submodule generated by (2, 3).

) (6,9).

(d) M =Z @ Z and N the submodule generated by (6, 9

0,
2

(==

and (0, 3).

)

108. Let V be a two dimensional vector space over Q having basis {v1,v2}. Let T be the linear
transformation on V' defined by T'(v1) = 3v1 — vg, T'(v2) = 2vp. Make V into a Q[X]-module by
defining X - u = T'(u).

(a) Show that the subspace U = {avy | a € Q} of V spanned by v is actually a Q[X]-
submodule of V.

(b) Consider the polynomial f = X2 +2X — 3 € Q[X]. Determine the vectors f - vy and f - v2,
that is, express them as linear combinations of v; and vs.
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Torsion and submodules of free modules

14.1 Torsion

\

The annihilator of an element « € M in an R-module is
anng(u) = {p € R | pu =0}

An element u € M is said to be torsion if anng(u) # {0}. The torsion submodule T}, consists
of all torsion elements in M, that is,

Ty ={ueM|3Ipe R\{0},pu=0}

The module M is said to be a torsion module if all elements in M are torsion, and torsion-free
if zero is the only torsion element.

Exercise 109.

a) Show that annpg(u) is an ideal in R.
b) Show that if R is an integral domain, then 7’ is a submodule of M.
c) Let M be a free module over an integral domain R. Show that M is torsion-free.

d) Give an example of a finitely generated torsion-free module over an integral domain that is not
free. (Hint: The ring should not be a PID.)

Let M be a module over an integral domain R. The quotient module M /T), is torsion-free.

Proof. Let p € R be non-zero.

plu+Ty)=0+Ty = pu+Ty=0+Ty

ou € Ty

there is a non-zero o € R such that o(pu) =0

(op)u=0

u € Ty (since p and o are non-zero and R is an integral domain)
u+Ty =0+Ty

Ll
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14.2 Submodules of free modules

In general, a submodule of a free module need not be free. For example, let I = (2, X') < Z[X] be the
ideal generated by 2 and X. Then when considered as a Z[X]-module, I is not free. It is a submodule
of a free module, namely Z[X] itself considered as a Z[X] module.

In this section we show that every submodule of a free module over a PID is itself free.

Let R be a commutative ring. Let F' be a free R-module and M an R-module. Let ¢ : M — F
be a surjective homomorphism. Then there exists a submodule F’ C M such that F/ = F and
M = F' @ ker(p).

Proof. Let X = {z; | i € I} be a basis for F. Since ¢ is surjective, there exist elements u; € M such
that ¢(u;) = x;. Themap f : X — M given by f(z;) = u; extends to a homomorphism v : F' — M.
Since ¢ o ¢(z;) = x; we have that ¢ o 1) = Idp. It follows that ¢ is injective. Letting F’ = im(¢)), we
have that F' = F.

It remains to show that M = F' @ ker(y). For any u € M we have ¢ o ¢(u) € F' and u — ¢ o p(u) €
ker(y). It follows that M = F’ + ker(¢). Let v € F' Nker(p). Then v = ¢)(w) for some w € F, and also
¢(v) = 0. Therefore ¢ o (w) = 0, which implies that w = 0 because ¢ o ¢ = Idp. If follows that v = 0
and therefore that F’ N ker(¢) = {0}. O

Let R be a PID, and F' a free R-module of finite rank r. Then every submodule of F' is free and
has rank at most r.

Proof. We use induction on the rank r of F. If F" has rank 1, then F' = pR (Lemma 13.6), and any
submodule NV of F'is an ideal in R. Since R is a PID, the ideal is generated by a single element. If
N = {0}, then N is free of rank 0. Otherwise N = (u) for some non zero u € R and N = R (as an
R-module).

For the induction, suppose that the conclusion of the theorem is true for all free R-modules of rank
at most » — 1. Let {z1,...,2,} be a basis for F, and let F’ C F be the submodule generated by
{z1,...,2y—1}. Then F’ is free and {x1,...,2,_1} is a basis for it. Let N C F be a submodule. We
want to show that N is free and has rank at most r. Let 7 : F — F/F’ be natural projection, and
note that F//F’ = R. Consider the restriction 7|y : N — F/F’. Since F/F' is free of rank 1, we know
that im(7|y) is free of rank at most 1. Also, ker(w|y) = N N F' C F’ is free of rank at most r — 1. By
Lemma 14.3, N = L @ (N N F’) where L = im(r|y). Since the direct sum of two free modules is free
and rank adds, N is free of rank at most r. O

© University of Melbourne 2025



MAST30005 Algebra, 2025 14-3

14.3 Exercises

110.
111.
112.

113.
114.

115.

116.

Let I be an ideal in an integral domain R. Show that anng(R/I) = I.
Let M; and M5 be two R-modules. Show that anng(M; @ Ms) = anng(M7) Nanng(Ma).

Show that R considered as a module over itself is torsion-free if and only if R is an integral
domain.

Show that Q as a Z-module is torsion-free but not free.

Suppose that R is a principal ideal domain. Let M be a non-trivial R-module which has no
proper submodules (that is, the only submodules are M itself and {0}). Show that either R is a
field and M = R or Ris not a field and M = R/(p) for some prime p € R.

Let R = Z/6Z, and let F be the R-module R?. Write down a basis for F. Let N = {(0,0), (3,0)} C
F. Show that N is a submodule of F, and that IV is not free. Why does this not contradict The-
orem 14.4?

Let R=Zand F = Z3. Let N = {(z,y,7) € F | * + y + 2 = 0}. Show that N is a submodule of
F'. Find a basis for V.

© University of Melbourne 2025
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LECTURE 15

Smith normal form

We want to analyse the structure of finitely generated modules. We have already noted that any such
module is isomorphic to F'//N for some free module F. Since N is a submodule of a free module,
and assuming that R is a PID, N is also free. The inclusion map N — F'is a homomorphism.
Homomorphisms between free R-modules can be represented by matrices over R. By considering
the structure of such matrices, we will be able to analyse the structure of F'//N.

15.1 The matrix of a homomorphism

Let R be an integral domain, and F' and G two finitely generated free R-modules. Fix bases for
B={fi,....,fm}and C = {g1,...,gs} for F and G, every R-module homomorphism ¢ : G — F is
represented by a unique matrix in M, «,(R) as follows. For each element g; in the basis for G write
©(gj) in terms of the basis for F, that is,

p(g;) = aifi
i=1
The matrix (a;;) is called the matrix of the homomorphism ¢ with respect to the given bases, and
will be denoted by [¢]s,¢ or simply [¢].
Exercise 117. Show that forall u € G,

[o(u)ls = [#lB.clule

where [u]¢ is the coordinate matrix of u with respect to C, that is [u]c = (u;1) € M, 1 is determined
by the equation u = >~ u;19;.

Two matrices A, B € M,,x,(R) are said to be equivalent if there exist invertible matrices X €
Myxm and Y € M, «, such that A = XBY.

Equivalent matrices represent the same homomorphism, but with respect to different choices of
bases.

15.2 Smith normal form

Let RbeaPIDand A € My, x,(R). The matrix A is equivalent to a diagonal matrix D € M, xn(R)
satisfying D= diag(dl, d2, c. admin{m,n}) and d1 | d2 | s | dmin{m,n}~
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Definition 15.3

The diagonal matrix as in the above proposition is called the invariant factor matrix of A or
the Smith normal form of A.

Outline of proof. We will show that A is equivalent to a matrix in the form

where

(@) B € M(ym—1)x(n—1)(R)
(b) dand all entries in B are R-linear combinations of the entries from A, and

(c) ddivides all entries in B.

Repeated application then gives the required result.

We describe how this can be done algorithmically in the case in which R is actually a Euclidean
Domain with norm function o.

Note that if we apply an elementary row or column operation, the new matrix is equivalent to the
old. We will apply a sequence of row and column operations to put A into the form given in (x). If
all entries in A are zero, then it is already in the required form, so we assume that there is at least
one non-zero entry. Then, by swapping rows and columns we can ensure that the top left entry ay; is
non-zero. Suppose that some other entry in the first row of A is non-zero. Then by swapping columns
we can assume that a2 is non-zero. Applying the Euclidean algorithm (using column operations) to
the entries a1 and a19 we obtain a new matrix in which the first two entries in the new matrix are
d = ged(ai1, a12) and 0. The other entries in the first two columns will also have changed.

column operations

[a11a12"'—‘ [do..."

Repeating a finite number of times we obtain a matrix whose first row is of the form [d 0---0]. A
similar process along the first column enables us to obtain a matrix in the required form (x). One then
needs to ensure that d divides all entries in B.

Suppose that there is an entry in B that is not divisible by d. Then apply the row operation that adds
that row to the first row. The top left entry is still d, but there are other non-zero entries in the first
row, at least one of which is not divisible by d. Now simply begin the whole process again, to clear
all entries in the first row and first column, aside from the top left entry. How do we know that this
process will eventually terminate with a matrix in the required form? The point is that after each
iteration, the value of o(d) has been strictly decreased. Since o(d) is a natural number, this can only
happen a finite number of times.

The general case, in which R is merely a PID, is very similar. In addition to elementary matrices we
need to multiply by another sort of invertible matrix. In place of the Euclidean algorithm we use the
fact (see Exercise 68) that in a PID we have d = gcd(a, b) = xza + yb for some z,y € R. We have

d=za+yb
= d(za’ + yb') (where a = da’ and b = db)
1=xd +yb (since d # 0 and R is an ID)

© University of Melbourne 2025
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So ) o ) ) )
a b z b |0 0 d 0
y d |0 0
0 0 =
Do I
. - . 0 0 - L -

The second matrix is invertible, since its determinant is 1. In place of a norm function o, we define a
function A : R\ {0} — N by

{

This is not a norm function, but can still be used to justify that the process terminates. Notice that
A(ab) = A(a)A(b), and that if d divides a, but is not an associate of a, then A(d) < A(a). O

0 ifrisaunit

A =1

if 7 is not a unit and r = p; . .. p; with p; irreducible

Example 15.4. Beginning with the following matrix A € Msy3(Z), we apply row and column opera-
tions to obtain a matrix in the diagonal form described in Theorem 15.2.

A 6 4 4| cisc1—c2 |2 4 4| c2»c2—2c1 |2 0 0
14 80 -4 8 0| c3—c3—201 |—4 16 8
R2—R2+2R1_ (2 0 0| c2—c2-203 |2 0 0| c2003 |2 0 O D
0 16 8 0 0 8 0 8 0]

We can obtain invertible matrices X and Y such that XAY = D by applying the row and column
operations to the identity matrices of the appropriate size.

1 0| r2—rRr242r1 |1 Of
o o) e [ ] =
100 0 0 (1 -2 2]
01 0 C1—C1-C2 11 0 C2—C2-2C1 1 3 9
00 1 0 0 1] EN o 0 1]
2 - (1 -2 2
Ceoc2-203 | T o | c2e08 | 0 o | Ly
0 -2 1 0 1 -2

Example 15.5. Starting with the matrix A € Ms3,3(Q[X]) below we use row and column operations
to put it into the diagonal form described in Theorem 15.2.

1-X 14X X XoLeX 1-X
A= X 1-X 1| %11 1-x X |25
Rz R2-R1 | 1-3X —1
RS RS- XA 14X —-2X2 1-92X — X2
1 0 0
C2 s C2 — 2XC1 1-3X -1 M
C3— C3—(1+X)C1 0 1+X_2X2 1—2X_X2
1 0 0
C3 — C3+ (1 -3X)C2 0 -1 0
0 1-2X—X? 24X +3X2+3X3
- ] 1 0 0
R3 — R3+ (1 —2X — X*)R2 0 -1 0 =D
0 0 2—4X+3X24+3Xx°

1
1
X 1+X 1-X

2X
1-X

1+ X
X

0
-1
1—-2X — X2

0
1-3X

1
0
0 1+ X —2X?

© University of Melbourne 2025
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15.3 Exercises

118. Let G be the group of units in Myy2(Z), thatis, G = GL2(Z).
Show that G is generated by the set

o 0ol Lo )

119. For the matrices A, D € M3y3(Q[X]) from Example 15.5 find invertible matrices L, R € M33(Q[X])
satisfying LAR = D.

120. Given the matrix A4, find invertible matrices L, R and elements dy, do, d3 such that LAR = diag(dy, d2, d3)
and d1|d2|d3.
7 89 1-X 14X X
(a) A=14 5 6| ¢ ngg(Z> (b) A= X 1-X 1| € ngg(Q[X])
1 2 3 1+X 2X 1
121. Find the invariant factor matrices over Z for the first three of the following matrices, and over
Q[X] for the last two of the following matrices:
(@) 3 1 [ X 1 -2 ]
A I @ | -3 X+4 -6
1 2 3 L _2 2 X - 3 ]
(b) [ 4 5 6 ]
-4 -6 7 [ X 0 0
(©) 2 2 4 e | 0 1-X 0
6 6 15 0 0 1-—X?%|
122. Let F be a free module of rank m over an integral domain R. Let Endg(F) denote the ring of all
homomorphisms from F' to itself. The operations being given by
(o + 1) (u) = o(u) + 1h(u)
() (u) = pot(a)
Show that Endg(F') = My, xm(R) as rings
123. Let F' be a free module over an integral domain R, and ¢ : F' — F' a homomorphism. Let B =
{f1,..., fm} be abasis for F. Show that the following are equivalent:
(@) {¢(f1),...,o(fm)} is a basis for F;
(b) ¢ is an isomorphism;
(c) The matrix [¢]z 5 is invertible.
124. Show that an n x n matrix over a PID is invertible if and only if it is equivalent to the identity
matrix.
125. Let f1, f2, ..., fs be a basis of a free module V over a PID R. Suppose that f = 71 fi+7rafa+---+7rsfs
and that 1is a gcd of 71,79, ...,7,. Show that f is a part of a basis for V.
126.* Let ¢ : Z* — Z* be a homomorphism given by multiplication by an integer matrix A. Show that

the image of ¢ has finite index (in Z) if and only if det A # 0, and that in this case the index of
©(ZF) in Z* is equal to | det A |.
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The structure theorem

Let M be a finitely generated module over a principal ideal domain R. Then there exist elements
di,ds,....d, € R satisfying dq | do | s | dp. such that

M = R/(d1) ® R/(d2) ®--- & R/(dx) (%)

Proof. Since M if finitely generated (by k elements say), there is a surjective homomorphism ¢ : R¥ —
M (Lema 13.9). Let N = ker(y). By Theorem 14.4, N is free and of rank s < k. Fix bases for N and for
R*. The inclusion map N — RF is a homomorphism between free modules and so can be represented
by a matrix A € My s(R). By Theorem 15.2, A is equivalent to a matrix of the form

di 0 0]
0 do 0
0 0 0
0 O ds
0 0 0
0 0 0
Where there are k — s rows of zeros at the bottom, and d; | d2 | - - - | ds. It follows that there is a basis

{f1, fos ..., fr} of R¥ such that {d; f1,dsfo,...,dsfs} is a basis for N C RF. If s < k define d; = 0 for
all s < i < k. Themap ¢ : R¥ — R/(d) @ R/(d2) ® --- ® R/{dy,) given by (XF_ rifi) = (11 +

(d1),...,r + (dg)) is a homomorphism of R-modules. The result follows from the first isomorphism
theorem, since v is surjective, and ker(¢)) = N. O
Remark.

1. Some of the d; might be zero and some might be units. If d; = 0, thend; = 0 for all j > i. If d;
is a unit, then d; is a unit for all j < 7.

2. A matrix A € Mj«s(R) as above is sometimes called a presentation matrix for the module
RF/(AR®) = M.

Let M be a finitely generated module over a PID.

1. If M is torsion-free, then M is free.

2. M = F & Ty, where T} is the torsion submodule of M and F' is a free submodule of finite
rank.

Proof. If any of the d; in () are non-zero and non-unit, then the right-hand side of (x) would contain
non-zero torsion elements. This establishes the first part of the theorem.

The module M /T is torsion-free (Proposition 14.2) and finitely generated. Therefore, M /T), is free
(using the first part) and of finite rank. Consider the surjective homomorphism ¢ : M — M /Ty;. By
Lemma 14.3, M = ker(y) @ F where F = M /T);. Note that ker(¢) = Ty;.

O
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Remark. The submodule F' < M is not uniquely determined. For example if we take R = Z and
M = (Z/2Z)®Z, then Ty = {(0+2Z,0), (1+2Z,0)}, but for F' we can take either {(0+2Z,a) | a € Z}
or {(a+2Z,a) | a € Z}.

If any of the d; is a unit, R/(d;) = {0} so we can drop that summand from the decomposition of
M. The decomposition (x) (with all d; non-unit) is called the invariant factor decomposition
of M. The non-unit elements d; are called the invariant factors of M. The non-zero, non-unit d;
are called the torsion invariants. The number of zero d; is called the torsion-free rank of M.

For a given M as in the Structure Theorem 16.1, the invariant factors are all uniquely determined
by M (up to associates). The torsion-free rank is uniquely determined by M.

We postpone the proof until later.

Example 16.5. Let M be the Z-module F//N where F' = Z? and N = ((6,4), (4,8), (4,0)) < Z%. We
write M as a direct sum of non-trivial cyclic Z-modules.

Consider the homomorphism ¢ : Z3 — Z? given by (a,b,c) — a(6,4) + b(4,8) + ¢(4,0). Then N =
6 4 4]

im(¢), and, with respect to the standard bases, the matrix of the homomorphism is A = [ 48 0

From Example 15.4 we know that X AY = D where
1 -2 2
10 2 00
x=[1 ] o= 2 v- [ 2 ]
Since D represents ¢ and N = im(y), we conclude that

M = 7%/ im(p) = 7/27. & 7|87

The invariant factors of M are 2 and 8.

Let’s justify our expression for M a little further. Consider the bases
B=1{(1,-1,0),(-2,2,1),(2,-1,-2)} C={(1,-2),(0,1)}

of Z? and Z? respectively. These bases correspond to the columns of Y and X ~!. Notice that

So we have
F=(c)®{c2) N=(Q2c1)d(8c2)

Since (2¢;1) C (c1) and (8¢2) C (c2) we conclude (see Exercise 97) that

FIN 2 (c1)/(2¢1) @ (2)/(8¢2) = Z)2Z & /8T
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Example 16.6. Let M be the Q[X]-module F//N where F' = Q[X]? and N is the submodule of F gener-
atedby {(1-X, X,1+X),(1+X,1-X,2X), (X, 1,1)}. We derive the invariant factor decomposition
of M

Consider the homomorphism ¢ : Q[X]* — Q[X]? whose matrix, with respect to the standard bases,
is

A= X 1-X 1

1-X 14X X
1+X 2X 1

Then N = im(¢) and M = Q[X]?/N. From Example 15.5, A is equivalent to

1 0 0
0 -1 0
0

0 2—-4X+3X%2+3X3

D=

It follows that

M

I

QIX]/(1) ® Q[X]/(~1) ® Q[X]/(2 — 4X +3X* + 3X7)
Q[X]/(2 —4X +3X? +3X3)

I

So M is a torsion module and annp(M) = (2 — 4X + 3X? 4+ 3X3) < Q[X].

16.1 Exercises

127. Let V be the Z[i]-module (Z[i])?/N where N = {(1+1,2 — i), (3, 5i)). Write V as a direct sum of
cyclic modules.

© University of Melbourne 2025
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LECTURE 17

Primary decomposition

We will use the following result to rewrite the invariant factor decomposition in an alternative way.

Let Rbe aPID, and a,b € R two relatively prime elements. Then

R/{ab) = R/{(a) & R/(b) (as R-modules)

Proof. Define ¢ : R — R/{a) ® R/(b) by ¢(u) = (u+ (a),u + (b)). Then ker(y) = (a) N (b). Since R is
a PID and a and b are relatively prime, (a) N (b) = (ab). So we have ker(y) = (ab).

Again, since R is a PID and a and b are relatively prime, there exist z,y € R such that za + yb = 1.
Given any element (c+ (a),d+ (b)) € R/(a) ® R/(b), we have ¢(cyb+ dza) = (cyb+ (a), dxa+ (b)) =
(¢ + (a),d+ (b)). Therefore y is surjective, and the required isomorphism then follows from the first
isomorphism theorem (for modules). O

Let M be a finitely generated module over a principal ideal domain R. Then there exist prime
elements p1, ..., ps € R and numbers r,n1,n2,...,ns € Nsuch that

M= R/pM)&R/(pf) @ - & R/(pM) & R )

Proof. From Theorem 16.1 we have
M = R/(dy) ® R/(d2) ®--- @ R/(d)
where d; | da | -+ - | di, and all d; are non-unit. Each non-zero d; has an irreducible factorisation
di = py' 52 . pm?
Lemma 17.1 then tells us that

R/(di) = R/(p{") ®--- @ R/(py")

The expression given in () is called the primary decomposition of M.
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Example 17.4. Suppose that M is a Q[ X ]-module such that
M = Q[X]/(X* - 32X +4) ® Q[X]/(X® - 1) ® Q[X]/(X? - 2X +1)
From the irreducible factorisations

X' —32X +4=(X?>-6X +2)(X*+6X +2)
XP-1=X-DX"+ X3+ X2+ X +1)
X2 _2X4+1=(X-1)(X-1)

We obtain the primary decomposition

M = Q[X]/(X —1) ® Q[X]/(X —1)* ® Q[X]/(X* — 6X +2) ® Q[X]/(X* + 6X +2)
®QX]/ (X + X3+ X2+ X +1)

17.1 Exercises

128. Show that the Z-module Z,», where p is a prime and 7 a non-negative integer, is not a direct
sum of two non-trivial Z-modules.

129. Let R = Q[X] and suppose that the torsion R-module M is a direct sum of four cyclic modules
whose annihilators are (X — 1)%), (X2 +1)2), (X — 1)(X2 + 1)*), and ((X + 2)(X2 + 1)?).
Determine the primary decomposition of M and the invariant factor decomposition of M. If M
is thought of as a vector space over Q on which X acts as a linear transformation denoted A4,
determine the minimum and characteristic polynomials of A and the dimension of M over Q.
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Applications of the structure theorem

18.1 Application to abelian groups

Since abelian groups are Z-modules, and Z is a PID, the above structure theorem applies to finitely
generated abelian groups. We state the result in this special case.

Let G be a finitely generated abelian group. Then

G=Zq ® - ®Lg, ® (L)

wherem € N, d; € N, d; > 2, dy|da| - - - |dx -

J

Exercise 130. Find a direct sum of cyclic groups which is isomorphic to the abelian group Z3/N,
where N < 73 is generated by {(2,2,2), (2,2,0), (2,0,2)}.

18.2 Application to linear transformations

Suppose we have a finite dimensional vector space V over a field F. Given a linear transformation
T :V — V,we’d like to find a matrix representation of 7" that is as simple as possible (while using
the same basis for domain and codomain).

We can endow V' with a F[X]-module structure by defining scalar multiplication as follows

n n

(Z a; X = Z a; T (v)

i=0 i=0
where q; e Fandv € V.

Since V is finite dimensional as an F-module, it is finitely generated as a F[X]-module. Indeed, any
generating set for pV will be a generating set for p(x|V. Since g x|V is finitely generated and F[X] is
a PID, we can apply the structure theorem to obtain

FlX] FX] F[X]
Ve ——¢6 &6 ——0(FX])"
where r > 0, each d; € F[X] is non-zero and non-unit, and d; | da | - - - | d.

In fact it must be the case that » = 0, that is, that the torsion-free rank of rx]V is zero. To see this,
note that the set {1, X, X?,...} C F[X]is linearly independent over F. Therefore, if » > 1 then ¢V
would contain an infinite linearly independent set, which would contradict the fact that V' is a finite
dimensional vector space.
We thus have

FlXx] . FIX] FlX]

V= O O )

Remark.

1. It follows from this decomposition that dj, = anng|x|(V) and is therefore the minimal polyno-
mial of 7. That is, mp(X) = di(X).
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2. The characteristic polynomial is given by c¢7(X) = didy ... dj. (The justification for this ass-
esrtion will be clear shortly.)

Each summand in () is a submodule of [ x}V" and is therefore a subspace of gV’ that is preserved by
the linear transformation 7. We therefore want to understand the structure of each summand as a
vector space over F together with the linear transformation obtained by restricting 7" to W'.

Let W denote one of the summands in (). That is, W = F[X]/(d) for some d = X™ + a,,_1 X" +
o+ a1 X +ap € F[X]withm > 1.

We will analyse the restriction of T to W. For f € F[X], denote the element f + (d) € W by f.

The set By = {1, X, X?,..., X™ '} is a basis for pIV.

Proof. Let&; € F,1 <i<m — 1. Then

m—1 m—1
d &X' =0 = ) X' e(d)
i=1 i=1
m—1 )
= Z &X' =0 (since 0 is the only element in (d) of degree less than m)
i=1
= Vi, £, =0
Hence the set is linearly independent.

From the division algorithm for F[X], we know that for any f € F[X], there is a g € F[X] such that
deg(g) < deg(d) = m and g = f. It follows that f € span{1, X,..., X™ '}, O

Now we calculate the matrix, with respect to this basis, of the the linear transformation 7’|y : W —
W. For this we calculate the images of the basis elements, noting that 7'(f) = X f.

T(XH)=X" (for0<i<m—1)
T(Xmil) = —ag — a1X — = am_lemil

The matrix of T'|y (with respect to Byy) is therefore

0 0O 0 —ag
100 --- 0 -
01 0 0 —a9
: : : € Minxm(F)
0 0 O 0 —am—29
0 0 0 -+ 1 —am_1]

A matrix in the above form is called the companion matrix of d = X™ + q,,  X™ ' 4 ... +
a1 X + ap € F[X] (m > 1) and will be denoted Cy.

Exercise 131. Show that the characteristic polynomial of C, is d.
Applying this to each summand in () we obtain the following.
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Let V be a finite dimensional vector space over a field F and let 7" : V' — V be a linear transfor-
mation. There exists of basis B for V' such that
Ca,
Cs, O
[T]s = ’
0
Ca,
with di S IF[X], deg(di) > 1, and dy | do ’ <. ’ dk.
This matrix is called the rational canonical form of T'.
Proof. Discussed in the lecture. O

18.3 Exercises

132. How many abelian groups of order 136 are there? Give the primary and invariant factor de-
compositions of each.

133. Determine the invariant factors of the abelian group Cigo ® C36 ® Ci50.

134. Find an isomorphic direct product of cyclic groups, where V' is an abelian group generated by
x,y, z and subject to relations:

(@) 3x+2y+82=0,2x+42=0
(b) r+y=0,2r=0,4c+22=0,4c+ 2y +22=0
() 2z +y=0,z—y+32=0.
135. Suppose that the abelian group M is generated by three elements x, y, z subject to the relations

dr +y+ 2z = 0,52 + 2y + z = 0,6y — 6z = 0. Determine the invariant factors of M and hence
exhibit M as a direct sum of cyclic groups.

136. Let T': R” — R” be a linear transformation. Suppose that the corresponding R[X]-module can
be written as
R[] RIX] . RX]
(X—2) " (X3-X2-X-2) (X3-X2_X—2)

(a) Write down the rational canonical form of 7.

(b) What are the minimal and characteristic polynomials of 77

© University of Melbourne 2025
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LECTURE 19

Rational Canonical Form

We saw last lecture that every linear transformation 7" : V' — V from a finite dimensional vector
space over F to itself has a matrix representation in rational canonical form. That is, there exists a basis
B of V such that the matrix of T with respect to B is in block diagonal form

Ca,
Ci, O
[T]s = ’
0
Ca,
with monic d; € F[X], deg(d;) > 1,and d; | d2 | --- | dix. The square matrices Cq, are companion
matrices.
[0 0 0 0 —ap |
100 - 0 —-a
010 0 —a2
Ca= S : € Mo (FF)
0 00 0 —am-2
000 - 1 —ap

whered = ag + a1 X + -+ + a1 X™ 1 + X™

Example 19.1.
0 0 4
0 -1
Cx—2 = 2] Cxz oxy1 = Cxsyoxz3x-4= |1 0 3
1 2
01 -2
Example 19.2. The following matrices are in rational canonical form
0200 O
9 0 1 0 0 1000 O
[02} 00 -1 0000 -2
01 2 0010 2
0001 1
The following matrices are not in rational canonical form
02000
5 0 2.0 0 1 0000
[O 3] 00 -1 0 0001
01 2 0010 2
00013
19.1 Minimal and characteristic polynomials
The polynomials dy, . . ., d;, determine the minimal and characteristic polynomials of the linear trans-

formation (or matrix). To see this, recall that given T': V' — V we can consider V" as a F[X]-module
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by defining scalar multiplication such that Xu = T'(u). Applying the structure thereom for finitely
generated modules over a PID (Theorem 16.1) we obtained

FIX] . FIX] FIX]
Ve g R s
T ) T () (di)
with monic d; € F[X], deg(d;) > 1,and dy | da | --- | d.

The minimal and characteristic polynomials of 7" are given by

mT(X) :dk(X) CT(X) :dldg-”dk

Proof. Both follow from the existence of a rational canonical form matrix for 7" and that for any
(monic, non-constant) d € F[X] the companion matrix C4 has characteristic polynomial equal to d
and minimal polynomial to d. O

As a corollary of the existence of rational canonical form (together with the above proposition) we
get the following well-known result.

A square matrix A € M, (F) satisfies its own characteristic equation. O

19.2 Calculating the rational canonical form

Given a matrix A € M, (FF) we can calculate its rational canonical form by considering the matrix
XI, — A € M,(F[X]). Let V be a vector space over F with basis {vi,...,v,}. LetT : V — V be
the linear transformation whose matrix (with respect to the the basis {v1,...,v,}) is 4, and define
rix]V as above. Then p x|V = F[X]|" /N, where N is generated by the columns of the matrix X1 — A.
We then find dy, ..., d, € F[X] such that XI — A ~ diag(dy,...,d,) (Theorem 15.2) and obtain that
rix)V = FIX]/(d1) & --- © F[X]/(dn). From this we then get the rational canonical form of A as
explained in the previous section.

Example 19.4.

S O =
_ ==
= o O
| ——
m
S

An an example, let’s calculate the rational canonical form of the matrix A = [

X-1 -1 0 1 X-1 0
XI—-A=| 0 Xx-1 o0 |92%ix_1 o 0

0 -1 X-1 -1 0 X-1
Cot(X—1)C -1 0 0 Ro+(X—-1R -1 0 0
2 L X -1 (X-1)2 0 | 22—/l x-1)% o0
1 —(x-1) x-—1| M 0 —(X-1) X-1

-1 0 0 ~1 0 0
Fols g (x—1) X-1] &5 10 —(x—1) 0
0 (X-1)? 0 0 (X—-12 (X-1)72

—1 0 0
R3+(X—1)R2 0 —(X _ 1) 0
0 0 (X — 1)2
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From which we get that px]V = gﬂ) S 7 )11(?[_)(1])2> . The rational canonical form of A is therefore
10 0
A~ 10 0 -1
01 2

19.3 Exercises

137. Write down the minimal and characteristic polynomials of the following matrices. (Hint: they
are in rational canonical form)

100 0
000 1

@ 1y 1 0 1 € My(Fs)
0011
100 0 0 0]
010000
00000 2

® g o1 0 0 2| €MelFs)
000101
00001 2

138. Find the rational canonical forms of the following matrices. State their minimal and character-
istic polynomials.

20

@ |g 3] € m®
[ 7 6 9

® o 1 0]emm
|4 4 5
0o -3 3 1
0O 2 0 0

(c) 9 -3 5 1 € My(R)
2 3 31

139. Show that if a square matrix A € M,,(IF) has minimal polynomial equal to its characteristic
polynomial (both equal to d € F[X]), then A is similar to the companion matrix Cy.
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LECTURE 20

Jorndan normal form

Another useful standard matrix representation for a linear transformation is Jordan normal form,
which is based on the primary decomposition.

Suppose that V' is a finite-dimensional complex vector space, and 7' : V' — V a linear transformation.
As discussed above we can equip V with the structure of a C[X]-module. Noting that the prime
elements in C[X] are exactly the linear polynomials, from Theorem 17.2, the module ¢[x]V" has a
primary decomposition of the form

pe_ CXI o X
T T =) (X = Me)me)
for some \i,...,\y € C and my,...,my € Zxo. That there are no summands of the form C[X]

follows, as above, from the fact that V' is finite dimensional as a vector space.

The summands are submodules of ¢x)V and therefore subspaces of ¢V that are preserved by the
linear transformation 7". Let W = C[X]/(X — A)™). We will analyse the restriction of 7" to W. Denote
the element f + (X — \)™ € W by f.

Exercise 140. Show that the set

By = {(X =)™ (X -2 . (X -N%LX -1}

is a basis for ¢ W.

Now we calculate the matrix, with respect to this basis, of the the linear tliansforr_nation Tw: W —
W. For this we calculate the images of the basis elements. Noting that 7'(f) = X f, we have

T((X =)™ 1) = X(X =)™ = (X = )™+ AMX - )™ = A\(X - 3!
T(X - ¥~ A) = (X — N 4 A(X — ) (for1 <i<m—1)

The matrix of T'|yy is therefore

A1 0 0 0
0 x 1 0 0
0 0 A 0 0
[Tlw]sw = € M,,(C)
1 0
0 0 O Al
0 0 0 0 Al

A matrix in the above form is called an elementary Jordan matrix and will be denoted J ,.

Exercise 141. (a) Show that the characteristic polynomial of J) ,, is (X — A)™.
(b) Show that the minimal polynomial of .J ,, is (X — A\)™.

(c) Show that the dimension of the eigenspace (corresponding to the only eigenvalue of A) is 1.
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Let V be a finite-dimensional complex vector space and 7" : V' — V a linear transformation.
There exists a basis Bof V and Ay,..., A\ € Cand my,...,my € Z>¢ such that the matrix of 7" is
in block diagonal form

Jx\l,m1

J)\ m
T)s = o

J. Ak,

Proof. Follows directly from the decomposition of V' into summands of the form W and the above
matrix for T'|yy. O

A matrix in the above form will be called a Jordan normal form matrix.

Example 20.4. The following are examples of matrices in Jordan Normal Form:

2 0 0 00 0 0 0 0]
0210000O00O00O0
002 0000O0O0O0
110 000210000
[O 1 0] 00 00200O00O0
0 0 2 0000O0O3100
00 00O0OO0O3T10
00 0O0O0O0OO0OZ31
0 0 00000 0 3

20.1 Calculating the Jordan normal form of a matrix

We can proceed as with rational canonical form.

Given a matrix A € M,(C) we can calculate its Jordan normal form by considering the matrix
X1, — A e M,(C[X]). Let V be a complex vector space with basis {v1,...,v,}. LetT : V' — V be the
linear transformation whose matrix (with respect to the the basis {v1, ..., v,}) is 4, and define cx)V
as in the previous section. The following lemma tells us that ¢xV = C[X]" /N, where N is generated
by the columns of the matrix XI,, — A. We find dy, ..., d,, € C[X] such that XI — A ~ diag(dy,...,dy)
(Theorem 15.2) and obtain that ¢ x|V = C[X]/(d1) © - - - © C[X]/(dy). From this we then get the pri-
mary decomposition of ¢[x]V and hence the Jordan Normal Form of 4, as explained in the previous
section.

In summary, calculating the Smith normal form of X1 — A € M,,(C[X]) enables us to write down the
primary decomposition of ¢[x]V and hence the Jordan Normal Form of the matrix A.

To justify the above process for calculating the Jordan normal form (and that for calculating the
rational canonical form) we note the following lemma.

© University of Melbourne 2025
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Let F be a field and A € M, (F). Let F = {f1,..., fn} be the standard basis for (F[X])". Let
{v1,...,v,} be a basis the vector space V' = F". Let 7 be the surjective C[X]-module homomor-
phism 7 : (F[X])" — ¢[x)V determined by 7(f;) = v;.

Let ¢ : FF — F be the homomorphism whose matrix with respect to F is XI — A. Then ker(7) =

im(yp). In particular
(FIxJ)"

im(¢p)

Fix|V =

Proof. We first show that im(yp) C ker(w). Let V = {v1,...,v,}. It is enough to show that for all
fj € F wehave 7o ¢(fj) = 0. Let a;; € C be the entry in the i-th row and j-th column of A. Then
(XI — A)ZJ = 5in — Qjj and

NE

mo(fi) =m() (aij —0;X)fi) (since[p]r=A— XI)

)

= W((Z aijfi) — X fj) = Zaiﬂ(fi) — X7 (f;)
=1 =1

.1

n
= Z a;jv; — Xvj (from the definition of )
i=1

= Z aijv; — T'(vj) (from the way in which scalar multipn is defined in ¢xV')
i=1

— T(05) — T(ty) (since [T]y = 4)
=0

Now for the reverse inclusion. Given any f € F, we have f = (}_, a; f;) + ¢(f’) for some f’ € F and
a; € F. (Note that the «; are in F not F[X].)

Then
feker(m) = 7(3_aifi) +m(p(f) =0
— w(i aifi) =0  (since im(¢) C ker(r))
— Z;ivi =0  (since 7w(f;) = v;)

= ;=0 forall ¢
= f=o(f)
= f eim(p)

© University of Melbourne 2025
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Example 20.6. Calculate a Jordan normal form matrix that is similar to the matrix

2 0 0 0
-1 1 0 O
A= 0 -1 0 -1
1 1 1 2

We consider the matrix X1 — A € M444(C) and put it into diagonal form

X -2 0 0 0 1 X-1 0 0
1 X—-1 0 0 Rl1<R2 | X —2 0 0 0
XI=A=1 1 X 1 ’ 0 1 X 1
-1 -1 -1 X-2 -1 -1 -1 X-2
[ 1 0 0 0
c2—(x-1nc1 | X -2 —(X-1)(X-2) 0 0
0 1 X 1
| -1 X -2 -1 X -2
(1 0 0 0
R2—(Xx-2)R1_ [0 —(X-1)(X—-2) O 0
R4+4+R1 0 1 X 1
10 X -2 -1 X-2
1 0 0 0
R2<3Rr3. |0 1 X 1
0 - (X-1H)(X-2) 0 0
0 X -2 -1 X-2
1 0 0 0
c3-xc2. |0 1 0 0
c4-C2 0 - X-1NX-2) XX-1NX-2) (X-1)(X-2)
0 X -2 —(X —1)2 0
1 0 0 0
R3+(X-1)(X-2)R2 [0 1 0 0
RA—(X—2)R2 0 0 XX-1H)(X-2) X-1H(X-2)
0 0 —(X —1)2 0
1 0 0 0
c3ec4 (001 0 0
0 0 X—-1DNX-2) XX-1H)(X-2)
0 0 0 —(X - 1)2
1 0 0 0
ca-xc3 [0 1 0 0
0 0 X-1)X-2) 0
0 0 0 —(X - 1)2

This matrix is not in Smith normal form, but it is sufficient to conclude that (in the notation from the
explanation above)

. CIX] _ CIX] C[x] ClA]
cx)V = ) ® (1) @ (X -1)(X —2)  (=(X—-1)2)

From which we get that the primary decomposition is

_Cx] . cx] . CX]
W EE o Xy

From which it follows that the Jordan normal form of the matrix A is

OO O =
o O~ O
O = = O
N O O O
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MAST30005 Algebra, 2025 20-5

20.2 Exercises

142.

143.

144.

145.

Find the Smith normal of the matrix X1 — A from Example 20.6. (The point is to continue with
the given sequence of row and column operations.)

Suppose that the linear transformation 7" acts on an 8 dimensional complex vector space V.
Using T' we make V into a C[t]-module (where ¢ is an indeterminate) in the usual way. Suppose
that as a C[t]-module V = C[t]/((t + 5)2) @ C[t]/((t — 3)3(t + 5)3). What is the Jordan (normal)
form for the transformation 7? What are the eigenvalues of 7"and how many eigenvectors does
T have? What are the minimal and characteristic polynomials of 77

Determine the Jordan normal form of the matrix

A:

S O =

10
10
11

(a) By deducing it from the characteristic and minimal polynomials;

(b) By calculating the invariant factor matrix of X1 — A € M3,3(C).

Find all possible Jordan normal forms for a matrix (over C) whose characteristic polynomial is
(X +2)*(X —5)3

© University of Melbourne 2025



20-6 MAST30005 Algebra, 2025

© University of Melbourne 2025



LECTURE 21

More on calculating normal forms

We look in more detail at the process for calculating the normal forms of a matrix A € M, (F) and
give examples of finding an invertible matrix P € M, (F) such that P! AP is in normal form.

21.1 Recap

We recall the process we’ve discussed for finding the normal form of a matrix.

Let pV be the F-vector space F" and let S = {ej,e,...,e,} C V be the standard basis for F". Given
A € M, (F) define T': V' — §V to be the linear transformation given by [T']s = A.

We equip V with the structure of an F[X]-module by defining Xu = T'(u). That is, the F[.X]-module
r[x]V has the same set of vectors and vector addition as pV/, but with scalar multiplication given by

(Z a; X" )u = Z a;T"(u)
i=0 i=0

Note that S is a generating set for g x)V. Let 7 = {u1,...,un} by the standard basis for F[X]" and
define a module homomorphism 7 : F[X]" — gx]V by 7(u;) = e;. This homomorphism is surjective

because § is a generating set for px]V. By the first isomorphism theorem, we have that g x|V = %.
To analyse Egg:; we define a homomorphism of free modules ¢ : F[X]" — F[X]" by [p]r = X1, — A.

Then im(y) = ker(m) (see Lemma 20.5).

Consider the Smith normal form of XI,, — A, D = diag(di,...,d,). Then D = Z[p]|rY for some
invertible matrices Z,Y € M,,(F[X]). Therefore, D = [p]p ¢ for some bases C for the domain and D
for the codomain of ¢. Let D = {v1,...,v,}. Then {djv1,...,d,v,} is a generating set for im(y) and
FIXT" ()@ @) o () (on) . FIX] FX]

Y ) T o) @ 0 (daon) (dron) o ) )

Calculating the d; enables us to deduce the normal form (either rational or Jordan). In addition,
knowing the v; enables us to calculate P such that P~1AP is in normal form. Since the matrix Z is
the transition matrix Pp 7, its inverse is Pr p. The columns of Z ! are therefore [v1]%,..., [vn] 7.

21.2 Examples

Example 21.1. In Example 19.4 we determined the rational canonical form of the following matrix
A € M3(Q) by putting XI — A € M3(Q[X]) into Smith normal form:

110 -1 0 0
A=10 1 0 XI—-A~ |0 —(X-1) 0 =D =ZAY
01 1 0 0 (X —1)?

To find the matrix Z~! we consider the row operations that were applied in obtaining D from X1 — A.
They were (in the order applied):
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1. Ro+ (X - 1)Ry 2. R3— Iy 3. Ry <> R3 4. R3+ (X —1)R2

Denoting the corresponding elementary matrices by 21, Z2, Z3, Z4, we have

Z = ZyZ3 o7
Z*l — Z1_122_1Z3_124_1
[ 1 0 Of |1 O] |1 0 0] |1 0 0
—|-x-1) 1 0|lo10[]oo 1]]o 10
0 o1t o1]lo1oflo—(x-11

1 1

As in the explanation above, let F denote the standard basis for F[X]? and S = {e1, €2, e3} the stan-
dard basis for F3. Let vy, v2, v3 € F[X]3 be given by the columns of Z~1. That is,

0 0
[va] 7 = !(X - 1)] [vs]F = H
1 0

The images of these elements 7(v1), 7(v2), m(v3) € p[x)V are given by

1
-(X -1
1

[v1]F =

7T(1)1)261—(X—1)62—|-€3:€1—|-62+€3—X€2

=e;+egs+e3—T(e2) (Xv="T(v) in ]F[X]v)
=e1+ex+e3 — (61 + e9 + 63) ([T(€2)]S = A[€2]S)
-0 (as expected since d; is a unit)

Similarly,
m(vg) = —(X —1)ea+e3=ex+e3— Xeag=ea+e3—T(ea) =ea+e3—(e1 +e2+e3) =—ep
7T(1)3) = €2

Now define B = {b1,b2,b3} C V by

by =m(v2) = —e3

by = m(v3) = ea

b3 =T(bz) = T(m(v3)) = T(e2) = e1 + €2 + €3
Noting that T'(b1) = by, T'(b2) = b3, and T'(b3) = —bs + 2b3, we have

1 0 0
0 0 -1
01 2

-1 0 1

Letting P = Psp = | 0 1 1|, the change of basis for the matrix representation of the linear
0 01

transformation ¢ : V' — V gives

[T]p =

which is in rational canonical form.

[Ts = Pp,s[T)sPss
=plApP
To obtain a @ such that Q' AQ is in Jordan normal form we make a different choice of basis for F3.
Define C = {c1, c2,c3} C V by
C1 = ﬂ(vg) = —e€1

C3 :71'(1)3) = €9
Co = (T—I)(Cg) =e1+ e3
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Noting that T'(c;) = ¢1, T'(c2) = ¢, and T'(¢3) = ¢2 + c3, we have
1 0 0
Tle=10 1 1
0 0 1

which is in Jordan normal form.

-1 10
WithQ=| 0 0 1|,wehave @ 'AQ isin Jordan normal form.
0 10

Example 21.2. In Example 20.6 we determined the Jordan normal form of the following matrix A €
M,(C) by using row and column operations to show

2 0 0 0 10 0 0
-1 1 0 0 0 1 0 0
A= -1 0 -1 XI=A~1g (X —1)(X —2) 0
1 1 1 2 0 0 0 —(X —1)?

We will find a matrix @ such that Q1 AQ is in Jordan normal form. We use the same technique and
notation as in the previous example. The row operations applied to X1 — A were, in order:

1. R < Ry 3. Ry + Ry 5. R3+ (X —1)(X —2)Ry

2. Ro— (X —2)Ry 4. Ry <+ R3 6. Ry — (X —2)Ry
Labelling the corresponding elementary matrices as Z1, Z», Z3, Z4, Zs, Zs, we have

Z7l z z 0 2z =

0O 1 0 O 1 0O 0 O 1 0
1 0 0 O (X —1) 1 0 O 0 1
o o0 1 o0 0 0O 1 0 0 0
o 0 O 0 0 1 -1 0

X-2) —(X-1)(X-2)

0
1

—(X —1)(X - 2)
0

o =00
=l =N]
| I
o= OO
=N =Ne]

[ pe—
oo O+

[=ReReig
OO m=O
O =00
=N}
—_
[=ReReiy

o =0
O =00
==}
—_

(X =2)

— 1
1 0
0 0

-1 (X 0

Let vq, v2,v3,v4 € C[X]* be given by the columns of the above matrix.

m(v1) = —2e1 +ex —es+T(e1) = —2e1 +eg —es+ (21 —ea+e4) = 0
m(vg) = —2e1 + ez — 2e4 + T(3e1 + es) — T?(eq)

= —2e; +e3 — 2e4 + (6e1 — 3ea — e3 + Hey) — (deg — 3ea + 3eq) = 0
m(vs) = e1

7T('U4) = €4
Let C = {c1, 2, 3, c4} be the basis for C* given by
c1 = (T— 2[)61 = —e9 + ey
c3 = ey

co=(T—1)eyg=—e3+ey
ca=(T—1DNeyt=e1—ex+ey

0 0 0 1 1 0 0 O
Letting Q = _01 ) 8 _O we have that Q71 AQ = 8 (1) i 8
1 1 1 1 0 0 0 2
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21.3 Exercises

146. For each of the matrices A from Exercise 138 (repeated below), find P such that P~'AP is the
rational canonical form of A.

20

@ |g 3] € m®)
[ 7 6 9

® o 1 0]emm
|4 4 -5
[0 -3 3 1
0 2 0 0

(c) 9 -3 5 1 € My(R)
2 3 -3 1

147. Let F be a field and let p, ¢ € F[X] be relatively prime.

(a) Let M be a cyclic F[X]-module, and let u € M be such that M = (u). Suppose that
anng(x](u) = (pq). Show that M = (pu) ® (qu) (internal direct sum).

(b) Let M be an F[X]-module and suppose that there exist u,v € M such that anng(x|(u) = (p),
anng[x)(u) = (p), and M = (u) ® (v). Show that M = (u + v) and ann(u + v) = (pq).
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Uniqueness of the decompositions

To finish our discussion of finitely generated modules over a PID we will establish the uniqueness of
the invariant factor decomposition (Theorem 16.1) and the primary decomposition (Theorem 17.2).

22.1 p-primary submodules

We first consider the following special case.

Let p € R be prime. Suppose k,l € Z>1 and m1,...,my,n1,...n; € Zx are such that

(pm1) (pme)  (p™) {pm)

withm; <mo <~ <mpandng <no <--- < ny.

Then k& = [ and m; = n; for all 1.

\ J

Proof. Let M = R qp...pLB and N =

) ) ©--- D %. Note that my, = n; since

R
(™)

(p"*) = annp(M) = annp(N) = (p™)

We will use induction on my, the highest power of p appearing.
R\*_(RY
(@) ()

For the induction step consider the submodules pM < M and pN < N. We can apply the induction
hypothesis since pM = pN and anng(pM) = (p™~1). Let o € {0, 1,...,k} be such that exactly a of
the m; are equal to 1, and let 5 € {0, 1,...,1} be such that exactly /5 of the n; are equal to 1. We have

If mpy =n; =1, we have

and therefore k = [ since % is a field.

R R
pM = W @ ey (k — a summands)
R R
~ N ] DD D) (I — p summands)
By induction we have k — o =1 — g and (ma+1, ..., mE) = (ng41,- . .,n;). We also have (see Exercise

150) that

(8~ o=

Therefore k = [ and o = 8 and we conclude that m; = n; for all <. O
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22.2 Primary and invariant factor decompositions are unique

Let M and N be finitely generated modules over a PID R. Suppose we have two decompositions as
described in Theorem 17.2

M= R/pI")®R/(py?) @ - ®R/(p,*) ® R
N= R/q")®R/(gz*)®--- @ R/(q")® R

where all p;, ¢; € R are prime, m;,n; € Z>1, and r,t € Zxo.

The primary decomposition is unique. That is, with the setup above, if M = N thenr =t,k =1,
and (after permuting the indices if necessary) m; = n; and p; ~ ¢; for all i.

Proof outline. Fix an isomorphism ¢ : M — N.

First note that M and N have isomorphic torsion submodules: ¢(Tys) = T. It follows that M /T =
N/Tx. An explicit isomorphism is given by u + Ty — p(u) +T. Since M /Ty = R" and N/Ty = R!
we have R" = R' and hence r = t (Proposition 13.7).

Since anng(T)s) = anng(Tn) we know that every prime that appears in the expressions for M also
appears in the expression for N, and vice versa.

For a prime p € R consider the submodules

M, ={ue M |p‘u=0 forsomeeecZ>}
N, ={ue N |p‘u=0 forsomeec Z>}

Note that M, is given by taking those summands in the expression for A/ that involve a power of p.
Similarly for IV,,. The result then follows by applying Proposition 22.1. O

Since the invariant factor decomposition is determined by the primary decomposition, and vice
versa, we have the following.

The invariant factor decomposition is unique.

22.3 Exercises

148. Determine whether the following pairs of modules are isomorphic.

X X X X X X
@ M=lemirmedy  N=Terheny

_ Q[x] Q[X] Q[X] _QX] o QX] . _Q[X]
(b) M = ® 7 o N="4 ©x—y 97

(2) XZ-3X+2) ¥ (D) (1) 2X—2)
@M=Tleomixm ey N=Tews®ny
@ w=GomBige ) v-flo o @
(€) M = <X4+2X3g[§2—4x+6> © @([i))(] o2 Q<[6)>q N= Q([d))(] S <X2(%[2)§—6) ® <X29[Af§g—2>
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149. Let R be a PID and p € R a prime. Suppose that M and N are torsion R-modules with
anng(M) = anngr(N) = (p). Show that M and N are isomorphic as R-modules iff they are
isomorphic as vector spaces over R/ (p).

150. Let Rbe a PID, p € R a prime, and M an R-module given by M = ©-- D (pTRk> for some

R
(p™1)

k
M ~ R

© University of Melbourne 2025
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LECTURE 23

Fields

23.1 Field extensions

We will want to enlarge a given field to, for example, ensure that a given polynomial has a root. Since
we are thinking of extending a given field, we introduce an alternative terminology to saying that
the smaller is a subfield of the larger.

If E and F are fields with E a subfield of F', we say that F' is an extension of E.

Example 23.2. The complex numbers C are an extension of the real numbers R. The real numbers are
an extension of the rational numbers Q. The field Q(i) = {z + iy | =,y € Q} is a subfield of C and an
extension of Q.

Remark. An extension E of F' can be regarded as a vector space over F'. For example we can regard
C as a vector space over R and also as a vector space over Q. The vector spaces cC, rC, oC are not
isomorphic.

We know that a polynomial in f € F[X] need not have any roots in F'. However, it is always possible
to extend to a field £ O F such that f has a rootin E.

Example 23.3. The polynomial X2 + X + 1 € F3[X] has no roots in Fy. The polynomial X2 + X + 1
does have a root in the field F; of Example 2.5. The field F} contains a copy of F2 and can therefore
be regarded as an extension of Fs.

Let F' be a field and f € F[X] a non-constant polynomial. Then there is an extension field £ O F'
and an element « € E such that f(a) = 0.

Proof. Since F[X] is a UFD, the element f has a prime factorization f = p;...py,. It is therefore
sufficient to prove the result under the assumption that f is prime. Let p € F'[X] be prime. Because
p is prime, E = F[X]/(p) is a field (Proposition 6.5 and Lemma 6.7). The map F' — E given by
[+ f+ (p) is a homomorphism. Since p has degree at least 1, this homomorphism is injective, and
so we can regard F' as a subring of E. To complete the proof we note that the element X + (p) € E'is
aroot of p, since if p = ag + - - - + a, X™ and I = (p) we have

p(X+I)=(ap+ DA+ D+ (@ +DHX+D)+ -+ (am+ DX +1)™
=(a+ A+ + (@ +DHX+D)+- -+ (am+ (X" +1)

=(ag+1)+(@X+I)+ -+ (amX™+ 1)

=(ao+- 4 amX") +1

=0+1 (sinceag + -+ ap X" =pel)

=0g
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Example 23.5. Consider the polynomial X2 — 2 € Q[X]. This clearly has no roots in Q. The field E
constructed in the above proof is Q[X]/{X? — 2) which is isomorphic to the subfield of R given by
Q(WV2) = {z + yv2 | =,y € Q}. Of course, we know that by extending all the way to F = C our
polynomial would have a root. The point is that we don’t need to go that far.

23.2 Algebraic and transcendental elements

Let E be an extension of the field F. An element « € FE is called algebraic over F if there is a
non-zero element in F'[X] having « as a root. An element is called transcendental over F if it is
not algebraic.

Example 23.7.
1. V2 eRis algebraic over Q. 3. 7 € Ris transcendental over Q.*
2. i € Cis algebraic over Q. 4. 7 € Ris algebraic over R.

Given an element o € E D F that is algebraic over F, theset I = {f € F[X] | f(a) = 0} is anideal in
F[X]. Since F[X] is a PID, we have I = (p) for some p € F[X].
Exercise 151. Let o € E O I be algebraic over F.
(a) Show that I = {f € F[X] | f(«) = 0} is an ideal in F[X].
Let p € F[X]| be such that I = (p).
(b) Show that p is irreducible.

Let E O Fbe fields and « € E. If « is algebraic over F, the unique monic irreducible polynomial
having « as a root is called the irreducible polynomial for o over F'. It will be denoted irr(«, F).
It is also sometimes called the minimal polynomial for . The degree of irr(c, F') will be called
the degree of o over F and will be denoted deg(«, F). The irreducible polynomial is also called
the minimal polynomial.

L J

Example 23.9. Leta = /1 + /3 € R. Then

a=\14+V3 = a?=14V3 = (®-1)?=3 = a*—222-2=0

Since the polynomial X*—2X?2—2 isirreducible (by Eisenstein’s criterion) we conclude that irr(a, Q) =
X* —2X? —2and deg(a, Q) = 4.

Example 23.10. Consider the element a = v/2 + v/3 € R. Let’s calculate irr(a, Q). We are looking for
a Q-linear relationship between powers of a. Calculation gives a? = 5 4 2v/6, a® = 11v/2 + 9v/3 and
a* = 49 + 20v/6. The vectors vy = (1,0,0,0), v; = (0,1,1,0), vs = (5,0,0,2), v3 = (0,11,9,0) and
vy = (49,0,0, 20) are linearly dependent in Q*. Since

1 0 5 0 49 100 0 -1
0 10 is row-equivalent to 0 1000
010 9 0 0 01 0 10
002 0 20 0001 O

“This was first proved by the German mathematician Ferdinand von Lindemann in 1882.
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we observe that vy = —vy+10vs. It follows that a*—10a?+1 = 0. The polynomial X*-10X?+1 € Q[X]
is divisible by irr(a,Q). The polynomial X% — 10X? + 1 is irreducible in Q[X] (exercise!) so we
conclude that irr(v/2 4+ v/3,Q) = X* — 10X2 + 1, and deg(v/2 + v/3,Q) = 4.

23.3 Exercises

152.

153.

154.

Find irr(«a, Q) and deg(a, Q) for the following polynomials. You should justify why your an-
swer for irr(«, Q) is irreducible.

@ a=+v3-+6 b) a=/()+ V7 @ a=+v2+i

Show that the following elements of C are algebraic over Q and find their irreducible polyno-
mials.

=

(a) 2 (b) V3+ V2 () W5 (d) @31

Let F be a field and D : F[X] — F[X] the map given by
D(ag+ a1 X + -4 apX"™) = a3 + 202X + 3a3X% - + na, X"}

The polynomial D(f) is called the derivative of f. Note that the coefficients are in F" and the
notation ‘3’, for example, means 1 +1+1 € F.

(a) Verify that D(fg) = D(f)g + fD(g).
(This is over any field and is purely combinatorial as defined above. There is no calculus
involved!)

An element a € F in an extension E D F is called a multiple root of f € F[X]if (X — a)?
divides f (in E[X]).
(b) Show thatif o € E is a multiple root of f € F[X], then « is a root of D(f).

(c) Suppose that f € F[X] is irreducible. Show that if D(f) # 0, then f has no multiple root
in any extension field of F.

(d) Show thatif F" has characteristic 0 and f € F'[X]is irreducible, then f has no multiple roots
in any extension field of F.
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LECTURE 24

Algebraic extensions and finite extensions

The difference between algebraic and transcendental elements is reflected in the corresponding eval-
uation maps.

Let a € E D F. Recall that F'[a] denotes the smallest subring of E that contains F' and a. We
denote by F'(a) the smallest subfield of E that contains F' and a, that is, the intersection of all
subfields containing F' and a. Given ay,...an € E, Flay,...,ay] and F(ay,...,a,) are defined
similarly.

Remark. It follows from the definition that F'[a] C F(a).

Exercise 155. Show that F'(a) is isomorphic to the field of quotients of F'[a].

Leta € E DO F, where E and F are fields. Let ¢, : F[X]| — E be the homomorphism given by
va(f) = f(a) (i-e., @q is evaluation at a). Then,

1. im(p,) = F|a)

2. If a is algebraic over F, then ¢, is not injective and ker(yp,) = (irr(a, F')). The map ¢,
induces (as in the first isomorphism theorem) an isomorphism

F[X]/(irr(a, F)) = Fla] and Fla] = F(a)

3. If a is transcendental over F), then ¢, is injective and ¢, gives an isomorphism

F[X]= Fla] and Fla] S F(a)

Proof. Since the image of ¢, is a subring of E and it contains F’ and q, it follows that F'la] C im(p,).
On the other hand, im(¢,) is contained in any subring that contains F' and a. Therefore im(y,) C Fal.

The element « is algebraic if and only if ker(y,) # {0}. In the case in which a is algebraic, ker(¢,) =
(f) for some non-zero polynomial f since F[X] is a PID. Then Exercise 151 tells us that f is an
associate of irr(a, F'). Since irr(a, F') is irreducible and F'[X] is a PID, F[X]/(irr(a, F')) is a field and
therefore F'[a] = F(a).

If a is transcendental, then F'[a] # F(a) as F|a] = F[X] and F[X] is not a field.

24.1 Algebraic and finite extensions

Since F'[a] is a ring, it forms an abelian group with respect to addition, and since /' C F[a] we can
multiply an element of F'[a] by a scalar from F' in a natural way. In other words, F'[a] forms a vector
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space over F'.

Let a € E D F, with a algebraic over F. Let n = deg(a, F). Then {1,a,...,a" '} is a basis
for Fla] as a vector space over F. Moreover, every element b € Fla] is algebraic over F' and
deg(b, F) < deg(a, F).

Remark. We will see shortly that in fact deg(b, F') divides deg(a, F').

Proof. Let B={1,a,...,a" '}, and let a; € F be such that irr(a, F) = 3.7} a; X* + X™. Since a is a
root of this polynomial, we have a" = — Z;:Ol a;a’. Tt follows that for all k > n, a* € span(B), and
therefore that for all f € F'[X], f(a) € span(). We have shown that B is a spanning set for F'[a] (as a
vector space over F). To show linear independence, note that Z?:_ol viat =0 implies that a is a root
of the polynomial g = Z?:_ol 7 X' € F[X]. But deg(g) < deg(a, F), so we must have g = 0 (i.e., for all
i, Yi = 0)

Let b € Fla]. The set {1,b,...,0"} C F[a] is necessarily linearly dependent because it has more that
dimp(F[a]) elements. Therefore there exist 8; € F, not all of which are zero, such that > 7, 3;b° = 0.
Letting h = Y"1 , 3;X* € F[X] and noting that h(b) = 0 we conclude that deg(b, F) < n = deg(a, F).

O

An extension F of F is called an algebraic extension if every element of E is algebraic over F'.
It is called a finite extension (of degree n) if E is of finite dimension n as a vector space over F.
In the case in which F is a finite extension of F' we denote the degree by [E : F].

Remark. From Lemma 24.3 we know that if a € E is algebraic over F, then F'(a) is a finite extension
of Fland [F(a) : F] = deg(a, F).

Exercise 156. Show that every finite extension is algebraic.

Example 24.5. Let E = {a € R | a is algebraic over Q }. Then FE is an algebraic extension of Q, but is
not a finite extension of Q. See Exercise 159.

Let E I and K be fields, K D FE D F, with E a finite extension of F' and K a finite extension of
FE. Then K is a finite extension of I’ and

[K:F]=[K:E|[E:F]

Proof. Letm = [E : F]land n = [K : E]. Let {a1, ..., oy} be abasis for E over F and let {1,...,(n}
be a basis for K over E. We will show that {a;8; | 1 < i < m, 1 < j < n}is abasis for K over F.

© University of Melbourne 2025
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Given any k € K we have

= Z b;B; (for some b; € E)

= Z Z ajou)f (for some a;; € F)

j=11i=1 Jj= 1 i=1
m

= Vj, Z cija; =0 (since the j3; are linearly independent)
i=1

= Vj,Vi,cj=0 (since the «; are linearly independent)

Leta € E O F, with a algebraic over F'. Then for all b € F(a), deg(b, F') divides deg(a, F').

Proof. We have F' C F(b) C F(a) and
deg(a, F) = [F(a) : F] = [F(a) : FQ)][F(D) : F] = [F(a) : F(b)] deg(b, F)
O

Example 24.8. Consider a = 21 € R. Then irr(a,Q) = X* — 2 and therefore deg(a, Q) = 4. By the

above corollary, any element of Q(Q%) has degree that divides 4. So, for example, no element of Q(ﬁ)
is a root of X® — 2 (or any other irreducible cubic polynomial).

Remark. Finite extensions of Q are called number fields or algebraic number fields and are central
to the study of Algebraic Number Theory.

24.2 Exercises

157. Find the degree and a basis for the following extensions:

(a) R(vV2+i) 2R
(b) Q(vV2+i)2Q
(©) QW2++v3)2Q
d) Q(v3,i)2Q

158.* Let F be a field and k£ € F' an element which is not a square in F (i.e, there does not exist an
element x € I with 22 = k). Show that

K_{(Z kb) |abeF}<M2X2(F)

is a field and that it is isomorphic to F(v/k).
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159. Let A = {a € R | a is algebraic over Q } be the set of algebraic real numbers.
(a) Show that A forms a subfield of R. (Use that a € R is algebraic iff [Q(a) : Q] is finite.)

(b) Show that A is an algebraic extension of Q, but A is not a finite extension of Q.

160. Suppose that £ and K are two extensions of F, and let a € £ and b € K be algebraic over F.
Prove that irr(a, F) = irr(b, F') if and only if there exists an isomorphism ¢ : F'(a) — F(b) such
that ¢(a) = band ¢|p = Idp.
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Constructions with straight-edge and compass

There are classical questions about whether certain lengths or angles can be constructed using a
straight-edge and compass. We can establish that certain of these, such as being able to trisect an
angle or to construct a nonagon, are impossible.

25.1 Constructible points in the Euclidean plane

We first formalise what kind of operations are allowed. Two points in the plane are given. We
choose a coordinate system so that the two points are (0,0) and (1,0). Starting with these two points
we inductively define a subset of the plane. The points so defined will be called constructible.
Given two distinct points P and @ in the plane, denote by L(P, Q) the straight line containing P
and @ and by C(P, Q) the circle with centre P that passes through ). Suppose that P, Q1, P>, Q2
are constructible points in the plane with P, # Q; and P # Q2. Then the points given by the
sets L(P1, Q1) N L(P2,Q2) and L(P;, Q1) N C (P, Q2) and C(Py, Q1) N C (P, Q2) are all defined to be
constructible.

Figure 25.1: The points (3, */75), (3,— \/3) and (1,0) are constructible.

25.2 Constructible numbers

A real number = € R is called constructible if |z| is equal to the distance between two con-
structible points.

The connection with fields and field extensions is given by the next two results.

1. The constructible numbers form a subfield of R.

2. If a > 0 is constructible, then \/a is constructible.

Proof. We need to show that for any two constructible numbers a,b > 0, all of the numbers a + b,
a —b,a™1, aband \/a are constructible. Each is shown by describing a construction and appealing to
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elementary geometry in the the Euclidean plane. We show that ab is constructible. The other cases
are similar and the details can be found in the books of Artin* and Stillwell'.

Given that a is constructible, we can construct a right triangle with non hypotenuse side lengths 1
and a as shown in Figure 25.2. We then construct a similar triangle in which the side that had length
1is now of length b. The other non-hypotenuse side will be on length ab. O

Figure 25.2: If a and b are contructible, then ab is constructible.

Let a be a constructible real number. Then there is a chain of subfields of R
Q=FKCHKhC---CF,1CF,
such that

1. a € F,

2. For all 4, there exists a; € F; such that F; 1 = F;(\/a;).

Proof. Suppose that P # Q1, P> # 2 are points in the plane all of whose coordinates lie in some
subfield F' of R. The points of L(P;, Q1) N L(P;, Q1) have coordinates that are given by the solution
of a linear system of equations, and are therefore in F'. Finding the points of L(P;, Q1) N C(P1, Q1)
involves solving a quadratic equation and the coordinates therefore lie in F(v/d) for some d € F.
Solving for the points of C'(P;, Q1) N C(P;, Q1) involves solving two simultaneous quadratic equa-
tions. However, since both describe circles, taking the difference of the two equations produces a
linear equation and we have reduced to the previous case.

Now consider a constructible number a > 0. It is the distance between two constructible points
P = (p1,p2) and Q = (qi1,¢2). The point P is constructed from the points (0,0) and (1,0) by a
finite sequence of constructions involving the intersections of lines and circles. From the previous
paragraph we conclude that there is a finite sequence of subfields Q = Fyy C F; C --- C Fj, such that
F,11 = F;(\/d;) for some d; € F; and p;,ps € Fy. Similarly, there is a finite sequence of subfields
Q=GoC Gy C--- CGysuchthat Gipr = Gi((/e;) for some e; € G; and qq,¢2 € G;. The result then
follows by taking F; as above for 0 < ¢ < kand Fj11 = Fi(e;—;) fork <i < k+1—1. O

If a € Ris constructible, then a is algebraic over Q and deg(a, Q) = 2" for some n € N.

*Algebra, Michael Artin,1991
*The four pillars of geometry, John Stillwell, 20005
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Proof. Let a; and F; be as in the previous proposition. Since a; € F;, deg(\/a;, F;) is either 1 or 2.
Note that [Fj1; : F;| = [Fi(a;) : F;] = deg(y/ai, F;) by Lemma 24.3. Apply Lemma 24.6 repeatedly to
conclude that [F, : Q] = 2™ for some m. Then Corollary 24.7 says that deg(a, Q) divides 2. O

Remark. This result shows that while all constructible numbers are algebraic (over Q), not all algebraic
numbers are constructible. For example, 23 is algebraic, but not constructible.

25.3 Impossible constructions

Trisecting an angle

Given an angle # we can bisect the angle, that is, we can construct the angle 6/2. By constructing an
angle we mean that we can construct points P;, Q1, P2, Q2 such that the lines L(P;, Q1) and L(P», Q2)
intersect at that angle. If 6 is constructible in this sense, then the numbers sin(f) and cos(6) are
constructible.

Given an angle 6, is it possible (just with straight-edge and compass) to construct the angle 6/3?

The answer is no it is not, in general, possible. For suppose that it was. Noting that 7/3 is con-
structible, it would therefore be possible to construct an angle of 7/9 and hence the number a =
cos(m/9) would be constructible. However, a is not constructible because deg(a, Q) = 3. To see this,
use the standard trigonometric identities to show that cos(30) = 4 cos3(8) — 3 cos(). Letting 6 = 7/9
gives 1 + 6 cos(m/9) — 8(cos(/9))? = 0. The polynomial 1 + 6X — 8X3 € Q[X] is irreducible because
it is degree 3 and its image in F5[X| has no roots.

Squaring the circle

Given a circle (ie., given two points: the centre and a point on the circle), is it possible to construct a
square having area equal to that of the circle ?

That this is not in general possible, follows from the fact that 7 and therefore /7 is not constructible.

Doubling a cube

Given a cube (i.e., given a side length), is it possible to construct a cube of twice the volume?

The answer is again no, since 93 is not constructible as deg(2% ,Q) =3.

25.4 Exercises

161. Let F'be a field and let E D F be an extension with [E : F] = 2.

(a) Show that there exists a € E such that deg(a, F') = 2 and E = Fa.

(b) Suppose in addition that 1 +1 # 0 in F'. Show that there exists a € E such that a’® € Fand
E = Fla)].
(c) i) Let K =F3[X]/{X?+ X +2). Find an element k € K such that k> € F3 and K = F3[k].
/

ii) Let E = F3[X]/(X?+ X +1). Show that no element e € E has the property that ¢? € Fo
and F = Fyle].

162. Explain why a point P(z, y) is constructible iff x and y are both constructible.

163. Let C' C R be the field of constructible numbers. Show the C'is an algebraic extension of Q, but
not a finite extension of Q.
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LECTURE 26

Finite fields

We have seen examples of fields that have finitely many elements, namely for any prime p € N,
F, = Z/(p) is a field and has p elements. Another example of a finite field is Fo[X]/(X3 + X + 1):
since Fo[X] is a PID and X3 + X + 1 € Fy[X] is irreducible, F5[X]/(X3 + X + 1) is a field. It has 8
elements. Is there a finite field having, for example, 6 elements? We'll see that the answer is "no".

In this section we will investigate the size and structure of finite fields. Finite fields are sometimes
called Galois fields and a field with ¢ elements is sometimes denoted GF'(q). We'll stick with the
notation F, for a field of size q.

26.1 All finite fields have prime power order

We first recall the definition of the characteristic of a field. If F' is any field (finite or not) there is a
natural homomorphism ¢ : Z — F that sends m € Z to the element of F' given by adding 1 € F to
itself m times.” If ¢ is injective, we say that F' is of characteristic 0. Otherwise, as F' is a field, the
kernel of ¢ is a prime ideal in Z. Let p € N be the unique (positive) prime such that ker(y) = (p) < Z.
We say that I’ has characteristic p. If a field is of characteristic 0, then it is necessarily infinite. A
finite field must therefore be of characteristic p for some prime p € N.

Exercise 164. Give an example of an infinite field whose characteristic is not zero.

A field F is of characteristic p if and only if I’ contains a subfield isomorphic to IF,,.

Proof. Let ¢ : Z — F be the homomorphism described above. If F'is of characteristic p, then ker(y) =
(p) and so from the first isomorphism theorem im(y) = Z/(p). Conversely, if ¢ : F, — F'is an
injective homomorphism, then ¢(m) = 1p +--- + 1r = ¥ (1r,) + - -- + ¥(1F,). This implies that the
characteristic of I, divides the characteristic of F'. O

Remark. If F has characteristic p, then there is a unique subfield isomorphic to FF,,, and we will identify
it with IF,.

Let I be a finite field of characteristic p. Then F has order p" for some n > 1.

Proof. Since F is an extension of ), it is a vector space over IF,. As F is finite, it must be finite
dimensional as a vector space. Let {b1,...,b,} be a basis for F' as an F,-vector space. Then F' =
{>>%, Bibi | Bi € Fp} which has cardinality p" since there are p choices for each of the n f3;. O

“If m < 0,add 1 to itself |m| times and then take the additive inverse.
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26.2 The group of units of a finite field is cyclic

In any commutative ring the set of units forms an abelian group under multiplication. In the case of
a finite field we will show that this group is actually cyclic. We denote by F* the group of units of
the field F.

Let F be a finite field. Then F'* is cyclic.

Proof. Let ¢ = |F|. Note that since F'is a field, F'* is the set of non-zero elements in F', and therefore
|F*| = q — 1. Since F'* is a finite abelian group, we know from the structure theorem that

F*= 0y % xCg.

for some d; € Z, d; > 2, dy| - |dp,. It follows that ¢ — 1 = |F*| = d1d2 . . . d,,. Since every element of
Cq, X ---x Cg,, has order that divides d,,, every element of F'* is a root of the polynomial X dm _ 1 ¢
F[X]. The polynomial X9 — 1 € F[X] has at most d,,, roots in F. Therefore

g—1<d,, and g¢g—-1=dy - -dpn>dn

It follows that d; - - - d,,, = d;, and it must be the case that m = 1 and F* = Cy,. O

26.3 Exercises

165. Prove the following. (It doesn’t really need any result from this lecture!)

Let p € N be prime. Then Va € Z, a’? = a (mod p).

166. Let F' be a finite field of characteristic p. Show that the map ¢ : FF — F, p(a) = a? is an
isomorphism.

167. Let f € F,[X] and suppose that o € E D F), is a root of f in some extension FE of F,,. Show that
aP is also a root of f in that extension.

168. Let I be a finite field.Write down a polynomial in F'[X] that has no roots in F'. Conclude that
no finite field is algebraically closed.

169. If E is a finite field of order p”, show that F has exactly one subfield of order p? for any d|n.
(Hint: If n = gd + r, then (X" — 1) = (X4 — 1)(X"~4 4 X724 1 ... 4 Xn=9d) 4 (X7 —1). It
follows that (p? — 1)|(p" — 1) if and only if d|n.)
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Existence and uniqueness of a field of size p"

27.1 Existence

To help motivate the construction we note the following.

Let F' be a field of size ¢ = p™. Every element of F is a root of the polynomial X¢ — X € F[X].

Proof. By Lagrange’s theorem, since || = ¢ — 1, each element a € F* satisfies a(9~1) = 1. It follows
that every element of F'* is a root of the polynomial X7 — X. It is clear that zero is also a root of this
polynomial. O

Remark. It follows that the polynomial X? — X can be written as a product of ¢ linear polynomials
from F[X].

Let p € N be prime and n € N with n > 1. There exists a field of size p".

Proof. Let ¢ = p" and let f € F,[X] be the polynomial f = X? — X. By Proposition 23.4 (and induc-
tion) there is a field £ O F, such that the polynomial f factors as a product of ¢ linear polynomials
from E[X]. Let K C E be given by

K={a€E|f(a) =0}
We will show that K is a subfield of E and has exactly g elements.

Since f is a degree ¢ polynomial, it has at most ¢ roots. We need to show that it has no repeated roots.
Suppose, for a contradiction, that (X —a)? divides f in E[X]. Let g € E[X]be such that f = (X —a)g.
Notice that (X — a) divides g. Applying the differentiation map D : E[X]| — E[X]| we get
D(f) = D(X —a)g + (X —a)D(g) = g+ (X —a)D(9)
= ¢X!' —1=g+(X ~a)D(g)
— qa? ! —1=0  (since g(a) = 0)
= —1=0 (since E has characteristic p and g = p")

As this can not be the case in the field E, we conclude that f has no repeated roots, and therefore K
has exactly g elements (and not fewer).

It remains to show that K is a subfield of F. Itis clear that 0,1 € K. Let a,b € K with a # 0. Then
a? = g and b? = b, and we have

(ab)? = a?b? = ab
(@ =) =a”!
(—a)!=(-1)%=—-la=—a
(a+b)?=a?+0"=a+b  (see Exercise 22)
Therefore ab,a™!, —a,a + b € K. It follows that K is a subfield of E. O
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For all p € N prime and all n > 1, there exists an irreducible polynomial in [F,,[ X of degree n.

Proof. Let p € N be prime and let n € Z>;. Let K be a field of size p". Note that [K : F,] = n. By
Proposition 26.3, K is cyclic. Let a € K* be a generator for K*. Then K = {0,1,a,d?,...,al®172}
and Fj,(a) C K is in fact equal to K. Therefore deg(a,F,) = [K : F,] = n. Therefore irr(a,F,) is of
degree n (and is irreducible by definition). O

27.2 Uniqueness

If two finite fields have the same cardinality, then they are isomorphic,

Proof. Let F' and F' be two fields of cardinality ¢ = p". We know from Proposition 26.3 that the group
F* is cyclic. Let a € F be a generator for F'*. The evaluation map ¢, : IF,[X| — F is surjective since
im(p,) contains 0 and contains F'*. We therefore have

F =T,[X]/(irr(a, Fp))

Also, irr(a, Fp) divides X9 — X in F,[X] since it divides any polynomial having a as a root. In F'[X]
the polynomial X7 — X factors as a product of linear polynomials. It follows that, considered as an
element of F'[X], irr(a,F,) factors into linear polynomials. Therefore, irr(a,F,) has a root a’ in F’.
Therefore irr(a’,F,) = irr(a, F,) and

F 2 F,[X]/(irr(a,Fp)) = FP[X]/ﬁrr(a',Fp)) = IE‘p(al) CF

But as F and F’ have the same (finite) cardinality it must be the case that F' = F”. O

27.3 Exercises

170.* Find an example of two infinite fields that have the same cardinality, but are not isomorphic.

171. Let IFg be the field containing 8 elements. Write out the addition and multiplication tables for
Fs.

172. Let F be a field of size ¢ = p". Show that every irreducible polynomial in IF,,[ X] of degree n is a
factor of X7 — X € F,[X].
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The Galois group of an extension

Galois theory gives a connection between certain field extensions and the subgroups of an associ-
ated group. Note that in this section we will be assuming that the field ' under consideration (and
therefore any extension of it) is of characteristic zero.

The set of all automorphisms of a field E forms a group (the operation being composition) which
will be denoted Aut(E). For a subgroup H of Aut(E) the fixed field of H is defined by

Ef ={ac F|p(a)=aforall p € H}

Exercise 173. Show that E¥ is a subfield of E.

Now suppose that F' is a subfield of E. An element ¢ € Aut(F) is called an F-automorphism if
it fixes I’ pointwise. Thatis, ¢(a) = aforalla € F.

Remark. By definition, all elements of H < Aut(E) are E-automorphismes.

Example 28.3. Complex conjugation is an R-automorphism of C.

Let E D F, f € F[X] and ¢ € Aut(E) an F-automorphism. If a € E is a root of f, then ¢(a) is
also a root of f.

Proof. Let f =31 jo; X" with a; € F. Then

n n n

fla)=0 = ¢(f(a) =0 = o) _aad’) =0 = > p(a)p(a)’ =) aip(a) =0

=0 i=0 i=0
= flp(a)) =0

Suppose that £ D F'is an extension of the field F. The set of all F-automorphisms of E forms a
subgroup of Aut(E) called the Galois group of the extension. It is denoted Gal(E/F). That is,

Gal(E/F) ={p € Aut(E) | p(a) =aforalla € F}

Example 28.6. Gal(Q(v/3,/5)/Q) is isomorphic to the Klein four group (i.e., it has four elements and
is not cyclic).
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An extension F of F is called a Galois extension if it is a finite extension and

|Gal(B/F)| = [E : F]

For Galois extensions, there is a correspondence between subgroups of Gal(£/F') and intermediate
fields L, FF < L < E. We now state the main theorem of this section. The proof will be developed
later.

Let E be a Galois extension of F'.

1) The map
® : {H | H is a subgroup of Gal(E/F) } — {L | Lis a subfield of E with ' C L C E}

given by
®(H) = E"

is a bijection. It has inverse given by L — Gal(E/L).
Let H be a subgroup of Gal(E/F).

2) [B: B = ||

3) Ef! is a Galois extension of F if and only if H is normal in Gal(E/F).
If it is the case that E*! is a Galois extension of F, then Gal(E¥ /F) = Gal(E/F)/H.

\ J

Example 28.9 (Quadratic extension). Let £ = Q(+/2) and let G = Gal(E/Q). By Lemma 28.4 for any
element g € G, we have either g(1/2) = v/2 (and therefore g = idg) or g(v/2) = —v/2. If g(v/2) = —V/2,
then g(—+/2) = v/2. Therefore G has exactly two elements and F is a Galois extension of Q. Since the
group of size two has no proper subgroups, there are no fields lying between Q and FE.

Example 28.10 (Non-Galois extension). Let £ = Q(Z% ). Then E C R. Any element of Gal(E/Q) must
permute the roots of the polynomial irr(2% ,Q) = X3 — 2. Since only one of these roots lies in E (since
the others are not in R), any element of Gal(E/Q) must send 23 to 23. Such an automorphism fixes
E pointwise. Therefore | Gal(E/Q)| =1 # 3 = deg(2%,(@) = [E : Q] and F is not a Galois extension.

Example 28.11 (Biquadratic extension). Let £ = Q(i, v/2). There are Q-automorphisms o, 7 € Gal(E/Q)
determined by

V3) =2
Vi) = V3

o(i)=—i ol

Since any element of Gal(E/Q) must permute the roots of X2+ 1 and the roots of X? -2, Gal(E/Q) =
{id,o, 7,07} and we have Gal(EQ) = C; x C; and | Gal(E/Q) = 4|. Also, Q & Q(v2) & Q(v2,i)
which implies that [F : Q] = [E : Q(v/2)][Q(v2) : Q] = 2 x 2 = 4. Therefore | Gal(E/Q) = 4 = [E : Q]
and F is a Galois extension of Q. The correspondence between subgroups and intermediate fields is
given in the following table:
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subgroup | subfield
Gal(E/Q) Q
{id, 7} Q(4)
{id,o} | Q(V2)
{id,o7} | Q(iv?2)
{id} E

Since G is abelian, all subgroups are normal, and therefore all the intermediate fields are Galois
extensions of Q (which also follows from the fact that all the (proper) intermediate fields are quadratic

extensions of Q).

28.1 Exercises

174. Let E D F with [E : F] = 2and leta € E'\ F be such that a? € F. Show that there is an element

¢ € Gal(E/F) such that p(a) = —a.

175. Let E O F be fields and oy, ..., oy, € E. Suppose that E = F(aq, ...

such that ¢(a;) = «; for all i. Show that ¢ = idg.

© University of Melbourne 2025
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Splitting fields

29.0.1 Splitting fields

We give an alternative characterisation of Galois extensions. Given a polynomial in F'[X] we want to
extend F just enough so that f has deg(f) roots.

Let f € F[X] be a non-constant polynomial. An extension field E of F is a splitting field for f
if:

1. In E[X], f factors into a product of linear polynomials, f = (X —ay)... (X —an)

2. E=F(a,...,am)

\ J

Exercise 176. Use Proposition 23.4 to prove the following lemma.

Every polynomial f € F[X] has a splitting field.

We prove a technical lemma below that establishes the following.

If E C Fis a splitting field for f € F'[X], then E is a Galois extension of F.

Before giving the technical lemma, we illustrate some of the ideas with two examples.

Example 29.4. Let f € Q[X] be an irreducible quadratic. Let o, 5 € C be its (necessarily) distinct
roots. Let £ = Q(a, 8). Then E = Q(«) = Q(B) and [E : Q] = 2. Also, we know from Exercise 160
that there is an isomorphism Q(«) — Q() that sends « to 5 and fixes Q. Together with the identity
map, we therefore have two distinct Q-automorphisms of £. But there can be no others, since such
an automorphism permutes the roots of f. Therefore E is a Galois extension.

Example 29.5. We consider a splitting field E C C of the polynomial f = X3 + 3X + 1 € Q[X]. The
polynomial f is irreducible, since its image in F[X] is irreducible. Therefore f has no repeated roots
(see Exercise 154). Let , 3, € C be the three roots in C of this polynomial. Let £ = Q(«, 3,7) € C.

We will show that £ is a Galois extension of Q and find the Galois group Gal(E/Q). Exactly one
of the roots, 7 say, is real (and therefore 3 = @ € C\ R). Let L = Q(~). Notice that L # E since
L CR. Also, [L : Q] = deg(v,Q) = 3. In L[X] we have the factorisation f = (X — v)h for some
quadratic h € L[X] with h(a) = h(8) = 0. Since a ¢ L, h is irreducible and deg(8, L) = 2. From
E =Q(a, B,7) = L(B,7) = L(B), we have [E : L] = 2. From Lemma 24.6 we get

[E:Q =[F:LJIL:Q =2x3=6



29-2 MAST30005 Algebra, 2025

Since the elements of Gal(E/Q) permute the roots of f (Lemma 28.4) we know that Gal(E/Q) is
isomorphic to a subgroup of S3 (the symmetric group on three objects). Because |S3| = 6 we have
that | Gal(E/Q)| divides 6. We'll show that Gal(E/Q) has at least 4 distinct elements, from which it
follows that Gal(£/Q) = Sz and | Gal(E/Q)| =6 = [E : Q].

The identity and complex conjugation are Q-automorphisms that permute the roots of f and are
therefore in Gal(E/Q). We demonstrate two other elements in Gal(E/F). Let F' = Q(«) and let
g € F[X] be such that f = (X — «)g. Note that E = F(vy) = F(B). Because g is irreducile and has
roots § and +, there is an element of Gal(E/F') (which is a subset of Gal(E/Q)) that interchanges ~y
and 8. The same argument, with the roles of 3 and « interchanged, shows that there is an element in
Gal(E/Q) that fixes  and swaps « and .

Now for the technical lemma that shows that all splitting fields are Galois extensions.

Let ¢ : F — F' be an isomorphism of fields. Let f € F[X] be a polynomial and let f’ € F'[X] be
the image of f by (the extension to F[X]| of) ¢. Let E O F and E' D F' be splitting fields for f
and f’ respectively. Then, ¢ extends to an isomorphism from E to E’. Moreover, the number of
such isomorphisms is [E : F].

Before proving the lemma we note some consequences.

Any two splitting fields of f € F[X] are isomorphic.

Proof. Apply the lemma with I/ = F, E and E’ the two splitting fields and ¢ = Idr. O

A splitting field of f € F'[X] is a Galois extension of F.

Proof. Let E be a splitting field for F. Apply the lemma with F' = F, E/ = F and ¢ = Idp. The
extensions of ¢ are precisely the F-automorphisms of E. Therefore |Gal(E/F)| = [E : F] by the
lemma. O

Let F'be a field, f € F[X]and E D F a splitting field for f. Let g € F[X] be irreducible and such
that g divides f. Let a,b € E be two roots of g. Then there is an F-automorphism of E sending
atob.

© University of Melbourne 2025
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29.1 Exercises
177. Let F' C C be a field and suppose that f € F[X] is an irreducible quadratic. Let the roots of f
be a,b € C. Show that

(@) F(a) = F(a,b)
(b) | Gal(F(a)/F)| = 2

(c) The non-trivial element in Gal(F'(a)/F’) interchanges a and b.
178. Prove Corollary 29.9.
179. Let f = X3 — 2 € Q[X] and let E C C be the splitting field of f. Show that Gal(E/F) = Ss.
180. Let f = X3 — 1 € Q[X] and let E C C be the splitting field of f. Calculate Gal(E/F).

© University of Melbourne 2025
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Primitive elements

Proof of Lemma 29.6. Denote by ¢ : F[X] — F'[X] the map defined by extending ¢, that is
Plao +- -+ amX™) = p(ag) + - - + p(am) X™
By hypothesis ¢(f) = f’. We proceed by induction on [E : F].

If [E: F] =1, then E = F and f factors into linear polynomials in F'[X]. It follows that f’ factors
into linear polynomials in F”[X], and therefore E’ = F’. Then ¢ itself is an isomorphism from E to
E', and it is obviously the only such.

Now suppose that [E : F| > 1 and that the result holds for all cases with lower degree. Let a € E be
arootof f,witha ¢ F. Let g = irr(a, F) € F[X]| and ¢’ = ¢(g). Then ¢’ € F'[X] is irreducible and
deg(g’) = deg(g) = [F(a) : F]. Since ¢ is irreducible and F’ has characteristic zero, ¢’ has no repeated
roots (see Exercise 154). For each of the [F(a) : F] (distinct) roots b of ¢ there is exactly one injective
homomorphism ¢ : F(a) — E’ such that £|r = ¢ and £(a) = b (cf. Exercise 160). Moreover, any
injective homomorphism from F(a) to E’ that restricts to ¢, must send a to one of the roots of ¢’. It
follows that there are exactly deg(¢’) = [F(a) : F] homomorphisms from F'(a) to E’ that restrict to (.
Since [E : F'(a)] < [E : F] we can apply the induction hypothesis, to conclude that there are [E : F'(a)]
isomorphisms from E to E’ that extend £. Combining, we see that the total number of isomorphisms
from £ — E' thatextend ¢ is [E : F(a)][F(a) : F] = [E : F]. Note that any isomorphism ¢ : E — E’
is an extension of 9| p(4) and ¢(a) is necessarily a root of ¢'.

E Y. F

T T This diagram illustrates the above argument. The vertical arrows are

justinclusions, and each horizontal map is a restriction of the one above

F(a) _& F'(b) it. The inductive hypothesis applies to the extension of £ to ). Note that

T T E/i(s )a splitting field for f over F'(a) and E’ is a splitting field for f’ over
F'(b).

F 2,

30.1 Primitive elements

We say last time (as a consequence of the lemma proved above) that all splitting fields are Galois
extensions. In order to prove that all Galois extensions are splitting fields, we will use the following

Let E be a finite extension of F. There exists an element a € E such that £ = F(a).

An element a € E such that E = F(a) is called a primitive element of the extension E D F.

Proof of Proposition 30.1. Since F is a finite extension, there are elements b; € E suchthat £ = F(by, ..., bg).
By induction it is enough to consider the case in which £ = F(b, c) withb,c € E'\ F. Let f = irr(b, F),
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g = irr(c, F') and let L C E be the splitting field for the polynomial fg. Let b = by,b2,...,b,, € L
be the roots of f and ¢ = ¢y, c¢o,...,c, be the roots of g. Since f and g are irreducible and F' is of
characteristic zero, both f and g have no repeated roots. Since F is of characteristic zero, it is infinite,
and we can therefore choose d € F such that

dg {(b;—b)(c—c)t|2<i<m,1<j<n}CL

Leta = b+ dc € F(b,c) C L. We will show that F'(b,c) C F(a). Let h € F(a)[X] be given by
h = f(a—dX). Then h(c) = f(b) = 0 and by the choice of d we have h(c¢;) = f(a —dc¢;) # 0if i > 2.

Therefore c is the only common root of i and g. Since g factors as a product of linear terms in L[X]
we have that the gcd of g and % in L[X] is (X — ¢). On the other hand, any gcd of g and % in F'(a)[X]
is also a ged of g and & in L[X] (see Exercise 69). Therefore (X — ¢) is a ged of g and h in F'(a)[X]. It
follows that ¢ € F(a) and therefore also b € F'(a). Thus F(b,c) C F(a). The reverse inclusion is clear
from the choice of a. O

As well as being used in our proof of Artin’s Theorem (below), the next lemma is often useful in
determining the irreducible polynomial of an element.

Let E be a field and let G be a finite subgroup of Aut(E). Leta € E and let {a = a1, az,...,an} C
E be the orbit of a under the action of G. Then in E[X] we have

irr(a, E€) = (X —a1)(X —ag) - (X — am)

Proof. Let f = (X —a1)--- (X — ay,) and let F = EC. First note that f € F[X]since forallg € G

9(f) =9((X —a1)--- (X —am)) = (X —g(a1))--- (X = g(am)) = (X —ar)--- (X —am) = f
where g : E[X]| — E[X] is the homomorphism induced by g.
Then note that

irr(a, F)(a;) = irr(a, F)(ga) (for some g € G)
= g(irr(a, F)(a)) = 9(0) = 0

So all the a; are roots of irr(a, F'). Therefore f divides irr(a, F). But since f(a) = 0, we also have that
irr(a, F') divides f. O

Remark. Since the order of an orbit divides the order of the group acting, we know that m divides
|G|. It need not be equal to |G|.

30.2 Exercises

181. Find an element a € E = Q(v/2,v/3,/5) such that £ = Q(«).
182. Leta =+v2+ic€ E=Q(v2,i).

(a) Find the orbit of o under the action of the group Gal(E/Q). That is, calculate the set
{9(a) | g € Gal(E/Q)}.
(b) Use the Orbit Lemma to calculate irr(«, Q).
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Artin’s Theorem

Let E be a field and let G be a finite subgroup of Aut(FE). Then

[E: E% = |G|

If E is a finite extension of F, then | Gal(E/F)| divides [E : F.

Proof. We have that F' C EGaE/F) C E which implies that

[E: F) = [E : ECE/DpCAE/R) . p] — | Gal(E/F)|[ECE/F) . F]

Let E be a field and let G be a finite subgroup of Aut(F). Then E is a Galois extension of E¢ and
Gal(E/E®) = G.

Proof. Clearly G C Gal(E/EY) since all elements of G fix E¢ pointwise. Corollary 31.2 implies that
| Gal(E/E%)| < [E : EY]. Then from Artin’s Theorem we have

[E: EY =|G| < |Gal(E/E®)| < [E : EY)

It follows that G = Gal(E/E%) and | Gal(E/EY)| = [E : E“]. O

If E be a Galois extension of F, then EGa(E/F) — p

Proof. Let G = Gal(E/F). We have F C E C E and therefore Gal(E/E®) C G. It is also the case
that G C Gal(E/EC®) since all elements of G fix its own fixed field. Therefore G' = Gal(E/E%). Also,

| Gal(E/EY)| divides [E : EY] (by 31-1 31.2)
— |G| divides [E : E“]
— [E : F] divides [E : EY] (since E is a Galois extension of F')

But is is also the case that [E : EY] divides [E : F] since
[E: F]=[E: E°|[EY : F]

Therefore [E : F] = [E : E¢] and [EY : F] = 1. O
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We now give the proof of Artin’s Theorem.

Proof of Artin’s Theorem (31.1). Let ' = E“. We first show that E is a finite extension of F. By the
Orbit Lemma 30.3 every element a € E is algebraic over F' and deg(a, F') divides |G|. Starting with
Fy = F we define a sequence of extensions F; of F. If F; # E,leta; € E'\ F; and define Fj 1 = Fj(a;).

Suppose, for a contradiction, that this process continues indefinitely to give an infinite chain of sub-
fields
FSCRGRSG -

Noting that Fj is a finite extension of F;, we have that for all 4, F; is a finite extension of F' and also
that [F} : F] > 20 By Proposition 30.1, for all i, there exists an element b; € E such that F; = F(b;)
and therefore [F; : F'] = deg(b;, F'). As noted at the beginning of the proof, deg(b;, F') divides |G|. A
contradiction.

We have shown that there exists an element b € E such that £ = F'(b). Notice that b must have trivial
stabiliser in G since if g € G fixes b it fixes the whole of E (pointwise) and is therefore the identity
homomorphism. Since b has trivial stabiliser, the size of its orbit is exactly |G|. The Orbit Lemma 30.3
tells us that the size of the orbit of b is equal to deg(b, F') = [F'(b) : F.

O]

And finally, we show that all Galois extensions are splitting fields.

Let E be a Galois extension of F. Then there exists a polynomial f € F[X] such that E is a
splitting field for f.

Proof. Let a € E be such that E = F(a), and let f = irr(a, F'). Let {a = a1,aq,...,an} be the orbit
of a under Gal(E/F). Then F = ES(E/F) by Corollary 31.4 and Lemma 30.3 tells us that in E[X]
f=(X —a1) - (X — ap). Therefore E is a splitting field for f. O

31.1 Exercises

183. Determine the degree of the splitting fields of the following elements of Q[X].

(@) X*-1 (b) X3 -2 () X*+1

184. Show that K = Q(v/2,/3,/5) is a Galois extension of Q and identify its Galois group.
185. Show that X2 — 3 and X2 — 2X — 2 are irreducible in Q[X] and have the same splitting field.

186. Find the dimensions of the splitting fields over Q of

(a) X3 —56 (b) X*—4X2-5

187. Find the dimension of a splitting field of X 3+ X + 1 over F.
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Proof of the fundamental theorem

32.1 Proof of the fundamental theorem

Recall the statement of the theorem.

Let E be a Galois extension of F'.

1. The map
¢ : {H | H is a subgroup of Gal(E/F) } — {L | L is a subfield of E with ' C L C E}

given by
®(H) = E"

is a bijection. It has inverse given by L — Gal(E/L).
2. [E: L] =|H|, where L = Ef.

3. L = E* is a Galois extension of F' if and only if H is normal in Gal(E/F). If it is the case
that L is a Galois extension of F, then G(L/F) = Gal(E/F)/H.

Proof. Let G = Gal(E/F) and let
U : {L | Lisasubfield of Ewith F C L C E} — {H | H is a subgroup of G }

be the map ¥ (L) = Gal(E/L). By Corollary 31.3, ¥ o ®(H) = ¥(E) = Gal(E/E") = H. Applying
Corollary 31.4 gives ® o U(L) = ®(Gal(E/L)) = ES(F/L) = [, Hence ¥ and ® are mutually inverse
bijections. This proves the first part of the statement.

The second part is a direct consequence of Artin’s Theorem 31.1.

For the third part note that given any g € G and any subgroup H < G we have E9H9 = gEH It
follows that H is normal in G if and only if gE* = E¥ forall g € G.

Suppose that H is a normal subgroup of G. Then forall g € G, gL = ®(gHg ') = ®(H) = L. We
therefore have, by restriction, a map G — G(L/F'). The kernel of this homomorphism is equal to H
(all the elements of G that fix L pointwise). Then G/H is isomorphic to a subgroup of G(L/F') and
noting that |G| = [E: F| = [E : L][L : F| = |H|[L : F] we get

|G/H| < |G(L/F)] (since it is isomorphic to a subgroup)
— [G|/[H| < |G(L/F)|
— [L: F] <|G(L/F)] (since |G| = |H|[L : F])

It is also the case that |G(L/F')| divides [L : F] by Corollary 31.2. Therefore |G(L/F)| = [L : F] and
so L is a Galois extension of F'.

Conversely, suppose that L is a Galois extension of F'. Then L is a splitting field for some f € F[X]
and every element of G permutes the roots of f. This implies that gL = L. O
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32.2 Examples

Having proved the main theorem we now give some examples in which we calculate the Galois
group and list the subgroups together with corresponding subfileds.

Example 32.2 (Quadratic extension). Let F be an extension of Q with [E : Q] = 2. Then E = Q(a)
for some a with deg(a,Q) = 2. Let b be the other root of the polynomial irr(a, Q). Note that, being
irreducible over Q, irr(a, Q) has no repeated roots and so b # a. Consider the group G = Gal(E£/Q).
For any element g € G, we have either g(a) = a (and therefore g = Id) or g(a) = b. If g(a) = b, then
we must similarly have g(b) = a. Therefore G has exactly two elements, and E is a Galois extension
of Q. Since C has no proper subgroups, there are no fields lying between Q and E.

Example 32.3 (Non-Galois extension). Let £ = Q(Z%). Then E C R. Any element of Gal(E/Q) must
permute the roots of the polynomial irr(2§ ,Q) =
the others are not in R), any element of Gal(E/Q) must send 23 to 25. Such an automorphism fixes
E pointwise. Therefore | Gal(E/Q)| =1 # 3 = deg(Q%,Q) =[E

— 2. Since only one of these roots lies in E (since

: Q] and F is not a Galois extension.

Example 32.4 (Biquadratic extension). Let E = Q(i, v/2). There are Q-automorphisms o, 7 € Gal(E/Q)
determined by

=2
f

\)

Since any element of Gal(E/Q) must permute the roots of X2+ 1 and the roots of X2 -2, Gal( /Q) =
{id, o, 7,07} and we have Gal(EQ) = Cy & C and | Gal(E/Q) = 4|. Also, Q & Q(\f) Q(v/2,1)
which implies that [E : Q] = [E : Q(v/2)][Q(v2) : Q] = 2x 2 = 4. Therefore | Gal(E/Q) = 4\ [E: Q]
and F is a Galois extension of Q. It is a splitting field of the polynomial (X? — 2)(X? + 1). The
correspondence between subgroups and intermediate fields is given in the following table:

E=Q(i,V2)
subgroup | subfield
Gal(E/Q) Q

{id, 7} Q(4)

{id,o} | Q(V2)

{id,or} | Q(iv?2)
{id} K

Since G is abelian, all subgroups are normal, and therefore all the intermediate fields are Galois
extensions of Q (which also follows from the fact that all the (proper) intermediate fields are quadratic
extensions of Q).

Example 32.5. Let E C C be the splitting field of X3+ 3X + 1. We have already seen that Gal(E/Q) =
Ss. Let a1, ag, a3 € C be the three roots in C of this polynomial, with a; € R and ay = a3 ¢ R. Since
any element of Gal(E/Q) must permute the elements of {a1, a2, a3} and Gal(E/Q) = 6, we know
that all permutations of the roots are achievable by an element of Gal(£/Q). We label each element
of G by the corresponding permutation, e.g. (12) represents the automorphism determined by swap-

ping a1 and ap but leaving a3 fixed. Knowing the subgroups of S3, we can list all intermediate
fields.

© University of Melbourne 2025
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f=X3+3X+1

subgroup subfield
Gal(E/Q) = 53 Q
H ={id, (123),(132)} | L =Q(9)
{ud, (12)} Q(as3)
{id, (13)} Q(a2)
{id, (23)} Q( 1)
{id}

The determination of L needs some explanation. By the Main Theorem there is some subfield that
corresponds to the subgroup H. Call it L. Note that [L : Q] = [G : H],so [L : Q] = 2. Now
let 6 = (1 — az)(az2 — a3z)(ag — a1). Then § € L = K since it is fixed by the automorphism
corresponding to the permutation (123). Therefore Q(0) C L. Also, § ¢ Q since it is not fixed by the
automorphism corresponding to (12) (it sends § to —4). On the other hand §? € Q since it remains
unchanged after any permutation of the roots. Therefore [Q(4) : Q] = 2.

The subfields Q(a), Q(a2) and Q(«3) are not Galois extensions of Q because the order 2 subgroups
of S3 are not normal (since, for example, (23)(12)(23)~! = (13)). The field L is a Galois extension of
Q since the subgroup H is normal in Ss.

Example 32.6. Consider the splitting field &/ C C of the 1rreduc1ble polynomial f = X3 —3X +1 €

Q[X]. The roots «, 3,~ of this polynomlal are all real. Let 5 = ¢ The roots of farea =&+ €71,
B=¢2+¢2% and vy = ¢4 + ¢4 Noting that a? = €2 + ¢72 + 2 = B + 2, and therefore 3 € Q(a) we
have

Q<c Q(a) =Q(, 8) =Q(, 8,7) = E

Therefore | Gal(E/Q)| = 3. It follows that Gal(£/Q) = As. Recall that A3 is the index 2 subgroup of
Sz given by Az = {id, (123), (132)}. The only subgroups are {id} and As. The corresponding fields
are I¥ and Q respectively.

Remark. Note that in this case the element § = (oo — 3)(5 — 7)(y — a) turns out to be an element of Q.
We could have concluded that Gal(E/Q) = A3 from that fact.

The discriminant D = §2 can be calculated without knowing the roots. For cubic X3 + pX + ¢ it is
given by D = —4p® — 27¢%. The Galois group of an irreducible cubic is A3 if § € Q and is Sz if § ¢ Q.

32.3 Exercises

188. For each of the following polynomials f € Q[X] calculate:
(i) The size of the Galois group G = Gal(E/Q), where E is the splitting field of f (over Q);
(ii) Identify the group G;
(iii) List the correspondence between subgroups of G' and intermediate fields L,

QCLCE.

(@) X2-5X+6

)
(b) X2 -2
(c) X -2
(d) X3 -7 (Wh1ch subfields of F are Galois extensions of Q?)
(e) X3 -1
0 X
(g) X' -2
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LECTURE 33

Solubility by radicals

Let F be a subfield of C. An extension F D F is called a radical extension if there are subfields

F=FKChC---CF,=FECC

such that forall k € {1,...,n}, Fy = Fj_1(o4) for some oy, € F, and nj, € Nwith a)* € Fj,_;

A polynomial f € F[X] is soluble by radicals if there is a splitting field for f that is contained
in a radical extension of F.

From the quadratic formula we know that all quadratic polynomials are soluble. In fact, this is also
true for polynomials of degree 3 and 4.

If f € Q[X] has degree at most 4, then f is soluble by radicals. O

Famously, this does not extend to degree 5 or higher. To show this we will establish a few preliminary
results.

Let p € N be prime, let F' be a subfield of C with { = e% ¢ F. If E D F is a Galois extension
with [E : F] = p, then E = F(«) for some « € E that satisfies o € F.

Proof. Since |Gal(E/F)| = [E : F] = p, Gal(E/F) is a cyclic group. Let ¢ € Gal(E/F) \ {id}. Note
that || = p. The map ¢ gives a linear transformation from 7}, : pE — pE, T,(u) = ¢(u). (We don’t
really need a new name for it!) Since ¢ = 1 and ¢ € F, T, is diagonalisable. This is because the
minimal polynomial of T}, divides X” — 1 and X? — 1 factors as a product of linear terms in F[X].
The eigenvalues of T, can not all be equal to 1 because T}, is diagonalisable and not the identity. Let
A € F\ {1} be an eigenvalue of T,. Then \? = 1 because 7% = id. Let o € E be an eigenvector with
eigenvalue A\. Then
p(a’) = p(a)’ = (Aa)? = APa? = ¥

Since o generates Gal(F/F), it follows that o? € EG2(E/F) — . Also, a ¢ F because p(a) = \a # a.
Therefore deg(a, E) = pand E = E(«). O

Let p € N be prime and let { = e e C.

1) Gal(Q(¢)/Q) = F; (therefore cyclic of order p — 1)

2) For any subfield F' C C we have that Gal(F'(¢)/F) is cyclic.
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Proof. Let G = Gal(F(¢)/F) and let ¢ € G. Then ¢(¢) € {¢,¢?,...,(P~1} since those are the roots
on the irreducible polynomial X?~* 4+ XP~2 4 ... + X + 1 € Q[X]. We defineamap f : G — F} by
f(p) = i where p(¢) = ¢'. Note that f(id) = 1 and that if p,1 € G with p(¢) = ¢* and ¥ (¢) = ¢/,
then f(pv) = f(p)f(1) because p¥b(¢) = ¢(¢7) = ¢(¢)? = (Y. That is, f is a group homomorphism.
Moreover, f is injective because f(¢) = 1 means that ¢(¢) = ¢ and therefore ¢ fixes the whole of
F((). Hence G is isomorphic to a subgroup of a cyclic group and is therefore cyclic. For the first part
note that |G| = [Q(¢) : Q] = deg(¢,Q) =p—1land [F)|=p— 1. O

Let I be a subfield of C and F D F a radical extension. Then there are subfields
F=FhCFkhC--CF,
such that F;, D Eand forall k € {1,...,n}

1) Fj = F_1(oy) for some oy, € Fj, and ny, € N with o)* € Fj,_4

2) F} is a Galois extension of Fj,_; and Gal(F},/Fy_1) is cyclic

Proof. Since E is a radical extension, there exist F}, ay, ny satisfying the first condition (it’s exactly
the definition). There is no lose in generality in assuming that the n; are prime (by increasing the

27

number of subfields if needed). Let’s rename them as p;.. Let (; = e *+ . Consider the chain of fields

FCF()CF(,8)C--CF(,... ) SF(, .y Cnyar) CF(CLye ey Cnyar, o) C - -
CF(C, Gty a) = ECC

By Lemmas 33.3 and 33.4 each of these extensions is Galois with a cyclic Galois group. O

Although we won’t prove the general result below, it's worth stating here.

Let f € F[X] and let E DO F be a splitting field. Then f is soluble by radicals if and only if
Gal(E/F) is a soluble group. O

A finite group G is called a soluble group if there are subgroups

{1}=GyCGIC- CGp=GC

such that G;_; < G; and G;/G;_ is cyclic.
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LECTURE 34

Qunitics

Rather than establishing the general result of Theorem 33.6, we’ll merely aim to show that there are
quintics that are not soluble by radicals. It relies on the following technical looking result. Recall that
a group is called simple if it has no proper normal subgroups (and hence no proper quotients).

Let f € F[X] and let E O F be a splitting field for f. Suppose that Gal(£/F) is simple and
non-abelian. Let F’ D F be a Galois extension of F with Gal(F’/F) an abelian group and let
E’ D F' be a splitting field for f € F'[X]. Then Gal(E'/F') = Gal(E/F).

Remark. The crucial point is that extending from F' to F” has not gotten us any closer to a splitting
field for f.

Proof. [M. Artin] Consider first the case in which [F” : F| = p is prime and (therefore) Gal(F’'/F) is
cyclic of size p. The splitting field £’ contains a copy of E. From the Main Theorem 32.1 we have that
El
< O
E F'
S ¢
F

Gal( ) = CAUE/F)

. _ Gal(E'/F)
* Gl ED Gal(F'/F) =

~ Gal(E'/F)

The natural projection maps from the above quotients give a map Gal(E’/F) — Gal(E/F)xGal(F'/F).
Moreover this map is injective since anything in the kernel fixes all the roots of f and all elements
of F'. Therefore Gal(E'/F) is isomorphic to a subgroup of Gal(E/F) x Gal(F’'/F). We have that

| Gal(E/F)| divides | Gal(E’/F)| which divides | Gal(E/F) x Gal(F'/F)| = p| Gal(E/F)|. In fact we
must have | Gal(E/F) x Gal(F'/F)| = p| Gal(E/F)| because

|Gal(E/F)| = | Gal(E'/F)| = |Gal(E'/E)|=1 = E' =E

which would imply that Gal(F’/F') is a quotient of Gal(E/F') contradicting the hypothesis that
Gal(E/F) is simple and non-abelian. We have then that Gal(E’/F) = Gal(E/F) x Gal(F'/F). Ap-
plying the Main Theorem to the extensions E' D F’ D F, we get that Gal(E'/F') = Gal(E/F).

For the general case, in which Gal(F’/F) is abelian, we can proceed by induction on [F’ : F']. Being
abelian, Gal(F’/F) has a quotient H that is of prime order. This quotient determines an intermediate
field F1 O F that is a Galois extension of F' and Gal(F}/F) = H. Let E; be the splitting field of f
over Fy. Since [F : F] is prime, we know (from above) that Gal(E;/F;) = Gal(E/F'). By induction
we have that Gal(E, /Fy) = Gal(E'/F"). O

If an irreducible f € F[X] has degree 5 and has Galois group isomorphic to S5 or As, then f is
not soluble by radicals.

Proof. Letthe rootsbe oz, ..., a5 and let E be a splitting field for f. Consider § = [];_;(c; — ;). That
is, D = §? € F is the discriminant of the polynomial. If the Galois group G = Ss, then § ¢ F. The
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Galois group Gal(E/F(9)) is then As. It is enough, therefore, to consider the case in which the Galois
group of the polynomial is As.

We will use the fact that As is a simple group. Suppose that f were soluble by radicals. Then we have
F=FRChCcC---CF,>m

with each extension being Galois and with a cyclic Galois group. From the above Proposition 34.1
we have that the Galois group of f over F}, is A5 for all k. In particular, the Galois group of f over F),
is As. But this contradicts the assumption that a; € F,. O

To get an explicit example of such a quintic we note the following.

Let f € Q[X] be an irreducible quintic with exactly 3 roots in R. Then the Galois group of f is
Ss.

Proof. Let the roots be o, 2,03 € R and ay,a5 € C\ R. Let G be the Galois group of f over
Q. Since G acts transitively on the set of 5 roots, we have that |G| is divisible by 5 (Orbit-Stabiliser
relation). Therefore G' contains an element of order 5 (Cauchy’s Theorem). The only elements of
order 5 in S5 are the cycles of length 5. We have Q(a1, ag, a3, a4, a5) 2 Q(ai, az, a3 is a quadratic
extension. Therefore there is an element in the Galois group of that extension that interchanges a4
and as. Therefore G contains a transposition. Since G is a subgroup of S5 that contains a 5-cycle and
a transposition, we have G = S;. ]

Example 34.4. The polynomial f = X° — 16X + 2 € Q[X] is irreducible and has exactly three roots
in R. Therefore, it is not soluble by radicals.
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