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LECTURE 1

Rings

We investigate the properties of rings — general algebraic structures in which there are two opera-
tions. Good examples to keep in mind are the integers Z and the ring of polynomials R[X]. After
some general considerations, such as subrings and quotients, we’ll look at particular properties that
a ring may (or may not) possess. For example, we know that in the integers every element can be
written as a product of primes. This turns out not to be true in every ring, but is true of R[X] for
example. We will define and consider various classes of rings: integral domains, unique factorisation
domains, principal ideal domains and Euclidean domains.

1.1 Definition

Many familiar mathematical structures consist of a set on which two binary operations can be per-
formed. You probably recognise all the following examples:

Examples 1.1.

Number systems: Z, Q, R, C
Polynomials: R[X] = {a0 + a1X + · · ·+ anX

n | n ∈ N, ai ∈ R}
Integers modulo n: Z/nZ (also denoted by Zn or Z/n or Z/〈n〉)

Square matrices: Mn(R)

All have the property that there are two binary operations, (addition’ and ‘multiplication’) and that
the two obey some modest and natural conditions such as the distributive law. Writing down a list
of their common properties leads us to the following:

Definition 1.2

A ring is a setR together with two binary operations + and×, called addition and multiplication
respectively, that satisfy the following conditions:

1) (R,+) forms an abelian group (with the identity element being denoted by 0)
2) multiplication is associative: x× (y × z) = (x× y)× z for all x, y, z ∈ R
3) there is an element 1 ∈ R that satisfies: x× 1 = 1× x = x for all x ∈ R
4) distributive laws: x× (y + z) = (x× y) + (x× z) for all x, y, z ∈ R

(x+ y)× z = (x× z) + (y × z) for all x, y, z ∈ R

The ring will be denoted (R,+,×) or simply R if the operations are clear from the context.

Remark.

� Multiplication will often be represented by concatenation, that is we write ab in place of a× b.

� The additive inverse of an element a is denoted −a.

� If we were to drop the condition that there is a multiplicative identity, the resulting structure is
called a ‘pseudo-ring’. An example is the even integers.

Exercise 1. Suppose that R is a ring and e ∈ R satisfies ∀x ∈ R, ex = xe = x. Show that e = 1.
(The point is that there is a unique multiplicative identity, and it is uniquely determined by the
property in axiom 3 in the definition of a ring.)
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Exercise 2. Let R be a ring, and x, y ∈ R any two elements. Show that

(a) 0x = x0 = 0 (b) x(−y) = (−x)(y) = −(xy) (c) (−x)(−y) = xy

Justify every step using the axioms from the definition of a ring.

Exercise 3. Let R be a ring. Show that if 1 = 0 in R (i.e., the additive and multiplicative identities
coincide), then R consists of a single element.

Remark. From now on, all rings will be assumed to be non-trivial in the sense of having at least two
elements.

Definition 1.3

A ring (R,+,×) is said to be commutative if multiplication is commutative:

x× y = y × x for all x, y,∈ R

Examples 1.4 (Some rings).

1. Let X be a nonempty set and denote by P(X) the power set of X . Define operations on P(X)
by

A+B = (A ∪B) \ (A ∩B)

A×B = A ∩B

Then (P(X),+,×) is a commutative ring.

2. Let R be the set of all functions from R to R. Defining operations in the usual pointwise way,

(f × g)(x) = f(x)g(x)

(f + g)(x) = f(x) + g(x)

makes R into a commutative ring.

3. Consider the following subset of M2(C):

H =

{[
a b
−b̄ ā

]
| a, b ∈ C

}
With the usual matrix operations,H forms a (non-commutative) ring, called the quaternions.

4. The subset of the complex numbers given by Z[i] = {m + in : m,n ∈ Z} with the operations
from C forms a commutative ring. It is called the Gaussian integers.

5. Consider the set (Z/6Z)[
√

5] := {a+ b
√

5 : a, b ∈ Z/6Z}. The operations

(a+ b
√

5) + (α+ β
√

5) = (a+ α) + (b+ β)
√

5

(a+ b
√

5)× (α+ β
√

5) = (aα+ 5bβ) + (aβ + bα)
√

5

make R into a commutative ring.

6. Let R = {0, 2, 4} ⊂ Z/6Z. With the operations coming from Z/6Z, R forms a commutative ring.
What is the multiplicative identity ?

© University of Melbourne 2025
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1.2 Units and zero-divisors

Definition 1.5

LetR be a ring. An element x ∈ R is called a unit (of an invertible element) if there exists y ∈ R
such that xy = yx = 1. The element y is called the multiplicative inverse of x and is denoted
x−1. The set of units in R, together with the operation of multiplication, forms a group called
the group of units. We denote it R×.

Remark.

� The multiplicative identity is always a unit.

� The zero element is never a unit (see Exercise 2(a)).

Examples 1.6.

1. The units in Z are 1, −1.

2. The units in Z/6Z are 1 and 5.

3. The units in R[X] are the non-zero constant polynomials.

Definition 1.7

A ring R is called a division ring if every non-zero element is a unit. A field is a commutative
division ring.

Examples 1.8.

1. Q, R, C are all fields.

2. For any prime integer p, Z/pZ is a field. We will use the notation Fp to denote the field Z/pZ.
We will see later that any field having p elements is isomorphic to Fp, and that there are other
finite fields. Finite fields are used extensively in cryptography and coding theory.

3. The following addition and multiplication tables define a field having four elements. It is not
isomorphic to the ring Z/4Z (which is not a field).

+ 0 1 x y

0 0 1 x y

1 1 0 y x

x x y 0 1

y y x 1 0

× 0 1 x y

0 0 0 0 0

1 0 1 x y

x 0 x y 1

y 0 y 1 x

We will see later that this field is isomorphic to a quotient ring of a polynomial ring, namely
F2[X]/〈1 + X + X2〉. The notion of a quotient ring will be discussed shorty, but essentially
this is the the ring of all polynomials with coefficients from F2, modulo the condition that
1 +X +X2 = 0.

4. Z/6Z is not a field.

5. The ring of quaternionsH is a division ring, but is not a field.

© University of Melbourne 2025
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Definition 1.9

If a, b ∈ R are non-zero elements in a ring R satisfying ab = 0 then they are called zero-divisors.

Remark. This is not quite the same as being a ‘divisor of zero.’ According to Exercise 2(a), everything
divides zero.

Example 1.10. In Z/6Z the zero-divisors are 2, 3, 4. There are no zero-divisors in R, Z or R[X].

Exercise 4. Let R be a ring, and x ∈ R. Show that x cannot be both a unit and a zero-divisor.

Lemma 1.11: Cancellation Law

Let R be a ring. Then R has no zero-divisors if and only if the following condition holds for all
x, y, z ∈ R with x 6= 0

xy = xz =⇒ y = z

yx = zx =⇒ y = z

Remark. We are not assuming that x is a unit, merely that it is non-zero.

Proof (of Lemma 1.11). First note that xy = xz ⇐⇒ xy − xz = 0 ⇐⇒ x(y − z) = 0.

Suppose there are no zero-divisors. Then xy = xz =⇒ x(y − z) = 0 =⇒ x = 0 or y − z = 0. If
x 6= 0, we therefore have xy = xz =⇒ y = z. The second condition follows in exactly the same way.

Now suppose that both conditions hold. If x 6= 0 and xy = 0, then we have xy = x0 =⇒ y = 0.
Similarly if yx = 0.

1.3 Exercises

5. Let ξ ∈ C be the root of the polynomial X2 + X + 1 given by ξ = (−1 +
√
−3)/2. Define the

Eisenstein Integers as Z[ξ] = {a + bξ | a, b ∈ Z}. Show that Z[ξ] is a ring (the operations are
those inherited from C).

6. List all units in the following rings:

(a) Z
(b) Z× Z

(c) Z/5Z
(d) Z/15Z

(e) Q
(f) R[X]

7. True or false?

(a) Every field is also a ring.

(b) Every ring has a multiplicative identity.

(c) Every ring with a multiplicative identity has at least two elements.

(d) The non-zero elements in a field form a group under multiplication.

(e) Addition in a ring is always commutative.

8. Give the multiplication table for the multiplicative group of units in Z/12Z. To which group of
order 4 is it isomorphic?

9. Determine all the units of Z[i]. (Hint: Use the absolute value.)

© University of Melbourne 2025
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10. Consider the ring Z[
√

2] = {a+ b
√

2 | a, b ∈ Z} ⊂ R (with the operations come from R).

(a) Find a unit in Z[
√

2] other than ±1.

(b) Use your answer from (a) to produce infinitely many units in Z[
√

2].

© University of Melbourne 2025
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LECTURE 2

Integral domains, subrings and ideals, homomorphisms

2.1 Integral domains

Definition 2.1

An integral domain is a non-zero (i.e., 0 6= 1) commutative ring in which there are no zero-
divisors.a

aSometimes the term ‘domain’ is used rather than ‘integral domain’.

Examples 2.2. The rings Z,Z/3Z,R,R[X] are integral domains. The rings Z/6Z,M2(R) are not inte-
gral domains.

Proposition 2.3

Every field is an integral domain.

Proof. Every field is commutative. It follows from Exercise 4 that there are no zero-divisors.

The converse of this proposition is false: Z is an example of an integral domain that is not a field. If
we add the condition that the ring be finite, then the converse does hold (Theorem 2.4). Of course,
although Z is not a field, it can be embedded into the field Q. It is true in general that every integral
domain can be embedded in a field called its field of quotients.

Theorem 2.4

Every finite integral domain is a field.

Proof. LetR be a finite integral domain, and let a ∈ R be a non-zero element. Define a map fa : R→ R
by fa(b) = ab. Since R is an integral domain, fa is injective: fa(b) = fa(b

′) =⇒ ab = ab′ =⇒ b = b′

by Lemma 1.11. An injective map from a finite set to itself is necessarily bijective. Therefore, since fa
is surjective, there is an element b ∈ R such that fa(b) = 1. Since ab = 1, a is a unit. Having shown
that every non-zero element of R is a unit, we conclude that R is a field.

Note. It’s possible to adapt the above proof to remove the hypothesis that the ring be commutative.
In that slightly stronger form it’s called Wedderburn’s Little Theorem.

If p is prime, then Z/pZ is easily shown to be an integral domain, and therefore (as already noted)
Z/pZ (which we will often denote Fp) is a field. These are not the only finite fields (as we will see
later).

Example 2.5. Let

F4 =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
⊆M2(Z/2Z)

With the usual matrix operations, and remembering that the entries are from Z/2Z, this set forms a
field. This is definitely not the same as the ring Z/4Z (which has zero-divisors). We will see later
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that for any prime p and any n > 1 there is a field having pn elements, and that it is unique up to
isomorphism. We will consider finite fields in more detail in a later section.

2.2 Subrings and ideals

Definition 2.6

A subring of a ring R is a non-empty subset S ⊆ R which contains the multiplicative identity of
R and, when equipped with the operations from R, forms a ring.

We will denote this by S 6 R (meaning S is a subring of R).

Lemma 2.7

A non-empty subset S ⊆ R of a ring (R,+,×) is a subring if and only if it satisfies the following:

(a) 1 ∈ S (b) a− b ∈ S ∀a, b ∈ S (c) a× b ∈ S ∀a, b ∈ S

Remark. The second condition is equivalent to requiring that (S,+) is a subgroup of (R,+). In par-
ticular, 0 ∈ S.

Exercise 11. Prove Lemma 2.7.

Definition 2.8

An ideal in a ring R is a non-empty subset I ⊆ R that satisfies the following:

(a) a− b ∈ I ∀a, b ∈ I (b) r × a ∈ I and a× r ∈ I ∀a ∈ I ∀r ∈ R

We will denote this by I �R (meaning I is an ideal in R).

Remark. If R is commutative, the two parts of the second condition are equivalent. It is possible
to consider left ideals (or right ideals) that satisfy only the first (second, respectively) part of this
condition. We will rarely do so.

Examples 2.9.

1. The set I = {
∑n

i=1 αiX
i | n > 1, αi ∈ R} ⊆ R[X] of polynomials having constant term equal to

zero is an ideal in R[X].

2. J = {
∑n

i=0 αiX
i | n > 0, αi ∈ Z, α0 is even} ⊆ Z[X] is an ideal in Z[X].

Example 2.10. Z ⊆ R is a subring of R, but not an ideal in R.

Remark. If S is a subring of R and R is a subring of T , then S is a subring of T . However the
corresponding statement is not true of ideals.

2.3 Homomorphisms

As with groups, or any other algebraic structure, it is natural consider maps that preserve the under-
lying structure. For a ring, this means that the maps preserve products and sums.

© University of Melbourne 2025
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Definition 2.11

A ring homomorphism (or simply a homomorphism if the context is clear), is a map ϕ : R→ S
between rings such that for all a, b ∈ R:

(a) ϕ(a+ b) = ϕ(a) + ϕ(b) (b) ϕ(ab) = ϕ(a)ϕ(b) (c) f(1) = 1

An isomorphism of rings is a bijective homomorphism. If there exists an isomorphism between
two rings, they are said to be isomorphic.

Remark. The first condition is equivalent to requiring that ϕ be a homomorphism of the underlying
abelian groups (R,+) and (S,+).

Lemma 2.12

Let ϕ : R→ S be a ring homomorphism.

1. The kernel of ϕ, ker(ϕ) = {r ∈ R | ϕ(r) = 0}, is an ideal in R.

2. The image of ϕ, im(ϕ), is a subring of S. (But not necessarily an ideal.)

Proof. Let a, b ∈ ker(ϕ) and r ∈ R. Then a− b ∈ ker(ϕ) since

ϕ(a− b) = ϕ(a) + ϕ(−b) (since ϕ is a homomorphism)
= ϕ(a)− ϕ(b) (since ϕ is a homomorphism)
= 0− 0 = 0

For the second condition in the definition of an ideal we note that

ϕ(ra) = ϕ(r)ϕ(a) (since ϕ is a homomorphism)
= ϕ(r)× 0 = 0

and

ϕ(ar) = ϕ(a)ϕ(r) (since ϕ is a homomorphism)
= 0× ϕ(r) = 0

Now to show that im(ϕ) is a subring of S. Let s, t ∈ im(ϕ) be two elements in the image. Then
s = ϕ(c) and t = ϕ(d) for some c, d ∈ R. It follows that

s− t = ϕ(c)− ϕ(d) = ϕ(c− d) ∈ im(ϕ)

st = ϕ(c)ϕ(d) = ϕ(cd) ∈ im(ϕ)

Example 2.13. Fix a ∈ R and define a map ϕa : R[X] → R by ϕa(
∑n

0 αiX
i) =

∑n
0 αia

i, that is, the
image of a polynomial is given by evaluating at X = a. Then ϕa is a surjective ring homomorphism
with kernel ker(ϕa) = {p ∈ R[X] | a is a root of p}. Choosing a = 0 gives the ideal I of Example 2.9.

© University of Melbourne 2025
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Lemma 2.14

A homomorphism ϕ is injective if and only if ker(ϕ) = {0}.

Proof. Recall that, by definition, ϕ is injective if, for all a and b in its domain

ϕ(a) = ϕ(b) =⇒ a = b

Clearly, if ϕ is injective, then ker(ϕ) = {0}.

For the converse, suppose that ϕ(a) = ϕ(b). Then ϕ(a − b) = ϕ(a) − ϕ(b) = 0, which implies that
a− b ∈ ker(ϕ). Since ker(ϕ) = {0}. we conclude that a− b = 0.

2.4 Exercises

12. Show that if R is an integral domain, then R[X] is an integral domain.

13. Let R be an integral domain such that x2 = x for all x ∈ R. Show that R has exactly two
elements.

14. Let R be a ring and I an ideal in R. Show that if I contains a unit from R, then I = R.

15. Show that a field F has only two ideals, namely F and {0}. Conversely, show that if a commu-
tative ring has exactly two ideals, then it is a field.

16. Find an example of a ring R and a subset I ⊆ R such that I is left ideal but not a right ideal.

17. Find an example of a homomorphism whose image is not an ideal in the codomain.

18. The direct product R × S of two rings is a ring given by the set {(r, s) | r ∈ R, s ∈ S} with
operations defined by

(r1, s1) + (r2, s2) = (r1 +R r2, s1 +S s2)

(r1, s1)× (r2, s2) = (r1 ×R r2, s1 ×S s2)

(a) Is the map r 7→ (r, 0) from R to R× S a ring homomorphism ?

(b) What about the diagonal map r 7→ (r, r) from R to R×R ?

19. (a) Is Z/8Z isomorphic to Z/2Z× Z/4Z (as rings)?

(b) Is Z/15Z isomorphic to Z/3Z× Z/5Z (as rings)?

20.? The characteristic of a (non-zero) ring R is the smallest n ∈ N+ such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0

if such an n exists; otherwise the characteristic is defined to be 0.

(a) Show that the characteristic of an integral domain is either zero or a prime.

(b) Let R be a ring with characteristic n. Verify that the map from Z → R that sends 1Z to 1R
and m to (1R + 1R + · · ·+ 1R) (m times) is a homomorphism with kernel equal to nZ, and
that R therefore contains a subring isomorphic to Z/nZ.

(c) Conclude that every integral domain either contains a subring isomorphic to Z, or contains
a subring isomorphic to the field Fp. (For some prime p ∈ N.)

21.? A prime field is a field with no proper subfields. Show that a prime field is isomorphic to
either Q or Fp for some prime p (corresponding to the characteristic of the field being 0 or p).

© University of Melbourne 2025
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22.? Let R be a commutative (non-zero) ring of prime characteristic p. Show that, for all x, y ∈ R
and n ∈ N, the following holds:

(x+ y)p
n

= xp
n

+ yp
n

Notice that this shows that the map F : R → R given by F (x) = xp is a ring homomorphism
(called the Frobenius map).

23.? In this exercise we will prove that every integral domain can be embedded in a field. The
construction mimics the way in which Q is built from Z.

Let D be an integral domain and define

F = {(a, b) | a, b ∈ D, b 6= 0}/ ∼ where (a, b) ∼ (c, d) if ad = bc.

Define operations on F by:

(a, b) + (c, d) = (ad+ bc, bd)

(a, b)(c, d) = (ac, bd)

(Where (a, b) denotes the equivalence class of (a, b) ∈ D2 with respect to ∼.)

Show that:

(a) These operations on F are well-defined;

(b) F , with these operations, is a ring;

(c) F is a field;

(d) The map ϕ : D → F , given by ϕ(a) = (a, 1) is an injective homomorphism (and therefore
its image is isomorphic to D).

(e) Show that any field that contains a subring D′ that is isomorphic to D contains a subfield
isomorphic to F (and containing D′).

The field F is called the field of quotients of the integral domain D.

© University of Melbourne 2025
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LECTURE 3

Quotient rings and the isomorphism theorems

3.1 Quotient rings

The lemma that the kernel of a ring homomorphism is an ideal can be compared to the statement that
the kernel of a group homomorphism is a normal subgroup. For groups we can form the quotient of
a group by a normal subgroup. Similarly, we can quotient a ring by an ideal.

Let I �R be an ideal in a ring R. Denote by R/I the set of (additive) cosets of I in R

R/I = {a+ I | a ∈ R}

Define operations on this set by

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)× (b+ I) = ab+ I

Let’s check that the second operation is well-defined (meaning that it is independent of the choice of
coset representative). Suppose that (a + I) = (a′ + I) and (b + I) = (b′ + I). Then a′ = a + x and
b′ = b+ y for some x, y ∈ I . Therefore

a′b′ + I = (a+ x)(b+ y) + I = ab+ xb+ ay + xy + I = ab+ I

We used that because I is an ideal xb, ay, xy ∈ I and hence xb+ ay + xy ∈ I .

Exercise 24. Check that the first operation above is also well-defined, and that with these operations
R/I is a ring. What are the additive and multiplicative identities in R/I?

Definition 3.1

The ring R/I defined above is called the quotient ring.

Examples 3.2.

1. For any m ∈ Z we can form the quotient Z/mZ.

2. R[X]/〈X2 + 1〉 ∼= C (where 〈X2 + 1〉 = {f(X)(X2 + 1) | f(X) ∈ R[X]}� R[X])

There is a direct relationship between ideals in R, quotients of R and kernels of homomorphisms
from R onto another ring. We have already seen that the kernel of a homomorphism is an ideal. The
following can be regarded as a kind of converse.

Lemma 3.3

Let R be a ring. Given an ideal I �R, the (natural projection) map

ϕ : R→ R/I, ϕ(a) = a+ I

is a (surjective) ring homomorphism with ker(ϕ) = I .
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Proof. Let a, b ∈ R be two elements of R. Then

ϕ(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = ϕ(a) + ϕ(b)

ϕ(ab) = ab+ I = (a+ I)(b+ I) = ϕ(a)ϕ(b)

So ϕ is a homomorphism, and ker(ϕ) = I since

ϕ(a) = 0R/I ⇐⇒ a+ I = 0R + I ⇐⇒ a ∈ I

3.2 Isomorphism theorems

We know that the kernel of a homomorphism is an ideal in the domain, and that the image is a
subring of the codomain. They are related by the following

Theorem 3.4: First Isomorphism Theorem

Let ϕ : R→ S be a ring homomorphism. Then

R/ ker(ϕ) ∼= im(ϕ)

An explicit isomorphism is given by a+ ker(ϕ) 7→ ϕ(a).

Proof. Denote by K the kernel ker(ϕ). Define a map f : R/K → im(ϕ) by f(a + K) = ϕ(a). This is
well-defined since

a+K = a′ +K =⇒ a′ = a+ k (for some k ∈ K)
=⇒ ϕ(a′) = ϕ(a+ k) = ϕ(a) + ϕ(k) = ϕ(a) + 0 = ϕ(a)

We will show that f is an isomorphism. That f is a homomorphism follows from the fact that ϕ is
a homomorphism, and the way in the which the operations in R/K are defined. It is clear that f is
surjective. For injectivity,

f(a+K) = 0 ⇐⇒ ϕ(a) = 0 ⇐⇒ a ∈ K ⇐⇒ a+K = 0R/K

The First Isomorphism Theorem can be used to prove the following, which we give here for com-
pleteness.

Theorem 3.5: Second and Third Isomorphism Theorems

Let R be a ring.

1. Suppose I �R is an ideal and S 6 R is a subring. Then

(S + I)/I ∼= S/(S ∩ I)

2. Suppose that I, J �R are ideals in R, and I ⊆ J . Then

(R/I)/(J/I) ∼= R/J

Where it is understood that part of the assertion being made is that each expression makes sense,
e.g., that J/I is an ideal in R/I .

Exercise 25. Write out a proof of second and third isomorphism theorems.

© University of Melbourne 2025
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3.3 Correspondence Theorem

Given a homomorphism, there is a correspondence between subrings (ideals) of the image and sub-
rings (ideals) in the domain that contain the kernel of the homomorphism. This innocuous looking
result is surprisingly useful.

We noted in Lemma 2.12 that the image of a homomorphism is always a subring of the codomain.
We start by giving an extension of that result to all subrings and ideals of the domain.

Lemma 3.6

Let ϕ : R→ R′ be a ring homomorphism.

1. If S is a subring (or ideal) in R, then ϕ(S) is a subring (ideal) in im(ϕ).

2. If S′ is a subring (or ideal) in im(ϕ), then ϕ−1(S′) is a subring (ideal) in R.

Proof. Given a′, b′ ∈ ϕ(S), we have that a′ = ϕ(a) and b′ = ϕ(b) for some a, b ∈ S. Since S is
a subring a − b ∈ S, and a′ − b′ = ϕ(a) − ϕ(b) = ϕ(a − b) ∈ ϕ(S). Also ab ∈ S implies that
a′b′ = ϕ(a)ϕ(b) = ϕ(ab) ∈ ϕ(S). Noting that ϕ(S) is non-empty given that S is, we conclude that
ϕ(S) is a subring of R′. If, further, S is an ideal in R and r′ ∈ im(ϕ), then r′ = ϕ(r) for some r ∈ R
and r′a′ = ϕ(r)ϕ(a) = ϕ(ra) ∈ ϕ(S). Similarly a′r′ ∈ ϕ(S), and we conclude that ϕ(S) is an ideal in
im(ϕ).

For the second part, let a, b ∈ ϕ−1(S′). Then ϕ(a), ϕ(b) ∈ S′, which implies that ϕ(a − b) = ϕ(a) −
ϕ(b) ∈ S′ and ϕ(ab) = ϕ(a)ϕ(b) ∈ S′. As ϕ−1(S′) is non-empty (it contains 0R since ϕ(0R) = 0R′),
we conclude that it is a subring of R. If, further, S′ is an ideal in im(ϕ) and r ∈ R, then ϕ(ra) =
ϕ(r)ϕ(a) ∈ S′, which implies that ra ∈ ϕ−1(S′). The argument that ar ∈ ϕ−1(S′) is exactly the
same.

Remark. Of course, in the first part of the lemma, we can conclude that the image of a subring in R is
a subring of R′. However, the image of an ideal in R is not always an ideal in R′.

Different subrings in the domain can have the same image in the codomain. However, if we restrict
to only those subrings in the domain that contain the kernel, then we get a correspondence.

Theorem 3.7: Correspondence Theorem

Let ϕ : R→ R′ be a ring homomorphism. The maps

Φ : {S 6 R | ker(ϕ) ⊆ S} → {S′ 6 R′ | S′ ⊆ im(ϕ)}, Φ(S) = ϕ(S)

Ψ : {I �R | ker(ϕ) ⊆ I} → {I ′ ⊆ R′ | I ′ � im(ϕ)}, Ψ(I) = ϕ(I)

are inclusion-preserving bijections.

Proof. We give the argument for Ψ and leave the other case as an exercise. Given I ′� im(ϕ), we know
from the preceding lemma that ϕ−1(I ′) is an ideal in R that contains the kernel of ϕ. It follows that
Ψ is surjective, since Ψ(ϕ−1(I ′)) = ϕ(ϕ−1(I ′)) = I ′. For injectivity first note that if I �R contains the
kernel of ϕ, then

ϕ(a) ∈ ϕ(I) =⇒ ϕ(a) = ϕ(i) for some i ∈ I
=⇒ ϕ(a− i) = 0

=⇒ a− i ∈ ker(ϕ)

=⇒ a ∈ I (since ker(ϕ) ⊆ I)
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Now suppose that I and J are ideals in R that contain the kernel of ϕ, and that Ψ(I) = Ψ(J). Then

a ∈ I ⇐⇒ ϕ(a) ∈ ϕ(I) ⇐⇒ ϕ(a) ∈ Ψ(I) ⇐⇒ ϕ(a) ∈ Ψ(J) ⇐⇒ a ∈ J

We have shown then that Ψ is bijective. Its inverse is the map I ′ 7→ ϕ−1(I ′). That Ψ preserves
inclusions then follows from the fact that I ⊆ J =⇒ ϕ(I) ⊆ ϕ(J) and I ′ ⊆ J ′ ⊆ im(ϕ) =⇒
ϕ−1(I ′) ⊆ ϕ−1(J ′).

3.4 Exercises

26. If I, J are ideals in R, the sum of I and J denoted I + J is defined by

I + J = {x+ y | x ∈ I, y ∈ J} ⊆ R

(a) Show that I + J is again an ideal in R.

(b) Show that if I + J = R, then R/(I ∩ J) ∼= R/I ×R/J .

27. Using the above exercise 26 show that Zmn ∼= Zm × Zn if and only if gcd(m,n) = 1.

28. Complete the prove the Correspondence Theorem.
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LECTURE 4

Constructions and generating sets

4.1 Constructions

We record here some standard ways of combining rings to produce new ring. Some have been men-
tioned already and will be used extensively in the sequel.

Direct product. Given two rings R and S, their direct product is ring given by the set

R× S = {(r, s) | r ∈ R, s ∈ S} (the usual cartesian product of two sets)

equipped with the operations

(r, s) + (r′, s′) = (r + r′, s+ s′) (r, s)(r′, s′) = (rr′, ss′)

These operations are sometimes said to be defined ‘pointwise’ or ‘coordinatewise’. The operation of
taking direct products is (up to isomorphism) associative and commutative; that is, R × (S × T ) ∼=
(R× S)× T and R× S ∼= S ×R.

We use the usual convention of denoting R × R by R2. Similarly we will speak about Rn, the direct
product of n copies of R. If we take infinitely many rings Ri, then we can form the direct sum or the
direct product.
Polynomial rings. Let R be a commutative ring. Elements of the ring R[X] are of the form

a0 + a1X + a2X
2 + · · ·+ anX

n where n > 0, ai ∈ R and an 6= 0

The degree of such a polynomial f is equal to n and is denoted deg(f). The ring R embeds in R[X]
as the degree zero polynomials, and we will make this identification without comment. The units in
R[X] are precisely the degree zero polynomials that are units in R. Since R[X] is itself a ring, this
construction can be iterated to give R[X,Y ] = (R[X])[Y ] and R[X1, . . . , Xn].

Matrix rings. Let R be a commutative ring and n ∈ N+. An n × n matrix over R is a square
array of elements from R. With addition and multiplication of matrices defined as usual, this forms
a ring which we denote Mn(R). The standard definition of determinant works in Mn(R), and the
determinant is an element of R. If A,B ∈Mn(R) are two matrices, then det(AB) = det(A) det(B). A
matrix A ∈Mn(R) is invertible if and only if det(A) is a unit in R.

Ring of endomorphisms. Let R be a ring. The set of all ring homomorphisms from R to itself forms
a ring. The operations are pointwise addition and composition, that is, for f, g : R→ R define

(f + g)(a) = f(a) + g(a) (fg)(a) = (f ◦ g)(a)

Group rings. Let G be a group, and R a commutative ring. The group ring (of G over R) is the set

R(G) = {a1g1 + · · ·+ angn | n ∈ N+, ai ∈ R, gi ∈ G distinct }

of all finite formal sums, with addition defined in the obvious way, and multiplication given by

(
∑
i

aigi)(
∑
j

bjhj) =
∑
i,j

(aibj)(gihj)

4.2 Generating sets

Noting that the intersection of two subrings (or ideals) is a subring (ideal) enables us to make the
following definition.
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Definition 4.1

Let R be a ring, and A ⊆ R be a subset. The subring generated by A is the intersection of all
subrings of R that contain A. Similarly, the ideal generated by A is the intersection of all ideals
in R that contain A.

In the case that A = {a1, . . . , ak}we denote the ideal generated by A by 〈a1, . . . , ak〉 or (a1, . . . , ak).

Definition 4.2

An ideal I �R satisfying I = 〈a〉 for some a ∈ R is called a principal ideal.

Notice that if u ∈ R is a unit, then 〈u〉 = R. The following lemma states that the ideal generated by
A ⊆ R is the set of all R-linear combinations of elements from A.

Lemma 4.3

Let R be a commutative ring and A ⊆ R. Then

〈A〉 = {r1a1 + · · ·+ rnan | n ∈ N, ri ∈ R, ai ∈ A}

Proof. As the set I = {r1a1 + · · · + rnan | n ∈ N, ri ∈ R, ai ∈ A} is clearly an ideal, we know that
〈A〉 ⊆ I . Conversely, anyR-linear combination of elements fromAwill lie in every ideal that contains
A. It follows that I ⊆ 〈A〉.

Examples 4.4.

1. We have already seen that all ideals in Z are principal.

2. All ideals in R are principal as {0} and R itself are the only ideals.

3. The ideal 〈2, X〉� Z[X] is not principal.

Proof. Let I = 〈2, X〉 and suppose that I = 〈f〉 for some f ∈ Z[X]. Using Lemma 4.3, since
2 ∈ I we know that 2 = fg for some g ∈ Z[X]. It follows that deg(f) = 0 and that either f = ±1
or f = ±2. If f = ±1, then 〈f〉 = Z[X]. This can not be the case if 〈f〉 = 〈2, X〉 since (for
example) 1 6∈ I . Similarly I 6= 〈±2〉 since 2 +X ∈ I , but 2 +X /∈ 〈2〉.

4.3 Exercises

29. Let ϕ1 : R → S1 and ϕ2 : R → S2 be ring homomorphisms. Show that the map ϕ : R → S1 × S2
given by ϕ(a) = (ϕ1(a), ϕ2(a)) is a ring homomorphism.

30. Let ϕ : R→ S be a homomorphism, and define a map Φ : R[X]→ S[X] by

Φ(a0 + a1X + · · ·+ anX
n) = ϕ(a0) + ϕ(a1)X + · · ·+ ϕ(an)Xn

Show that Φ is a homomorphism.

31. Show that the units in F [X], where F is a field, are the elements of F \ {0}.

32. Suppose that R is a commutative ring and a ∈ R a fixed element. Show that the map from R[X]
to itself defined by

a0 + a1X + · · ·+ anX
n 7→ a0 + a1(X − a) + · · ·+ an(X − a)n
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is an isomorphism of rings. Deduce that if f(X) ∈ R[X], then f(X) can be expressed in the form
f(X) =

∑
bi(X − a)i for suitable bi ∈ R.

33. Let R b a commutative ring and r ∈ R a fixed element. Show that there is exactly one homomor-
phism ϕ : R[X]→ R satisfying ϕ(a) = a for all a ∈ R and ϕ(X) = r.

34. Are the following matrices invertible?

(a)
[
2 2
1 2

]
∈M2(Z/3Z)

(b)
[
2 2
1 2

]
∈M2(Z/6Z)

(c)
[
1 2
0 3

]
∈M2(Z)

(d)
[
1 2
0 3

]
∈M2(Q)

(e)
[
1 2
2 3

]
∈M2(Z)

(f)
[
X 2
0 1

]
∈M2(R[X])

(g)
[
1 X2 + 1
0 2

]
∈M2(R[X])

35. Show that the ideal 〈X,Y 〉� R[X,Y ] is not principal.
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LECTURE 5

PIDs and divisors in IDs

5.1 Principal ideal domains

We come now to the definition of an important class of rings. We have observed that all ideals in Z
are principal, and we shall shortly see that the same is true in other rings such as R[X] and Z[i].

Definition 5.1

A principal ideal domain (PID for short) is an integral domain in which all ideals are principal.

Examples 5.2.

1. Any field F is (trivially) a PID, as there are only two ideals, {0} and F , both of which are
principal: {0} = 〈0〉 and F = 〈1〉.

2. The ring of polynomials R[X] is a PID, as we shall see shortly.

3. Z[X] is not a PID since the ideal 〈2, X〉 is not principal.

Exercise 36. Show that every ideal in Z/12Z is principal. Is Z/12Z a PID?

5.2 Divisors in integral domains

Continuing to generalise properties from the integers, we will define divisors in an integral domain.
This will lead to two versions of what a ‘prime’ is. In this section the ringRwill always be an integral
domain. Many of the definitions make sense in a more general setting.

Definition 5.3

Let a, b ∈ R. We say that a divides b (or a is a divisor of b) if there exists c ∈ R such that b = ac.
We write a | b to mean that a divides b. We say that a and b are associates if both a | b and b | a.
This will sometimes be denoted by a ∼ b.

Notice that a | b is the same as b ∈ 〈a〉.

Examples 5.4.

1. In R[X], (X − 1) | (X5 − 1).

2. 2,−3 ∈ Z are not associates.

3. 2,−2 ∈ Z are associates.

4. 2,−3 ∈ Q are associates.

Exercise 37.

a) Show that if a | b and b | c, then a | c. (That is, it is a transitive relation.)

b) Show that if a divides a unit, then a is a unit.

c) Show that if a is a unit, then a | b for all b.
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d) Show that a | b if and only if 〈b〉 ⊆ 〈a〉

Exercise 38. Check that the relation of being associates defines an equivalence relation on R.

That is, show that for all a, b, c ∈ R:

1. a ∼ a 2. a ∼ b =⇒ b ∼ a 3. a ∼ b and b ∼ c =⇒ a ∼ c

Exercise 39. Show that

a ∼ b ⇐⇒ 〈a〉 = 〈b〉 ⇐⇒ there is a unit u ∈ R, such that a = bu

5.3 Irreducible elements

We now generalise the notion of a prime integer. A prime integer can be defined as one having no
proper divisors, that is, it cannot be written as a product of two integers, unless one of the factors is
1 or −1. We make this a definition.

Definition 5.5

An element a ∈ R is called irreducible if a is not a unit and the following holds

a = bc =⇒ b is a unit or c is a unit

This is the same as saying that all divisors of a are either units or associates of a.

Example 5.6.

1. The irreducibles in Z are exactly the prime integers (where we allow negative primes, eg −5).

2. Any degree 1 polynomial in F [X] is irreducible, where here F can be any field.

3. Both X2 + 1 and X2 +X + 1 are irreducible in R[X].

4. X2 + 1 is not irreducible in F2[X], since X2 + 1 = (X + 1)(X + 1) and X + 1 is not a unit. The
polynomial X2 +X + 1 is irreducible in F2[X].

5. Neither X2 + 1 nor X2 + X + 1 is irreducible in C[X] since X2 + 1 = (X − i)(X + i) and
X2 +X + 1 = (X − 1

2(1 + i
√

3))(X − 1
2(1− i

√
3)).

5.4 Prime elements

Another characterisation of the prime integers is that if p is prime and p | ab then p divides one of a
or b. Let’s make this a definition.

Definition 5.7

An element a ∈ R \ {0} is called prime if a is not a unit and the following holds for all b, c ∈ R:

a | bc =⇒ a | b or a | c
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Example 5.8.

1. The primes in Z are exactly the ‘usual’ primes: ±2,±3,±5,±7, . . .

2. The element X − 1 ∈ R[X] is prime.

We’ve generalised the notion of a prime integer in two ways. The next result says that one implies
the other.

Proposition 5.9

Let R be an integral domain and x ∈ R. If x is prime, then x is irreducible.

Proof. Let p be a prime, and suppose that p = bc. Then p | bc and so we have that either p | b or p | c.
Suppose that p | b. Then p = pdc for some d ∈ R, and therefore 1 = dc, since R is an integral domain
(noting that p 6= 0). It follows that c is a unit. Thus p is irreducible.

The next example demonstrates that the converse to the above result does not hold.

Example 5.10 (Irreducible but not prime). Consider the subring Z[
√
−5] = {a+b

√
−5 | a, b ∈ Z} of C.

We show that the element 2 is irreducible in Z[
√
−5], but not prime. To do this we will use a function

that, in some sense, measures complexity.

Define a function N : Z[
√
−5] → Z by N(a + b

√
−5) = a2 + 5b2. Notice that N is simply the square

of the magnitude of the complex number a + b
√
−5. It follows that N is multiplicative: N(xy) =

N(x)N(y). If x is a unit, then N(x) = 1, since it must divide 1. It follows that 1 and −1 are the only
units in Z[

√
−5].

To see that 2 is irreducible, note first that it is not a unit. Now suppose that 2 = uv for some u, v ∈
Z[
√
−5]. We then have that N(u)N(v) = 4, from which it follows that N(u) = 1 or N(v) = 1.

Therefore one of u or v must be a unit.

To see that 2 is not prime, note that 2 | (1 +
√
−5)(1−

√
−5). However 2 divides neither of the factors,

since if it did we would obtain N(2) | N(1±
√
−5), that is 4 | 6.

The idea of a function that measures the complexity of elements is something we shall return to when
we consider Euclidean domains.

5.5 Exercises

40. Let D be an integral domain, and p, q ∈ D with q | p. Show that:

(a) If p is a unit, then q is a unit.
(b) If p is irreducible, then either q is a unit or p and q are associates.
(c) If p and q are associates, then p is irreducible iff q is irreducible.

41.? Let d ∈ Z be square-free, and R = Z[
√
d] ⊂ C.

(a) Show that x+ y
√
d = a+ b

√
d only if x = a and y = b.

Define N : R→ N by N(x+ y
√
d) = |x2 − y2d|

(b) Show that N(r1r2) = N(r1)N(r2).
(c) Show that r ∈ R is a unit if and only if N(r) = 1.
(d) Use induction on N(r) to show that all non-unit elements r ∈ R \ {0} can be written as a

product of irreducibles.
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LECTURE 6

Unique factorisation domains and prime and maximal ideals

6.1 Definition of a UFD

In the integers the ‘fundamental theorem of arithmetic’ states that every integer can be written as a
product of irreducibles and that this factorisation is essentially unique. Not all integral domains have
this property.

Definition 6.1

An integral domain R is called a unique factorisation domain (UFD for short) if the following
hold:

1. Existence of factorisation: Every element a ∈ R that is nonzero and not a unit can be written
as a product of irreducibles:

a = a1a2 · · · an

2. Uniqueness of factorisation: If a = b1 . . . bm is another factorisation of a into a product of
irreducibles, then m = n and there is a permutation π of {1, 2, . . . , n}, such that bi ∼ aπ(i).
That is, the two factorisations differ only by re-ordering and replacing each factor by an
associate.

Examples 6.2. 1. Z is a UFD. This is the Fundamental Theorem of Arithmetic.

2. Q, R are UFDs since there are no elements that are nonzero and non-unit.

3. F5[X], R[X] are UFDs (we will show later that they are PIDs)

4. Z[X], R[X,Y ] are UFDs (even though they are not PIDs)

Exercise 42. Show that in a UFD irreducible elements are prime.

It follows from this and Example 5.10, that Z[
√
−5] is not a UFD. More explicitly, 2×3 = (1−

√
−5)×

(1 +
√
−5) and all four elements are irreducible in Z[

√
−5]. The ring Z[

√
−5] is therefore not a UFD

because it fails the second part of the definition (uniqueness), although it does satisfy the first part
(existence).

Example 6.3. Here is an example in which the first part (in the definition of UFD) fails to hold. Let
R = R[X1, X2, . . . ], and let I�R be the ideal generated by the set {X2

2 −X1, X
2
3 −X2, X

2
4 −X3, . . . } ⊂

R. Then inR/I the elementX1 +I has no factorisation as a product of irreducibles (and is not a unit):

X1 + I = (X2 + I)(X2 + I) = (X3 + I)(X3 + I)(X3 + I)(X3 + I) = · · ·
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6.2 Prime and maximal ideals

Definition 6.4

Let R be a commutative ring, and I 6= R an ideal in R.

1. I is said to be prime if it satisfies the condition: ∀a, b ∈ R, ab ∈ I =⇒ a ∈ I or b ∈ I

2. I is said to be maximal if it satisfies the condition: ∀J �R, I ⊆ J =⇒ J = I or J = R

Proposition 6.5

Let R be a commutative ring and I �R an ideal in R. Then

1. I is prime ⇐⇒ R/I is an integral domain;

2. I is maximal ⇐⇒ R/I is a field.

Proof. Let I be any ideal in R. Note that since R is commutative, so too is R/I . If I 6= R, then R/I is
non-zero. Denote by ϕ : R→ R/I the natural projection map.

1) Suppose I is prime. We need to show that R/I has no zero-divisors. Let x, y be two elements in
R/I with x 6= 0. There are a, b ∈ R with ϕ(a) = x and ϕ(b) = y, and since x 6= 0, we have a /∈ I .
Then,

xy = 0 =⇒ ϕ(a)ϕ(b) = 0 =⇒ ϕ(ab) = 0 =⇒ ab ∈ I =⇒ b ∈ I (since I is prime and a /∈ I)
=⇒ ϕ(b) = 0 =⇒ y = 0

Now suppose that R/I has no zero-divisors. We need to show that I is prime. Let a, b ∈ R be such
that ab ∈ I and a /∈ I . Then ϕ(a) 6= 0, and

ab ∈ I =⇒ ϕ(ab) = 0 =⇒ ϕ(a)ϕ(b) = 0 =⇒ ϕ(b) = 0 (since R/I is an ID and ϕ(a) 6= 0)
=⇒ b ∈ I

2) Since R/I is commutative, it is a field if and only if its only ideals are itself and {0} (Exercise 15).
We have

I is maximal ⇐⇒ R/I contains only two ideals (Correspondence Theorem 3.7)
⇐⇒ R/I is a field (Exercise 15)

Since every field is an integral domain, we have the following as an immediate consequence.

Corollary 6.6

Every maximal ideal is prime.
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Lemma 6.7

Let R be an integral domain and a ∈ R \ {0}.

1. If the ideal 〈a〉 is maximal, then a is irreducible.

2. Suppose that R is a PID. If a is irreducible, then the ideal 〈a〉�R is maximal.

Proof. Suppose that 〈a〉 is maximal. Then 〈a〉 6= R, so a is not a unit. Now

a = bc =⇒ 〈a〉 ⊆ 〈b〉 =⇒ 〈a〉 = 〈b〉 or 〈b〉 = R (since 〈a〉 is maximal)

If 〈b〉 = R, then b is a unit. On the other hand

〈b〉 = 〈a〉 =⇒ b = au for some u ∈ R
=⇒ a = auc =⇒ 1 = uc (since R is an ID and a 6= 0)
=⇒ c ∈ R×

It follows that a is irreducible.

Now suppose that R is a PID and that a is an irreducible. Since a is not a unit we have that 〈a〉 6= R.
Let J �R be an ideal satisfying 〈a〉 ⊆ J ⊆ R. Since R is a PID, J = 〈b〉 for some b ∈ R. Then

〈a〉 ⊆ 〈b〉 =⇒ a = bc for some c ∈ R
=⇒ b ∈ R× or c ∈ R×

=⇒ 〈b〉 = R or 〈b〉 = 〈a〉
Exercise 43.

a) The hypothesis that R is an ID is necessary in the first part of the above lemma. To demonstrate
this, find an element a ∈ Z/6Z such that 〈a〉 is maximal and a is not irreducible.

b) Give an example of an ID R, and an element a ∈ R such that a is irreducible but 〈a〉 is not
maximal.

Lemma 6.8

Let R be an integral domain and a ∈ R \ {0}. The ideal 〈a〉�R is a prime ideal if and only if a is
a prime element.

Proof. Suppose that 〈a〉 is prime. Then

a | bc =⇒ bc ∈ 〈a〉 =⇒ (b ∈ 〈a〉 or c ∈ 〈a〉) =⇒ (a | b or a | c)

Conversely, if a is prime, then

bc ∈ 〈a〉 =⇒ a | bc =⇒ (a | b or a | c) =⇒ (b ∈ 〈a〉 or c ∈ 〈a〉)
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6.3 Exercises

44. Show that the following is equivalent to the definition of Unique factorisation Domain. R is an
integral domain is which

1. Every element a ∈ R that is nonzero and not a unit can be written as a product of irre-
ducibles:

a = a1a2 . . . an

2’. Every irreducible element of R is prime.

45. Let R be a PID, S and integral domain and ϕ : R → S a surjective homomorphism. Show that
either ϕ is an isomorphism or S is a field.

46. Let I , J , and P be ideals in R, with P prime. Show that if IJ ⊆ P , then either I ⊆ P or J ⊆ P .

47. Determine the maximal ideals in the following rings:

(a) R (b) Z (c) Z/11Z (d) Z/12Z

48. (a) Show that 〈2〉� Z[
√
−5] is not prime.

(b) Show that 〈11〉� Z[
√
−5] is prime.

49. Given two ideals I, J ⊆ R we define their product IJ to be the ideal generated by the set
{ij | i ∈ I, j ∈ J} ⊆ R. Consider the ring Z[

√
−5].

(a) Show that 〈2〉 = 〈2, 1 +
√
−5〉〈2, 1−

√
−5〉.

(b) Show that 〈2, 1 +
√
−5〉 is prime.
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LECTURE 7

F [X ] is a PID

We will show that for any field F , the ring of polynomials F [X] is a PID. For the rest of this lecture,
F denotes a field.

7.1 Division with remainder in F [X]

We state and prove a direct analogue of the ‘division algorithm’ in Z. Both the statement and the
proof of the theorem follow closely the situation for Z.

Proposition 7.1

Given f, g ∈ F [X] with g 6= 0, there exist polynomials q, r ∈ F [X] such that f = qg+ r and either
deg(r) < deg(g) or r = 0. Moreover, the polynomials q and r are unique.

Proof. Let S = {f − gs | s ∈ F [X]}, and let r ∈ S be an element having the minimum degree possible
amongst elements of S. Since r is in S, it is clear that f = gq + r for some q ∈ F [X]. We need to
show that either deg(r) < deg(g) or r = 0. If 0 ∈ S, then we can take r = 0. Suppose that 0 /∈ S.
Let t = deg(r) and let c ∈ F be the coefficient of Xt in r. Similarly let m = deg(g) and let b ∈ F be
the coefficient of Xm in g. Note that b (and c) is nonzero and therefore a unit. If it were the case that
t > m, then the polynomial

f − g(q +Xt−mcb−1) = r − gXt−mcb−1

is an element of S and has degree strictly less than that of r. (The only way the we could have
deg(r) = deg(r− gXt−mcb−1) is if m = t = 0 which would imply that r− gXt−mcb−1 = 0 ∈ S.) Since
this contradicts the choice of r, we conclude that t < m.

To see that q and r are uniquely determined by f and g, suppose that q′, r′ are polynomials in F [X]
that satisfy the conclusion of the theorem. Then gq+ r = gq′+ r′ which implies that g(q− q′) = r′− r.
If r = r′ = 0, then we must also have q − q′ = 0, as g 6= 0. If at least one of r and r′ is nonzero, then
deg(r′ − r) < deg(g) and it must be the case that q − q′ = 0, and therefore also r − r′ = 0.

Remark. The condition that F is a field can be relaxed. It is enough to insist that it be an ID and that
b, the leading coefficient of g, be a unit.

Corollary 7.2

Let f ∈ F [X]. Then a ∈ F is a root of f if and only if (X − a) | f .

Proof. If f = (X − a)q, it is clear that a is a root of f . Conversely, suppose that a is a root of f . Let
g = (X−a) and apply the theorem to conclude that f = (X−a)q+r, where either r = 0 or deg(r) < 1.
The expression for f gives f(a) = r since deg(r) = 0, and therefore r = 0 and f = (X − a)q.

An immediate consequence is the following.
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Theorem 7.3: Vandermonde’s Theorem

A polynomial equation of degree n over a field has at most n roots.

7.2 F [X] is a PID

Theorem 7.4

Let F be a field. The polynomial ring F [X] is a PID.

Remark. The polynomial ring in two (or more) variables, is not a PID, although it is, as we shall see
shortly, a UFD. The ideal 〈X,Y 〉� R[X,Y ] is not principal.

Proof. We know that F [X] is an ID since F , being a field, is an ID (see Exercise 12). We need to show
that all ideals in F [X] are principal.

Let I be an ideal in F [X]. We need to show that I is principal. If I = {0}, then we are done as
I = {0} = 〈0〉. So assume that I 6= 0, and let g ∈ I−{0} be an element of minimal degree amongst all
elements of I −{0}. If deg(g) = 0, then g is a unit (since F is a field) and I = (g) = R, so we are done.
We may assume then that deg(g) > 1. Let f ∈ I . By Proposition 7.1, we know that f = qg + r with
deg(r) < deg(g). But since r = f−qg, f, g ∈ I and I is an ideal, we know that r ∈ I . We conclude that
r = 0, since g has minimal degree in I −{0}. Having shown that any element f ∈ I can be written as
a multiple of g, we know that I = 〈g〉, and therefore I is principal.

Remark. The above proof is entirely analogous to the proof that Z is a PID.

Example 7.5. Since R[X] is a PID and X2 +X + 1 ∈ R[X] is irreducible, the ideal it generates 〈X2 +
X + 1〉 is maximal, and therefore the quotient ring R[X]/〈X2 +X + 1〉 is a field.

Similarly the quotient ring F2[X]/〈X2 + X + 1〉 is a field. It has exactly 4 elements. The ring
F3[X]/〈X2 +X − 1〉 is also a field. It has 9 elements.

In general, if F is a field and f ∈ F[X] is irreducible, then the quotient ring F[X]/〈f〉 is a field.
Moreover, if F is a finite field, then F[X]/〈f〉 is finite and has |F|deg(f) elements.

7.3 Exercises

50. Let f, g ∈ F5[X] be given by f = X4 − 3X3 + 2X2 + 4X − 1 and g = X2 − 2X + 3. Find
q, r ∈ F5[X] such that deg(r) < deg(g) and f = qg + r.

51. Show that X2 − 2 is irreducible in Q[X]. Show that X2 − 2 is not irreducible in R[X].

52. Show that X3 + 3X + 2 is irreducible in F5[X].

53. Let R be an integral domain. Show that R[X]/〈X − a〉 is isomorphic to R for any a ∈ R.

54. If we regard the reals R as a subring of the complex numbers C, we can extend the inclusion to a
homomorphism ϕ : R[X]→ C by defining ϕ(X) = i ∈ C. Show that ϕ induces an isomorphism
R[X]/〈X2 + 1〉 ∼= C.

55. Let R be an integral domain. If f, g ∈ R[X] and if the highest order coefficient of g is a unit,
show that ∃ q, r ∈ R[X] such that
(a) f = gq + r, and
(b) either r = 0 or deg(r) < deg(g).

56. Show that if R[X] is a PID, then R is a field. (This is the converse of Theorem 7.4)
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57. Which are fields? (a) Q[X]/〈X2 − 5X + 6〉 (b) Q[X]/〈X2 − 6X + 6〉

58. (Rational Root Test) Show that if the reduced fraction r/s is a root of f(X) = a0 + a1X + · · · +
anX

n ∈ Z[X], then r|a0 and s|an. Deduce that if f is monic and has a rational root, then it has
a root that is an integer that divides a0.

59. List all the maximal ideals in the following rings:

(a) R[X]/〈X2〉 (b) R[X]/〈X2 + 1〉 (c) C[X]/〈X2 + 1〉
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LECTURE 8

Every PID is a UFD

To show that an integral domain is a unique factorisation domain we need to establish that every
(non-unit, non-zero) element can be written as a product of (finitely many) irreducibles, and that
this factorisation is essentially unique. For existence we use the ‘ascending chain condition’, and for
uniqueness the property that every irreducible element is prime (in a PID).

8.1 Ascending chain condition

Definition 8.1

LetR be a commutative ring. Then we say thatR satisfies the ascending chain condition (ACC)
if for every chain of ideals in R

I1 ⊆ I2 ⊆ · · · ⊆ Ii ⊆ · · ·

there exists N ∈ N such that Ii = IN for all i > N .

Rings that satisfy the ACC (or equivalent) are called Noetherian.

Remark. The famous Hilbert Basis Theorem states that if R is Noetherian, then so too is R[X]. See, for
example, Artin p.469.

Examples 8.2.

1. Z satisfies the ACC. Every ideal is of the form 〈m〉 for some m ∈ Z and 〈m〉 ⊆ 〈n〉 iff n | m.

2. R[X] satisfies the ACC, as we shall see shortly.

3. R[X1, X2, . . . ], the polynomial ring on infinitely many variables, is not Noetherian. The chain
of ideals

〈X1〉 ⊆ 〈X1, X2〉 ⊆ 〈X1, X2, X3〉 ⊆ · · ·

never stabilizes.

4. Another example of a non Noetherian ring is C(R) the ring of all continuous functions from R
to itself. Defining Ii = {f : R→ R | f(x) = 0 for all |x| 6 i} gives a chain of ideals that does
not stabilize.

There is a natural process by which we can try to decompose an element as a product of irreducibles –
just keep writing each factor as a product. When we do this in the integers, we know the process must
eventually terminate because each factor has strictly smaller magnitude. The following proposition
says that in a ring that satisfies the ACC, the process always eventually halts.

Proposition 8.3

Let R be an integral domain. If R satisfies the ascending chain condition, then every non-unit,
non-zero element of R can be written as a product of irreducibles.

Proof. Let a ∈ R be non-zero and not a unit. Suppose that we had an infinite sequence of non-trivial
factorisations. Then we would have elements a0 = a, a1, a2 . . . such that ai+1 | ai and ai+1 6∼ ai. But
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this would give an infinite ascending chain of ideals

〈a〉 ( 〈a1〉 ( 〈a2〉 ( · · ·

contradicting the hypothesis that R satisfies the ACC.

Proposition 8.4

Let R be a PID. Then R satisfies the ascending chain condition.

Proof. Given ideals Ii �R with I1 ⊆ I2 ⊆ . . . , let I = ∪∞i=1Ii. Since I is an ideal, it is given by I = 〈a〉
for some a ∈ R. Then a ∈ ∪∞i=1Ii implies that a ∈ IN for some N , which implies that 〈a〉 ⊆ IN . Then
for any i > N we have I ⊆ IN ⊆ Ii ⊆ I , which implies that Ii = IN = I .

Exercise 60.? Adapt the above proof to show that if R is a commutative ring in which all ideals are
finitely generated, then R satisfies the ACC. Then prove the converse!

8.2 Prime versus irreducible

We saw in Proposition 5.9 that, in an integral domain, prime elements are irreducible. The converse
does not hold in general (see Example 5.10). We saw in Exercise 42 that it holds in any UFD. Of
course, we can’t use that result here, as we have not yet shown that every PID is a UFD.

The following lemma says that if irreducible elements are prime, then factorisations are essentially
unique.

Lemma 8.5

Let R be an integral domain in which all irreducible elements are prime.
Suppose that a1, . . . , an, b1, . . . , bm ∈ R are irreducible elements such that

a1a2 . . . am ∼ b1b2 . . . bn

Then m = n and there is a permutation π of {1, 2, . . . , n}, such that bi ∼ aπ(i).

Proof. If either m or n is equal to 1, then the result holds by the definition of irreducible element.

Suppose then that m,n > 2. Clearly, a1 | a1a2 . . . am, so we must have that a1 | b1b2 . . . bn. Since a1
is prime, this implies that a1 | bi for some i ∈ {1, . . . , n}. By re-ordering, we can assume that i = 1.
Since a1 | b1 and b1 is irreducible, we have that a1 ∼ b1. The cancellation law then tells us that

a2 . . . am ∼ b2 . . . bn

and, by induction, we are done.

Lemma 8.6

In a PID irreducible elements are prime.

Proof. Applying Lemma 6.7, Corollary 6.6 and Lemma 6.8 gives

p irreducible =⇒ 〈p〉 is maximal =⇒ 〈p〉 is prime =⇒ p is prime
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Remark. Once we have established that all PIDs are UFDs the above lemma follows from Exercise 42.
However, we need the lemma in order to prove that PIDs are UFDs.

8.3 PID implies UFD

Assembling the results of the previous sections we have the following

Theorem 8.7

Every principal ideal domain is a unique factorisation domain.

Proof. Let R be a PID and a ∈ R a non-zero non-unit element. By Proposition 8.4, R satisfies the
ascending chain condition, and therefore a can be written as a product of irreducibles by Proposition
8.3. That the second part of the definition of UFD is satisfied, is precisely the statement of Lemma
8.5, which applies by Lemma 8.6.

Corollary 8.8

For any field F , the polynomial ring F [X] is a unique factorisation domain.

8.4 Exercises

61. If R is a PID and 0 6= p ∈ R, then the following are equivalent:

(a) the ideal 〈p〉 is prime;

(b) p is an irreducible element;

(c) 〈p〉 is a maximal ideal in R;

(d) R/〈p〉 is a field;

(e) R/〈p〉 is an integral domain.

This statement collects the results of several earlier exercises and results. For this exercise you
should write out a proof of these implications in the indicated order: each implies the next and
the last implies the first. Note that this result applies to the case R = F [X] where F is a field
and p is a non-constant polynomial.

62. Factor the following into irreducibles in Z[i]: (a) 5 (b) 7 (c) 4+3i
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LECTURE 9

If R is a UFD, then R[X ] is a UFD

We show that if R is a UFD, then R[X] is a UFD. It follows that R[X,Y ] = (R[X])[Y ] is a UFD, and
R[X1, . . . , Xn] is a UFD. The tools we will use in the proof are greatest common divisors and the
Gauss Lemma.

9.1 Greatest common divisors

In Z the greatest common divisor of two elements is often defined to be the largest amongst all
common divisors. In other rings we do not have an ordering, and so can’t use exactly the same
definition.

Definition 9.1

LetR be an integral domain. A greatest common divisor (or gcd) of a finite number of elements
a1, . . . , an ∈ R is an element d ∈ R satisfying:

1. d is a common divisor: d | ai for all i ∈ {1, . . . , n}

2. If d′ is another common divisor, then d′ | d

It is clear from the second part of the definition that any two gcds are associates, but they need not
be equal. In Z, both 2 and−2 are gcds of the elements 4 and 6. In general, there does not always exist
a gcd.

Exercise 63. Let a1, a2 ∈ Z[
√
−5] be a1 = 6 and a2 = 2 + 2

√
−5.

(a) Use the function N from Example 5.10 to list all common divisors of a1 and a2.

(b) Show that a1 and a2 do not have a greatest common divisor.

However, in a UFD any collection of elements does have a gcd.

Lemma 9.2

Let R be a UFD and a1, . . . , an ∈ R (not all zero). There exists a gcd of the elements a1, . . . , an.

Proof. We first show that for any two elements a, b ∈ R (that aren’t both zero), a gcd exists. If either
element is a unit, then 1 is a greatest common divisor since anything that divides a unit divides 1.
(Any other unit will also be a gcd.) If one of the elements is zero, then the other is a gcd. So suppose
that both a and b are non-zero, and not units. Since R is a UFD, we have factorisations of a and b as
products of irreducibles. Rearranging, we can write these factorisations as

a = pm1
1 . . . pmkk

b = pn1
1 . . . pnkk u

where each pi is irreducible, mi, ni > 0, u is a unit and no two of the pi are associates (i.e., pi ∼ pj

implies i = j). Let d = p
min{m1,n1}
i . . . p

min{mk,nk}
k . It is clear that d divides both a and b. To see that is

a gcd, suppose that d′ is another common divisor. We have an irreducible factorisation d′ = c1 . . . cl,
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which can be rewritten as d′ = ql11 . . . q
lk′
k′ where no two of the irreducibles qi are associates. Since d′ is

a common divisor of a and b, we must have that for all i ∈ {1, . . . k′} there is a j ∈ {1, . . . k} such that
qi ∼ pj and li 6 min{mj , nj}. It follows that d′ | d, and d is a gcd of a and b.

The case in which there are three or more elements follows by induction and the observation that if dm
is a gcd of {a1, . . . , am} and dm+1 is a gcd of {dm, am+1}, then dm+1 is a gcd of {a1, . . . , am, am+1}.

Example 9.3. The polynomial X − 1 is a gcd of X2 − 1, X3 − 2X2 − 5X + 6 ∈ C[X]

Definition 9.4

A collection of elements in a UFD is called relatively prime if a gcd is a unit.

Example 9.5. The polynomials 2X − 2 and 2X2 − 2X − 4 are relatively prime in C[X].

9.2 Primitive polynomials and the Gauss Lemma

Definition 9.6

A polynomial a0 + a1X + · · · + anX
n ∈ R[X] is called primitive if it is non-constant and

{a0, . . . , an} is relatively prime in R.

Remark. Notice that an element in R[X] that is non-constant and irreducible is necessarily primitive.

Exercise 64. Prove the following lemma.

Lemma 9.7

Let R be a UFD. Let f ∈ R[X] be a non-constant polynomial. Then there exist a ∈ R and a
primitive polynomial f̂ ∈ R[X] such that f = af̂ . Moreover, a and f̂ are unique up to associates.

The following lemma allows us to relate factorisation in Q[X] and factorisation in Z[X].

Lemma 9.8: Gauss Lemma

Let R be a UFD. If f, g ∈ R[X] are primitive, then so too is their productfg.

Proof. Let h = fg. Suppose that p ∈ R is an irreducible that divides all the coefficients of h. The
natural projection homomorphism R→ R/〈p〉 induces a homomorphism ϕ : R[X]→ (R/〈p〉)[X] (as
in Exercise 30). Since R is a UFD and p is irreducible, p is prime (Exercise 42), which in turn implies
that R/〈p〉 is an integral domain (Lemma 6.8 and Proposition 6.5). Since p divides every coefficient in
h, ϕ(h) = 0, which implies that ϕ(f)ϕ(g) = 0. Therefore, one of ϕ(f) or ϕ(g) must equal zero, which
contradicts the hypothesis that they are primitive.

Lemma 9.9

Let R be a UFD and F its field of quotients. Let f ∈ R[X], and g1, g2 ∈ F [X] be such that
f = g1g2. Then there exist g′1, g

′
2 ∈ R[X] with f = g′1g

′
2 and g′i ∼ gi. Moreover, if g1 is in R[X] and

is primitive, we can take g′1 = g1.
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Proof. Note first that if any of f , g1 or g2 is degree zero, then the result holds. We assume then that
each has degree at least 1.

For each i there is a non-zero element di ∈ R such that hi = digi is in R[X]. (This is sometimes
referred to as ‘clearing denominators.’) Write each of f , h1 and h2 as a constant multiple of a primitive
polynomial: f = cf̂ , hi = ciĥi. Then

f = g1g2 =⇒ d1d2f = h1h2

=⇒ d1d2cf̂ = c1c2ĥ1ĥ2

=⇒ f̂ ∼ ĥ1ĥ2 by Lemmas 9.7 and 9.8

=⇒ f̂ = uĥ1ĥ2 for some unit u ∈ R
=⇒ f = cuĥ1ĥ2

=⇒ f = g′1g
′
2 where g′1 = ĥ1 and g′2 = cuĥ2

Note that if g1 is in R[X] and is primitive, then we may choose d1 = c1 = 1 and ĥ1 = h1 = g1.

Corollary 9.10

If f ∈ R[X] is irreducible in R[X] and deg(f) > 1, then f is irreducible in F [X].

To see that the hypothesis that deg(f) > 1 is necessary consider f = 2 ∈ Z[X].

Corollary 9.11

Let f, g ∈ R[X] with f primitive. If f divides g in F [X], then f divides g in R[X].

9.3 If R a UFD, then R[X] a UFD

We will show that every polynomial inR[X] is a product of irreducibles, and that inR[X], irreducible
elements are prime. As in the previous lecture, this is enough to show that R[X] is a UFD.

To show that an element can be written as a product of irreducibles we will think if it as an element
of F [X], where F is the field of quotients of R. We know that F [X] is a UFD, and so we have a
factorisation as a product of irreducibles in F [X]. In order to obtain irreducibles in R[X] we use the
following technical lemma.

Lemma 9.12

If f ∈ R[X] is primitive in R[X] and irreducible in F [X], then it is irreducible in R[X].

Proof. Suppose that we have f = gh inR[X]. Considering this equation as being in F [X] we conclude
that one of g or h must be a unit in F [X]. Suppose g is a unit in F [X]. Then deg(g) = 0, and since f is
primitive and f = gh it follows that g is a unit in R.

Proposition 9.13

Every non-zero, non-unit element in R[X] can be written as a product of irreducibles.
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Proof. Let f ∈ R[X] be non-zero, non-unit. If deg(f) = 0 then, since R is a UFD, we can factorise as
a product of irreducibles in R. Note that if a ∈ R is irreducible, then it is also irreducible in R[X].
So assume that deg(f) > 1. As an element of F [X], f̂ is non-zero and non-unit and can therefore be
written as a product of elements that are irreducible in F [X]. We have

f̂ = f1 · · · fk (where each fi ∈ F [X] is irreducible in F [X])

=⇒ f̂ = f ′1 · · · f ′k (f ′i ∈ R[X], Lemma 9.9, irreducible in F [X])

=⇒ f ′i is primitive (since f̂ is) and irreducible in R[X] for all i (by Lemma 9.12)

Proposition 9.14

Irreducible elements in R[X] are prime.

Proof. Let f ∈ R[X] be irreducible, and suppose that f | g1g2. The case in which deg(f) = 0 follows
from the fact that R is a UFD, and therefore irreducible elements in R are prime in R. So we assume
that deg f > 1. Then f is irreducible in F [X] by Corollary 9.10 and therefore prime (in F [X]) as F [X]
is a PID. Therefore, in F [X], f divides one of the gi. It follows that f divides one of the the gi in R[X]
by Corollary 9.11.

Theorem 9.15

If R is a unique factorisation domain, then so too is R[X].

Proof. Follows from Lemma 8.5 and Propositions 9.13 and 9.14.

Examples 9.16. It follows from this theorem that Z[X],Z[X,Y ],R[X,Y ],R[X1, . . . , Xn] are all UFDs.
(None of them are PIDs.)

9.4 Exercises

65. True or false:

(a) Every field is a UFD.
(b) Every field is a PID.
(c) Every PID is a UFD.
(d) Every UFD is a PID.
(e) In a UFD, any two irreducibles are associates.
(f) If D is a PID, then D[X] is a PID.
(g) If D is a UFD, then D[X] is a UFD.
(h) Irreducible elements in an integral domain are prime.
(i) In a UFD, if p is irreducible and p|a, then (an associate of) p appears in every factorisation

of a.

66. Express the following as the product of a constant polynomial and a primitive polynomial:

(a) 18X2 − 12X + 48 in Z[X]

(b) 18X2 − 12X + 48 in Q[X]

(c) 2X2 − 3X + 6 in Z/7Z[X]

© University of Melbourne 2025



MAST30005 Algebra, 2025 9-5

67. Factor 4X2 − 4X + 8 into a product of irreducibles in:

(a) Z[X] (b) Q[X] (c) F11[X]

68. Prove that if R is a PID and a, b ∈ R, then any gcd of a, b can be written as an R-linear combina-
tion of a, b. That is, show that if d is a gcd of a and b, then d = αa+ βb for some α, β ∈ R. (Hint:
consider the ideal I = 〈a, b〉 generated by a and b.)

69. Let R be a PID and let S be an integral domain containing R. Let a, b, d ∈ R. If d is a gcd of a, b
in R, show that d is a gcd of a, b in S.

70. Show that if p, q ∈ Z are relatively prime in Z, then they are relatively prime in Z[i].

71. Show that in a UFD a gcd of da, db is d times a gcd of a, b.

72. Let R be an integral domain, and a, b, d, d′ ∈ R. Show that if d ∼ d′ and d is a gcd of a and b,
then d′ is a gcd of a and b.

73. Show that if a = qb+ r, then d is a gcd of a and b if and only if d is a gcd of b and r.

74. Consider the homomorphism ϕ : Z[X] → R which is the identity on Z ⊂ Z[X], and takes X to
(1 +

√
2). Show that the kernel of ϕ is a principal ideal and find a generator for this ideal.

75. Show that Z[X]/〈2X−1〉 ∼= Z[1/2], where Z[1/2] denotes the smallest subring of Q that contains
Z and 1/2. Note that Z[1/2] = {m/2k | m ∈ Z, k ∈ N}.
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LECTURE 10

Irreducible polynomials

Later we will be interested in rings of the form F [X]/〈f〉. This is a field if and only if f ∈ F [X] is
irreducible. Deciding whether or not a polynomial in F [X] is irreducible is not trivial.

Any linear polynomial in F [X] is irreducible. Suppose f ∈ F [X] has degree at least 2. Then if it has a
root in F , it is not irreducible since it has a linear factor. This follows from 7-1 7.2. The converse is, in
general, false: the polynomial X4 + 2X2 + 1 is not irreducible in R[X], but has no roots in R. For low
degree polynomials, however, the converse does hold.

Exercise 76. Let f ∈ F [X] have degree 2 or 3. Show that f is irreducible if and only if it has no roots
in F .

10.1 Eisenstein’s Irreducibility Criterion

This gives a sufficient condition for an element in Z[X] to be irreducible in Q[X], and hence in Z[X]
if it is primitive.

Although the results of this sections are stated for Z and Q, they apply equally well to any UFD (in
place of Z) and its field of quotients (in place of Q).

Theorem 10.1: Eisenstein’s irreducibility criterion

Let f = a0 + a1X + · · ·+ anX
n ∈ Z[X] with n > 1. Suppose there is a prime integer p ∈ Z such

that:

1) p divides ai for all i ∈ {0, . . . , n− 1}
2) p does not divide an
3) p2 does not divide a0

Then f is irreducible in Q[X].

Proof. Suppose, for a contradiction, that f is reducible in Q[X]. It follows from Lemma 9.9 that f = gh
for some g, h ∈ Z[X] with g and h of degree at least 1. Consider the homomorphism ϕ : Z[X]→ Fp[X]
induced by the projection Z→ Z/〈p〉, a 7→ a = a+〈p〉 (see Exercise 30). The conditions of the theorem
ensure that an 6= 0 and ϕ(f) = anX

n. Since ϕ is a homomorphism, ϕ(g)ϕ(h) = anX
n. This implies

that ϕ(g) = αXk and ϕ(h) = βXm with k + m = n. Note that k = deg(g) > 1 and m = deg h > 1.
It follows that both the constant term of g and the constant term of h are divisible by p. But then the
constant term of f would be divisible by p2.

Example 10.2. Using Eisenstein’s criterion we conclude that the polynomial X4 + 50X2 + 30X + 20
is irreducible in Q[X]. (Since it’s primitive, it is also irreducible in Z[X].)

Corollary 10.3

Let p ∈ N be prime. The polynomial Xp−1 +Xp−2 + · · ·+X + 1 is irreducible in Q[X].
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Proof. Let f(X) = (Xp−1 +Xp−2 + · · ·+X + 1). Substituting X = Y + 1 gives

(X − 1)f(X) = Xp − 1

=⇒ Y f(Y + 1) = (Y + 1)p − 1

= Y p +

(
p

1

)
Y p−1 + · · ·+

(
p

p− 1

)
Y

=⇒ f(Y + 1) = Y p−1 +

(
p

1

)
Y p−2 + · · ·+

(
p

p− 1

)
The last polynomial is irreducible by Theorem 10.1. To see that it satisfies the hypotheses, note that
since

(
p
i

)
= p(p− 1) . . . (p− i+ 1)/(i!) is an integer, if i < p, then i! divides (p − 1) . . . (p − i + 1). It

follows that
(
p
i

)
is divisible by p whenever 1 6 i < p. Also,

(
p
p−1
)

= p is not divisible by p2.

Having shown that f(Y + 1) is irreducible, we conclude that f(X) is irreducible, since otherwise the
isomorphism of Exercise 32 would give a contradiction.

Remark. The factorisation Xp − 1 = (X − 1)(Xp−1 + Xp−2 + · · ·+ X + 1) is therefore a factorisation
into irreducibles.

10.2 Computation modulo p

Proposition 10.4

Let f = a0 + a1X + · · ·+ anX
n ∈ Z[X] with n > 1 and p ∈ N a prime that does not divide an. If

a0 + a1X + · · ·+ anX
n ∈ Fp[X] is irreducible, then f is irreducible in Q[X].

Proof. Suppose f is reducible in Q[X]. Then f = gh with g, h ∈ Z[X] each of degree at least 1, and
f = gh which, since f is irreducible, implies that one of g or h is a unit in Fp[X]. Say g is a unit.
It follows that the highest order coefficient in g is divisible by p. This contradicts the fact that the
highest order coefficient of f is not divisible by p.

Example 10.5. f = X4 + 9X3 + 2X2 + 6X + 1 ∈ Z[X] is irreducible in Q[X] since f = X4 +X3 + 1 ∈
F2[X] is irreducible.

10.3 A factorisation algorithm for Z[X]

There is a systematic, though possibly very long, method to factorise any polynomial in Z[X]. We
outline it here for interest. Given f ∈ Z[X] \ {0, 1,−1}with deg(f) = n we can proceed as follows:

1. If n = 0, then factorise in Z.

2. Otherwise, let m = bn2 c ∈ N, and calculate f(0), f(1),. . . , f(m).

(a) If f(a) = 0 for some 0 6 a 6 m, then (X − a) is a factor of f . If f = ±(X − a), then f is
irreducible. If not, f is reducible. Write f = (X − a)f ′ and start again.

(b) If f(a) 6= 0 for all a ∈ {0, 1, . . . ,m}, letD = {(d0, d1, . . . , dm) ∈ Zm+1 | di is a divisor of f(i)}.
This is a finite set. For each d = (d0, d1, . . . , dm) ∈ D let gd ∈ Q[X] be the unique polyno-
mial with deg(gd) 6 m and g(i) = di for all i ∈ {0, 1, . . . ,m}.

i) If there is a d ∈ D such that gd is a proper factor of f in Z[X], then we write f = gdf
′

and start again.
ii) If no gd is a proper factor of f , then f is irreducible.

It is left to the reader to convince themselves that this procedure works.
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10.4 Exercises

77. Show that the following are irreducible in Q[X]:

(a) X2 − 12 (b) 8X3 + 6X2 − 9X + 24 (c) 2X10−25X3 + 10X2−30

78. Determine which of the following is irreducible in Q[X]:

(a) X4 − 16X2 + 4 (b) X4 − 32X2 + 4

781
2 . Test for irreducibility the following polynomials Q[X]:

(a) X4 −X3 −X2 −X − 2

(b) 2X4 − 5X3 + 3X2 + 4X − 6

(c) 7X3 + 6X2 + 4X + 4

(d) 9X4 + 4X3 −X + 7

79. Test each of the following for irreducibility in Q[X]:

(a) X5 − 4X + 22

(b) 2X5 + 12X4 − 15X3 + 18X2 − 45X + 3

(c) X4 + 1

80. Let n > 1.

(a) Show that there is an irreducible polynomial of degree n in Q[X].

(b) Show that there are infinitely many (non associate) irreducible polynomials of degree n in
Q[X].

81. Factor X5 + 5X + 5 into irreducible factors in Q[X] and in F2[X].

82. Factorise X3 +X2 + 1 in Fp[X], for p = 2, 3.

83. List all monic polynomials of degree 6 2 in F3[X]. Determine which of these polynomials are
irreducible.

84. Determine all irreducible polynomials of degree at most 4 in F2[X].

85. By considering images in F2[X], show that the following are irreducible in Q[X]:

(a) X2 + 2345X + 125 (b) X3 + 5X2 + 10X + 5

© University of Melbourne 2025
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LECTURE 11

Euclidean Domains

The greatest common divisor of two integers can be efficiently calculated using the well-known Eu-
clidean Algorithm. The essential tool is the idea of division with remainder, with the remainder
being ‘simpler’ than the original. In Z ‘simpler’ means it has smaller absolute value. In R[X] ‘sim-
pler’ means it has lower degree (see section 7.1). We make a definition of this property.

11.1 Definition of Euclidean domain

Definition 11.1

A Euclidean Domain (or ED for short) is an integral domain R such that there exists a function
σ : R \ {0} → N satisfying

∀ a, b ∈ R with b 6= 0, ∃ q, r ∈ R such that a = bq + r and either r = 0 or σ(r) < σ(b)

The function σ is called a norm function.

Note.

1. The definition does not require that q and r be unique.

2. There can be many different maps σ that show that R is a Euclidean domain.

3. Given such a σ, define a new function σ′ : R \ {0} → N by σ′(a) = min{σ(ab) | b ∈ R \ {0}}. Then
σ′ satisfies the above property plus the additional property:

∀ a, b ∈ R \ {0}, σ′(a) 6 σ′(ab)

This additional property can be useful when considering units in R.

To see that σ′ is a norm function: Let a, b ∈ R with b 6= 0 and suppose that b does not divide a. Let
c ∈ R\{0} be such that σ′(b) = σ(bc). Then ∃ q, r′ ∈ R such that (ac) = q(bc)+r′ and σ(r′) < σ(bc).
Letting r = a− qb we have: r′ = rc and a = qb+ r and σ′(r) 6 σ(rc) = σ(r′) < σ(bc) = σ′(b).

Example 11.2. It follows from Proposition 7.1 that, for any field F , F [X] is a ED, with a suitable
function being σ(f) = deg(f).

Example 11.3 (cf. Example 5.10). We show that the Gaussian integers, Z[i] = {x+ iy | x, y ∈ Z}, form
a Euclidean domain. Let’s define σ : Z[i] → N by σ(x + iy) = |x + iy|2 = x2 + y2. Let a, b ∈ Z[i] be
given by a = ai + ia2, b = b1 + ib2, b 6= 0. Define w ∈ C by w = ab−1, where we regard Z[i] as a subset
of C in the obvious way. Choose q ∈ Z[i] such that |w − q| 6 1/

√
2. Then a = bw = bq + b(w − q)

and σ(b(w − q)) = |b|2|w − q|2 = σ(b)|w − q|2 6 σ(b)/2 < σ(b). Setting r = b(w − q), and noting that
b(w − q) = a− bq ∈ Z[i], we are done. Notice that the choice of q is not, in general, unique.

Theorem 11.4

Every Euclidean domain is a principal ideal domain.

Proof. The argument is essentially the same as the one used to show that F [X] is a PID (Theorem 7.4).
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Suppose that R is a ED with σ : R \ {0} as in the definition. Let I � R be an ideal. We need to show
that I is principal. If I = {0}, there is nothing to show, so assume that I 6= 0. Choose b ∈ I such that
b 6= 0 and σ(b) = min{σ(c) | c ∈ I \ {0}}. We will show that I = 〈b〉. For any a ∈ I , we have that there
are q, r ∈ R such that a = bq + r and either r = 0 or σ(r) < σ(b). Since r = a− bq ∈ I , it must be that
r = 0. Therefore a ∈ 〈b〉.

Remark. We have now shown the following implications:

ED =⇒ PID =⇒ UFD =⇒ ID

None of the reverse implications hold. The only counterexample we haven’t seen is that of a PID that
is not a ED. Such an example is given in the exercises.

11.2 The Euclidean algorithm

This algorithm for finding the greatest common divisor of two elements in a Euclidean Domain pro-
ceeds exactly as for the integers, with the usual ‘division algorithm’ replaced by the defining property
of a ED. Our main application will be to polynomials over a field.

Euclidean Algorithm

LetR be a ED with norm function σ. Given two elements a, b ∈ R with b 6= 0, proceed as follows:

0. Let i = 0, a0 = a, b0 = b.

1. Write ai = biqi + ri with ri = 0 or σ(ri) < σ(bi).

2. If ri = 0, then stop with answer bi.

3. Otherwise, let ai+1 = bi and bi+1 = ri.

4. Increment i by one, and go to step 1.

Proof. We will prove that this procedure eventually terminates, and that the answer produced is a
gcd(a, b). From Exercise 73 we know that gcd(ai+1, bi+1) = gcd(ai, bi). Noting that ai is a gcd of
ai and 0, we see that if the procedure stops, then the output is indeed a gcd of a and b. That the
procedure stops follows from the fact that 0 < σ(bi+1) < σ(bi) < σ(b).

By working back through the algorithm we can find an expression for the gcd as an R-linear combi-
nation of a and b.

Example 11.5. To illustrate, we use the algorithm to find a gcd ofX3+2X2+4X−7, X2+X−2 ∈ R[X].
Using ‘long division’ we obtain:

X3 + 2X2 + 4X − 7 = (X2 +X − 2)(X + 1) + (5X − 5)

X2 +X − 2 = (5X − 5)(
1

5
X +

2

5
) + 0

So a gcd is (5X − 5) and

5X − 5 = (X3 + 2X2 + 4X − 7)− (X + 1)(X2 +X − 2)
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11.3 Exercises

86. Show that every field is a ED (you should give an explicit norm function).

87. Let ξ ∈ C be the root of the polynomial X2 + X + 1 given by ξ = (−1 +
√
−3)/2. Define the

Eisenstein Integers as Z[ξ] = {a+ bξ | a, b ∈ Z}. Show that Z[ξ] is a Euclidean domain.

88. Find a gcd of X3 − 6X2 +X + 4 and X5 − 6X + 1 in Q[X].

89. Consider the polynomials f = X3 − 6X2 +X + 4 and g = X4 − 6X3 + 5 in Q[X]. Find a gcd d
of f and g and then find polynomials a and b in Q[X] such that d = af + bg.

90. Use the Euclidean algorithm to calculate gcd(X3 + 2X2 + 4X − 7, X2 + X − 2) in Q[X], and
express it as a linear combination of the two polynomials.

91.? (This is a long question! Feel free to skip it. It is here mainly so that we have an example to
show that not every PID is a ED. )
Let η = (1 +

√
−19)/2. Using the following steps, show that Z[η] = {x+ yη | x, y ∈ Z} is a PID

but not a ED.

(a) Show that the only units in Z[η] are 1 and −1.

(b) Show that 2 and 3 are irreducible in Z[η].

(c) Now suppose the Z[η] is a ED with norm function σ satisfying σ(a) 6 σ(ab). Show that the
set of elements in Z[η] \ {0} that minimize σ is exactly {1,−1}.

(d) Let m be an element of Z[η] \ {0, 1,−1} that achieves the minimum of σ on that set. By
writing 2 = mq + r with σ(r) < σ(m) or r = 0, show that m ∈ {−2, 2,−3, 3}.

(e) By writing η = mq + r with σ(r) < σ(m) or r = 0, derive a contradiction.

This establishes that Z[η] is not a ED. Now to show that it is a PID.

(f) Let N : C → R be given by N(z) = zz (i.e., the square of the absolute value). Show
that given a, b ∈ Z[η] with N(b) > N(a) and a - b, there exist c, d ∈ Z[η] such that 0 <
N(ad− bc) < N(a).

(g) Use the preceding part to show that every ideal in Z[η] is principal as follows: Given a
non-zero ideal I � Z[η], let a ∈ I minimize N among nonzero elements of I . Show that
any other element of I is a multiple of a.

© University of Melbourne 2025
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LECTURE 12

Modules

12.1 Definition

A module is a generalisation of a vector space in which the scalars do not necessarily form a field,
but may be any commutative ring. Roughly speaking, an R-module is an abelian group on which
the ring R acts linearly. A module in which the scalars are a field is the same as a vector space. A
module in which the scalars are the integers is the same as an abelian group.

The main result we will obtain is a structure theorem for finitely generated modules in the case where
the scalars are a PID. This is then used to obtain the structure theorem for finitely generated abelian
groups. Using the same techniques we derive the Jordan Normal Form of a linear transformation of
a complex vector space.

Definition 12.1

Let R be a commutative ring. An R-module M is an abelian group (whose operation will be
denoted by addition) together with a map R ×M → M (the image of (ρ, u) being denoted ρu)
that satisfies the following for all ρ, σ ∈ R and all u, v ∈M :

(1) 1u = u

(2) (ρσ)u = ρ(σu)

(3) (ρ+ σ)u = ρu+ σu

(4) ρ(u+ v) = ρu+ ρv

We also callM a ‘module overR’, or simply a ‘module’. The elements of the ringR and ofM will
often be referred to as scalars and vectors respectively. We will sometimes denote an R-module
M by RM .

Note. In this section on modules the ring R is always assumed to be commutative.

Examples 12.2.

1. If R is a field then an R-module is simply a vector space over R, since the definition then
becomes exactly that of a vector space.

2. A ring R is an R-module. If I �R is an ideal, then I is an R-module.

3. Rn = {(r1, . . . , rn) | ri ∈ R} is an R-module. The operations are the usual coordinatewise
addition and scalar multiplication:

(r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn)

r(r1, . . . , rn) = (rr1, . . . , rrn)

4. Any abelian group can be regarded as a Z-module, and vice-versa.

5. R[X] forms a module over R.
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12.2 Submodules, homomorphisms, quotients and products

Definition 12.3

A submodule of an R-module M is a subset that itself forms an R-module when using the
operations inherited from M .

Exercise 92. Show that a subset N ⊆M is a submodule if and only if the following hold

(a) N is non-empty

(b) u, v ∈ N =⇒ u+ v ∈ N (closed under vector addition)

(c) u ∈ N , ρ ∈ R =⇒ ρu ∈ N (closed under scalar multiplication)

Example 12.4. 1. If I �R is an ideal, then RI is a submodule of RR.

2. If S is a commutative ring and R is a subring of S, then S is an R-module.

Definition 12.5

An R-module homomorphism is a map ϕ : V → W between R-modules such that for all
u, v ∈ V and all ρ ∈ R:

(1) ϕ(u+ v) = ϕ(u) + ϕ(v) (2) ϕ(ρu) = ρϕ(u)

A bijective homomorphism is called an isomorphism.

Exercise 93. Show that ker(ϕ) is a submodule of V and that im(ϕ) is a submodule of W .

Definition 12.6

Given a submoduleW of V , the quotient module V/W is given by the (additive) cosets {v+W |
v ∈ V }with the operations:

(1) (u+W ) + (v +W ) = (u+ v) +W (2) ρ(v +W ) = ρv +W

Definition 12.7

Let U and V be twoR-modules. The direct product of U and V , denoted U⊕V , is theR-module
with underlying set {(u, v) | u ∈ U, v ∈ V } and the operations given by

(u, v) + (x, y) = (u+ x, v + y)

ρ(u, v) = (ρu, ρv)

The direct product of a finite number of R-modules is defined similarly.
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12.3 Exercises

94. Let M be an R-module. Show that for all ρ ∈ R and u ∈M we have:

(a) 0R u = 0M (b) ρ 0M = 0M (c) (−ρ)u = −(ρu) = ρ(−u)

95. State and prove module versions of the three isomorphism theorems, and the correspondence
theorem.

96. (a) Let M be an R-module. Suppose that U and V are two submodules of M satisfying

i) U ∩ V = {0}, and
ii) U + V = M .

Show that M ∼= U ⊕ V .

(b) Let U and V be R-modules and M = U ⊕ V . Define submodules U ′ and V ′ of M by U ′ =
{(u, 0) | u ∈ U} and V ′ = {(0, v) | v ∈ V }. Show that

i) U ′ ∩ V ′ = {0},
ii) U ′ + V ′ = M , and

iii) U ′ ∼= U , V ′ ∼= V

97. Show that if Ni ⊆Mi, 1 ≤ i ≤ 2 are R- modules, then

M1 ⊕M2

N1 ⊕N2

∼=
M1

N1
⊕ M2

N2

98. Let R be a PID, p ∈ R an irreducible element, k > 1 and let M be the R-module R/〈pk〉. Let
N = pk−1M .

(a) Show that N is a submodule of M .

(b) Show that N is contained in every non-zero submodule of M .
(Hint: Consider the surjective homomorphism R→M , a 7→ a+ 〈pk〉.)
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LECTURE 13

Free modules and bases

The notion of a basis is extremely useful when studying vector spaces,. We now consider the corre-
sponding notion in a module.

Definition 13.1

Let S be a subset of a module M . The submodule generated by S is the intersection of all
submodules of M that contain S. This is easily seen to be a submodule of M and is denoted by
〈S〉. If 〈S〉 = M we say that S is a generating set for M .

Exercise 99. Show that 〈S〉 = {ρ1u1 + · · ·+ ρkuk | k ∈ N, ρi ∈ R, ui ∈ S}.

Definition 13.2

A subset S ⊆ M is called linearly dependent if there exist ρ1, . . . , ρk ∈ R at least one of which
is non-zero, and u1, . . . , uk ∈ S such that ρ1u1 + · · · + ρkuk = 0. A subset that is not linearly
dependent is called linearly independent.

Definition 13.3

A subset of M that is linearly independent and which is a generating set for M is called a basis
of M . If there exists a basis for M , M is called a free module.

Remark.

1. All modules over a field (i.e., all vector spaces) are free.

2. For any R, Rn is a free R-module. A basis is {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}.

3. To see that, in general, not all modules are free consider the Z-module Z/2Z. Since 2u = 0 for all
u, we see that every nonempty subset is linearly dependent. There can not be a basis because
there are no (non-empty) linearly independent sets.

4. Here is another example of a non-free module. Let R = Z[X] and I �R the ideal generated by
{2, X}. Then I can be regarded as an R-module. It is not free however. It follows from the fact
that I is not a principal ideal, that any generating set of RI must contain at least two elements.
But if u, v ∈ RI are two distinct elements, the identity vu+ (−u)(v) = 0 implies that no linearly
independent subset of RI can contain two or more elements.

5. The ring Z/mZ is free when considered as a module over itself, but is not free when considered
as a Z-module.

Lemma 13.4

Let M be an R-module. A subset S of M is a basis of M if and only if every element of M can be
written uniquely as a linear combination of elements from S.
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Exercise 100. Prove Lemma 13.4.

Module homomorphisms from a free module to another module are determined by their effect on
the elements in a basis.

Lemma 13.5

Let M be an R-module and S ⊆ M a basis of M . Then any map from S to an R-module N
extends uniquely to a homomorphism from M to N . That is, given a map f : S → N , there is a
unique R-module homomorphism ϕ : M → N such that ϕ|S = f .

Proof. An element u ∈ M can be written uniquely as a linear combination u =
∑

s∈S uss, where
us ∈ R and only finitely many of them are non-zero. Define a map ϕ : M → N by ϕ(

∑
s∈S uss) =∑

s∈S usf(s). To see that this is a homomorphism, let u, v ∈ M be such that u =
∑

s∈S uss, v =∑
s∈S vss, then

ϕ(u+ v) = ϕ(
∑
s∈S

uss+
∑
s∈S

vss) = ϕ(
∑
s∈S

(us + vs)s)

=
∑
s∈S

(us + vs)f(s) =
∑
s∈S

usf(s) +
∑
s∈S

vsf(s)

= ϕ(
∑
s∈S

uss) + ϕ(
∑
s∈S

vss) = ϕ(u) + ϕ(v)

ϕ(ρu) = ϕ(ρ
∑
s∈S

uss) = ϕ(
∑
s∈S

ρuss)

=
∑
s∈S

ρusf(s) = ρ
∑
s∈S

usf(s) = ρϕ(u)

Suppose that ψ : M → N were another homomorphism satisfying ψ|S = f . Then

ψ(u) = ψ(
∑
s∈S

uss) =
∑
s∈S

usψ(s) (since ψ is a homomorphism)

=
∑
s∈S

usf(s) (since ψ|S = f )

= ϕ(u)

The following is a direct analogue of the result for vector spaces.

Lemma 13.6

If M is a free R-module with basis {u1, . . . , un}, then M ∼= Rn.

Proof. The map ϕ : M → Rn given by ϕ(
∑n

1 ρiui) = (ρ1, . . . , ρn) is readily seen to be an isomorphism.

Remark. Free modules share many of the properties of vector spaces, but not all. For example, even
if a module is free, not every generating set necessarily contains a basis. Consider, for example, the
generating set {2, 3} for the Z-module Z. No subset of {2, 3} is a basis for Z. Also, the subset {2} ⊆ Z
is a linearly independent set that can not be extended to a basis.
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Proposition 13.7

Suppose that R is an integral domain and m,n ∈ N. Then Rm ∼= Rn (as R-modules) if and only
if m = n.

Proof. We will show that any linearly independent set in Rm has at most m elements, from which it
follows that if Rm ∼= Rn then m = n. We use induction on m. The identity uv − vu = 0 shows that
any subset of R that contains at least two elements is linearly dependent.

Now suppose that any linearly independent subset of Rm−1 contains at most m − 1 elements, and
let S ⊆ Rm be linearly independent. We want to show that |S| 6 m. Let π : Rm → R be the
module homomorphism given by projection onto the first factor, that is, π(r1, . . . , rm) = r1. Note that
ker(π) ∼= Rm−1. If S is contained in ker(π), then we have that |S| 6 m − 1, so we may assume that
there exists s ∈ S \ ker(π). To each element of S \ {s} we add a multiple of s so that the result lies
in ker(π). To this end, note that if x ∈ S \ {s} then π(s)x − π(x)s ∈ ker(π). Now consider the set
S′ = {π(s)x− π(x)s | x ∈ S \ {s}}. Then S′ ⊆ ker(π) and S′ is linearly independent since∑

x

µx(π(s)x− π(x)s) = 0 (for elements µx ∈ R)

=⇒
∑
x

µxπ(s)x− (
∑
x

µxπ(x))s = 0

=⇒ ∀ x, µxπ(s) = 0 (since S is linearly independent)
=⇒ ∀ x, µx = 0 (since π(s) 6= 0 and R is an ID)

As S′ is a linearly independent subset of ker(π), we have |S′| 6 m− 1 and therefore |S| = |S′|+ 1 6
m.

Remark. The theorem is false without the hypothesis that R be an integral domain. On the other
hand, if R is finite, then the result holds whether or not R is an integral domain.

It follows from the previous two results that, when R is an integral domain, any two bases of a free
R-module have the same number of elements.

Definition 13.8

The number of elements in a basis is called the rank of the free R-module.

Lemma 13.9

Every finitely generated R-module is a homomorphic image of a free R-module of finite rank.

Proof. Let M be an R-module, and {u1, . . . , um} ⊆ M a generating set. Fix a basis {e1, . . . , em} for
Rm. Define a homomorphism ϕ : Rm → M by extending the map that sends ei to ui (Lemma 13.5).
Since im(ϕ) contains a generating set, ϕ is surjective.

Remark. It follows that every (finitely generated) R-module is isomorphic to F/N for some free mod-
ule F and submodule N of F .
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13.1 Exercises

101. Let R be a ring (commutative) and V a free module of finite rank over R.
Prove or disprove:
(a) Every set of generators of V contains a basis of V ;
(b) Every linearly independent set in V can be extended to a basis of V .

102. Let R be an integral domain and I an ideal in R. Show that I is free, when considered as an
R-module, if and only if it is principal.

103. Let F and G be two free R-modules of rank m and n respectively. Show that the R-module
F ⊕G is free of rank m+ n.

104. Show that ifN andM/N are finitely generated asR-modules, thenM is also a finitely generated
R-module.

105. Show that Q is not finitely generated as a Z-module.

106. A module is called cyclic if it has a generating set with one element.

(a) Is a quotient module of a cyclic module cyclic?

(b) Is a submodule of a cyclic module cyclic?

107. In each case write the Z-module M/N as a direct sum of cyclic submodules.

(a) M = Z⊕ Z and N the submodule generated by (0, 3).

(b) M = Z⊕ Z and N the submodule generated by (2, 0) and (0, 3).

(c) M = Z⊕ Z and N the submodule generated by (2, 3).

(d) M = Z⊕ Z and N the submodule generated by (6, 9).

108. Let V be a two dimensional vector space over Q having basis {v1, v2}. Let T be the linear
transformation on V defined by T (v1) = 3v1 − v2, T (v2) = 2v2. Make V into a Q[X]-module by
defining X · u = T (u).

(a) Show that the subspace U = {av2 | a ∈ Q} of V spanned by v2 is actually a Q[X]-
submodule of V .

(b) Consider the polynomial f = X2 + 2X − 3 ∈ Q[X]. Determine the vectors f · v1 and f · v2,
that is, express them as linear combinations of v1 and v2.
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LECTURE 14

Torsion and submodules of free modules

14.1 Torsion

Definition 14.1

The annihilator of an element u ∈M in an R-module is

annR(u) = {ρ ∈ R | ρu = 0}

An element u ∈ M is said to be torsion if annR(u) 6= {0}. The torsion submodule TM consists
of all torsion elements in M , that is,

TM = {u ∈M | ∃ ρ ∈ R \ {0}, ρu = 0}

The module M is said to be a torsion module if all elements in M are torsion, and torsion-free
if zero is the only torsion element.

Exercise 109.

a) Show that annR(u) is an ideal in R.

b) Show that if R is an integral domain, then TM is a submodule of M .

c) Let M be a free module over an integral domain R. Show that M is torsion-free.

d) Give an example of a finitely generated torsion-free module over an integral domain that is not
free. (Hint: The ring should not be a PID.)

Proposition 14.2

Let M be a module over an integral domain R. The quotient module M/TM is torsion-free.

Proof. Let ρ ∈ R be non-zero.

ρ(u+ TM ) = 0 + TM =⇒ ρu+ TM = 0 + TM

=⇒ ρu ∈ TM
=⇒ there is a non-zero σ ∈ R such that σ(ρu) = 0

=⇒ (σρ)u = 0

=⇒ u ∈ TM (since ρ and σ are non-zero and R is an integral domain)
=⇒ u+ TM = 0 + TM
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14.2 Submodules of free modules

In general, a submodule of a free module need not be free. For example, let I = 〈2, X〉� Z[X] be the
ideal generated by 2 and X . Then when considered as a Z[X]-module, I is not free. It is a submodule
of a free module, namely Z[X] itself considered as a Z[X] module.

In this section we show that every submodule of a free module over a PID is itself free.

Lemma 14.3: The splitting lemma

Let R be a commutative ring. Let F be a free R-module and M an R-module. Let ϕ : M → F
be a surjective homomorphism. Then there exists a submodule F ′ ⊆ M such that F ′ ∼= F and
M = F ′ ⊕ ker(ϕ).

Proof. Let X = {xi | i ∈ I} be a basis for F . Since ϕ is surjective, there exist elements ui ∈ M such
that ϕ(ui) = xi. The map f : X → M given by f(xi) = ui extends to a homomorphism ψ : F → M .
Since ϕ ◦ ψ(xi) = xi we have that ϕ ◦ ψ = IdF . It follows that ψ is injective. Letting F ′ = im(ψ), we
have that F ′ ∼= F .

It remains to show that M = F ′ ⊕ ker(ϕ). For any u ∈ M we have ψ ◦ ϕ(u) ∈ F ′ and u − ψ ◦ ϕ(u) ∈
ker(ϕ). It follows that M = F ′+ ker(ϕ). Let v ∈ F ′ ∩ ker(ϕ). Then v = ψ(w) for some w ∈ F , and also
ϕ(v) = 0. Therefore ϕ ◦ψ(w) = 0, which implies that w = 0 because ϕ ◦ψ = IdF . If follows that v = 0
and therefore that F ′ ∩ ker(ϕ) = {0}.

Theorem 14.4: Submodules of free modules over a PID are free

Let R be a PID, and F a free R-module of finite rank r. Then every submodule of F is free and
has rank at most r.

Proof. We use induction on the rank r of F . If F has rank 1, then F ∼= RR (Lemma 13.6), and any
submodule N of F is an ideal in R. Since R is a PID, the ideal is generated by a single element. If
N = {0}, then N is free of rank 0. Otherwise N = 〈u〉 for some non zero u ∈ R and N ∼= R (as an
R-module).

For the induction, suppose that the conclusion of the theorem is true for all free R-modules of rank
at most r − 1. Let {x1, . . . , xr} be a basis for F , and let F ′ ⊆ F be the submodule generated by
{x1, . . . , xr−1}. Then F ′ is free and {x1, . . . , xr−1} is a basis for it. Let N ⊆ F be a submodule. We
want to show that N is free and has rank at most r. Let π : F → F/F ′ be natural projection, and
note that F/F ′ ∼= R. Consider the restriction π|N : N → F/F ′. Since F/F ′ is free of rank 1, we know
that im(π|N ) is free of rank at most 1. Also, ker(π|N ) = N ∩ F ′ ⊆ F ′ is free of rank at most r − 1. By
Lemma 14.3, N = L⊕ (N ∩ F ′) where L ∼= im(π|N ). Since the direct sum of two free modules is free
and rank adds, N is free of rank at most r.
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14.3 Exercises

110. Let I be an ideal in an integral domain R. Show that annR(R/I) = I .

111. Let M1 and M2 be two R-modules. Show that annR(M1 ⊕M2) = annR(M1) ∩ annR(M2).

112. Show that R considered as a module over itself is torsion-free if and only if R is an integral
domain.

113. Show that Q as a Z-module is torsion-free but not free.

114. Suppose that R is a principal ideal domain. Let M be a non-trivial R-module which has no
proper submodules (that is, the only submodules are M itself and {0}). Show that either R is a
field and M ∼= R or R is not a field and M ∼= R/〈p〉 for some prime p ∈ R.

115. LetR = Z/6Z, and letF be theR-moduleR2. Write down a basis forF . LetN = {(0, 0), (3, 0)} ⊆
F . Show that N is a submodule of F , and that N is not free. Why does this not contradict The-
orem 14.4?

116. Let R = Z and F = Z3. Let N = {(x, y, x) ∈ F | x+ y + z = 0}. Show that N is a submodule of
F . Find a basis for N .
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LECTURE 15

Smith normal form

We want to analyse the structure of finitely generated modules. We have already noted that any such
module is isomorphic to F/N for some free module F . Since N is a submodule of a free module,
and assuming that R is a PID, N is also free. The inclusion map N → F is a homomorphism.
Homomorphisms between free R-modules can be represented by matrices over R. By considering
the structure of such matrices, we will be able to analyse the structure of F/N .

15.1 The matrix of a homomorphism

Let R be an integral domain, and F and G two finitely generated free R-modules. Fix bases for
B = {f1, . . . , fm} and C = {g1, . . . , gn} for F and G, every R-module homomorphism ϕ : G → F is
represented by a unique matrix in Mm×n(R) as follows. For each element gj in the basis for G write
ϕ(gj) in terms of the basis for F , that is,

ϕ(gj) =

m∑
i=1

aijfi

The matrix (aij) is called the matrix of the homomorphism ϕ with respect to the given bases, and
will be denoted by [ϕ]B,C or simply [ϕ].

Exercise 117. Show that for all u ∈ G,

[ϕ(u)]B = [ϕ]B,C [u]C

where [u]C is the coordinate matrix of u with respect to C, that is [u]C = (uj1) ∈Mn×1 is determined
by the equation u =

∑n
j=1 uj1gj .

Definition 15.1

Two matrices A,B ∈ Mm×n(R) are said to be equivalent if there exist invertible matrices X ∈
Mm×m and Y ∈Mn×n such that A = XBY .

Equivalent matrices represent the same homomorphism, but with respect to different choices of
bases.

15.2 Smith normal form

Theorem 15.2

LetR be a PID andA ∈Mm×n(R). The matrixA is equivalent to a diagonal matrixD ∈Mm×n(R)
satisfying D = diag(d1, d2, . . . , dmin{m,n}) and d1 | d2 | · · · | dmin{m,n}.
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Definition 15.3

The diagonal matrix as in the above proposition is called the invariant factor matrix of A or
the Smith normal form of A.

Outline of proof. We will show that A is equivalent to a matrix in the form
d 0 · · · 0

0
... B
0

 (∗)

where

(a) B ∈M(m−1)×(n−1)(R)

(b) d and all entries in B are R-linear combinations of the entries from A, and

(c) d divides all entries in B.

Repeated application then gives the required result.

We describe how this can be done algorithmically in the case in which R is actually a Euclidean
Domain with norm function σ.

Note that if we apply an elementary row or column operation, the new matrix is equivalent to the
old. We will apply a sequence of row and column operations to put A into the form given in (∗). If
all entries in A are zero, then it is already in the required form, so we assume that there is at least
one non-zero entry. Then, by swapping rows and columns we can ensure that the top left entry a11 is
non-zero. Suppose that some other entry in the first row ofA is non-zero. Then by swapping columns
we can assume that a12 is non-zero. Applying the Euclidean algorithm (using column operations) to
the entries a11 and a12 we obtain a new matrix in which the first two entries in the new matrix are
d = gcd(a11, a12) and 0. The other entries in the first two columns will also have changed.

da11 a12 · · · e
column operations
−−−−−−−−−−−→ dd 0 · · · e

Repeating a finite number of times we obtain a matrix whose first row is of the form dd 0 · · · 0e. A
similar process along the first column enables us to obtain a matrix in the required form (∗). One then
needs to ensure that d divides all entries in B.

Suppose that there is an entry in B that is not divisible by d. Then apply the row operation that adds
that row to the first row. The top left entry is still d, but there are other non-zero entries in the first
row, at least one of which is not divisible by d. Now simply begin the whole process again, to clear
all entries in the first row and first column, aside from the top left entry. How do we know that this
process will eventually terminate with a matrix in the required form? The point is that after each
iteration, the value of σ(d) has been strictly decreased. Since σ(d) is a natural number, this can only
happen a finite number of times.

The general case, in which R is merely a PID, is very similar. In addition to elementary matrices we
need to multiply by another sort of invertible matrix. In place of the Euclidean algorithm we use the
fact (see Exercise 68) that in a PID we have d = gcd(a, b) = xa+ yb for some x, y ∈ R. We have

d = xa+ yb

= d(xa′ + yb′) (where a = da′ and b = db′)
1 = xa′ + yb′ (since d 6= 0 and R is an ID)
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So 
a b · · ·
...

. . .




x −b′ 0 · · · 0
y a′ 0 · · · 0

0 0
...

... I
0 0

 =


d 0 · · ·
...

. . .


The second matrix is invertible, since its determinant is 1. In place of a norm function σ, we define a
function λ : R \ {0} → N by

λ(r) =

{
0 if r is a unit
k if r is not a unit and r = p1 . . . pk with pi irreducible

This is not a norm function, but can still be used to justify that the process terminates. Notice that
λ(ab) = λ(a)λ(b), and that if d divides a, but is not an associate of a, then λ(d) < λ(a).

Example 15.4. Beginning with the following matrix A ∈M2×3(Z), we apply row and column opera-
tions to obtain a matrix in the diagonal form described in Theorem 15.2.

A =

[
6 4 4
4 8 0

]
C17→C1−C2−−−−−−−−→

[
2 4 4
−4 8 0

]
C27→C2−2C1−−−−−−−−→
C37→C3−2C1

[
2 0 0
−4 16 8

]
R27→R2+2R1−−−−−−−−→

[
2 0 0
0 16 8

]
C27→C2−2C3−−−−−−−−→

[
2 0 0
0 0 8

]
C2↔C3−−−−−→

[
2 0 0
0 8 0

]
= D

We can obtain invertible matrices X and Y such that XAY = D by applying the row and column
operations to the identity matrices of the appropriate size.[

1 0
0 1

]
R27→R2+2R1−−−−−−−−→

[
1 0
2 1

]
= X1 0 0

0 1 0
0 0 1

 C17→C1−C2−−−−−−−−→

 1 0 0
−1 1 0
0 0 1

 C27→C2−2C1−−−−−−−−→
C37→C3−2C1

 1 −2 −2
−1 3 2
0 0 1


C27→C2−2C3−−−−−−−−→

 1 2 −2
−1 −1 2
0 −2 1

 C2↔C3−−−−−→

 1 −2 2
−1 2 −1
0 1 −2

 = Y

Example 15.5. Starting with the matrix A ∈ M3×3(Q[X]) below we use row and column operations
to put it into the diagonal form described in Theorem 15.2.

A =

1−X 1 +X X
X 1−X 1

1 +X 2X 1

 C1↔C3−−−→

X 1 +X 1−X
1 1−X X
1 2X 1 +X

 R1↔R3−−−→

 1 2X 1 +X
1 1−X X
X 1 +X 1−X


R2 7→ R2− R1−−−−−−−−−→
R3 7→ R3−XR1

1 2X 1 +X
0 1− 3X −1
0 1 +X − 2X2 1− 2X −X2


C2 7→ C2− 2XC1−−−−−−−−−−−−→

C3 7→ C3− (1 +X)C1

1 0 0
0 1− 3X −1
0 1 +X − 2X2 1− 2X −X2

 C2↔ C3−−−−−→

1 0 0
0 −1 1− 3X
0 1− 2X −X2 1 +X − 2X2


C3 7→ C3 + (1− 3X)C2−−−−−−−−−−−−−→

1 0 0
0 −1 0
0 1− 2X −X2 2− 4X + 3X2 + 3X3


R3 7→ R3 + (1− 2X −X2)R2−−−−−−−−−−−−−−−−→

1 0 0
0 −1 0
0 0 2− 4X + 3X2 + 3X3

 = D
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15.3 Exercises

118. Let G be the group of units in M2×2(Z), that is, G = GL2(Z).

Show that G is generated by the set{[
1 1
0 1

]
,

[
0 1
1 0

]
,

[
−1 0
0 1

]}

119. For the matricesA,D ∈M3×3(Q[X]) from Example 15.5 find invertible matricesL,R ∈M3×3(Q[X])
satisfying LAR = D.

120. Given the matrixA, find invertible matricesL,R and elements d1, d2, d3 such thatLAR = diag(d1, d2, d3)
and d1|d2|d3.

(a) A =

7 8 9
4 5 6
1 2 3

 ∈M3×3(Z) (b) A =

1−X 1 +X X
X 1−X 1

1 +X 2X 1

 ∈M3×3(Q[X])

121. Find the invariant factor matrices over Z for the first three of the following matrices, and over
Q[X] for the last two of the following matrices:

(a)
[

3 1
−1 2

]
(b)

[
1 2 3
4 5 6

]

(c)

 −4 −6 7
2 2 4
6 6 15



(d)

 X 1 −2
−3 X + 4 −6
−2 2 X − 3



(e)

 X 0 0
0 1−X 0
0 0 1−X2


122. Let F be a free module of rank m over an integral domain R. Let EndR(F ) denote the ring of all

homomorphisms from F to itself. The operations being given by

(ϕ+ ψ)(u) = ϕ(u) + ψ(u)

(ϕψ)(u) = ϕ ◦ ψ(a)

Show that EndR(F ) ∼= Mm×m(R) as rings

123. Let F be a free module over an integral domain R, and ϕ : F → F a homomorphism. Let B =
{f1, . . . , fm} be a basis for F . Show that the following are equivalent:

(a) {ϕ(f1), . . . , ϕ(fm)} is a basis for F ;

(b) ϕ is an isomorphism;

(c) The matrix [ϕ]B,B is invertible.

124. Show that an n × n matrix over a PID is invertible if and only if it is equivalent to the identity
matrix.

125. Let f1, f2, ..., fs be a basis of a free module V over a PIDR. Suppose that f = r1f1+r2f2+ · · ·+rsfs
and that 1 is a gcd of r1, r2, . . . , rs. Show that f is a part of a basis for V .

126.? Let ϕ : Zk → Zk be a homomorphism given by multiplication by an integer matrix A. Show that
the image of ϕ has finite index (in Zk) if and only if detA 6= 0, and that in this case the index of
ϕ(Zk) in Zk is equal to | detA |.
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The structure theorem

Theorem 16.1: Structire theorem for finitly generated modules over a PID

LetM be a finitely generated module over a principal ideal domainR. Then there exist elements
d1, d2, . . . , dk ∈ R satisfying d1 | d2 | · · · | dk such that

M ∼= R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dk〉 (∗)

Proof. SinceM if finitely generated (by k elements say), there is a surjective homomorphism ϕ : Rk →
M (Lema 13.9). Let N = ker(ϕ). By Theorem 14.4, N is free and of rank s 6 k. Fix bases for N and for
Rk. The inclusion mapN → Rk is a homomorphism between free modules and so can be represented
by a matrix A ∈Mk×s(R). By Theorem 15.2, A is equivalent to a matrix of the form

d1 0 · · · 0
0 d2 · · · 0

0 0
. . . 0

0 0 · · · ds
0 0 · · · 0
0 0 · · · 0


Where there are k − s rows of zeros at the bottom, and d1 | d2 | · · · | ds. It follows that there is a basis
{f1, f2, . . . , fk} of Rk such that {d1f1, d2f2, . . . , dsfs} is a basis for N ⊆ Rk. If s < k define di = 0 for
all s < i 6 k. The map ψ : Rk → R/〈d1〉 ⊕ R/〈d2〉 ⊕ · · · ⊕ R/〈dk〉 given by ψ(

∑k
i=1 rifi) = (r1 +

〈d1〉, . . . , rk + 〈dk〉) is a homomorphism of R-modules. The result follows from the first isomorphism
theorem, since ψ is surjective, and ker(ψ) = N .

Remark.

1. Some of the di might be zero and some might be units. If di = 0, then dj = 0 for all j > i. If di
is a unit, then dj is a unit for all j 6 i.

2. A matrix A ∈ Mk×s(R) as above is sometimes called a presentation matrix for the module
Rk/(ARs) ∼= M .

Corollary 16.2

Let M be a finitely generated module over a PID.

1. If M is torsion-free, then M is free.

2. M = F ⊕ TM , where TM is the torsion submodule of M and F is a free submodule of finite
rank.

Proof. If any of the di in (∗) are non-zero and non-unit, then the right-hand side of (∗) would contain
non-zero torsion elements. This establishes the first part of the theorem.

The module M/TM is torsion-free (Proposition 14.2) and finitely generated. Therefore, M/TM is free
(using the first part) and of finite rank. Consider the surjective homomorphism ϕ : M → M/TM . By
Lemma 14.3, M = ker(ϕ)⊕ F where F ∼= M/TM . Note that ker(ϕ) = TM .
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Remark. The submodule F 6 M is not uniquely determined. For example if we take R = Z and
M = (Z/2Z)⊕Z, then TM = {(0+2Z, 0), (1+2Z, 0)}, but for F we can take either {(0+2Z, a) | a ∈ Z}
or {(a+ 2Z, a) | a ∈ Z}.

Definition 16.3

If any of the di is a unit, R/(di) ∼= {0} so we can drop that summand from the decomposition of
M . The decomposition (∗) (with all di non-unit) is called the invariant factor decomposition
of M . The non-unit elements di are called the invariant factors of M . The non-zero, non-unit di
are called the torsion invariants. The number of zero di is called the torsion-free rank of M .

Proposition 16.4

For a givenM as in the Structure Theorem 16.1, the invariant factors are all uniquely determined
by M (up to associates). The torsion-free rank is uniquely determined by M .

We postpone the proof until later.

Example 16.5. Let M be the Z-module F/N where F = Z2 and N = 〈(6, 4), (4, 8), (4, 0)〉 6 Z2. We
write M as a direct sum of non-trivial cyclic Z-modules.

Consider the homomorphism ϕ : Z3 → Z2 given by (a, b, c) 7→ a(6, 4) + b(4, 8) + c(4, 0). Then N =

im(ϕ), and, with respect to the standard bases, the matrix of the homomorphism is A =

[
6 4 4
4 8 0

]
.

From Example 15.4 we know that XAY = D where

X =

[
1 0
2 1

]
D =

[
2 0 0
0 8 0

]
Y =

 1 −2 2
−1 2 −1
0 1 −2


Since D represents ϕ and N = im(ϕ), we conclude that

M = Z2/ im(ϕ) ∼= Z/2Z⊕ Z/8Z

The invariant factors of M are 2 and 8.

Let’s justify our expression for M a little further. Consider the bases

B = {(1,−1, 0), (−2, 2, 1), (2,−1,−2)} C = {(1,−2), (0, 1)}

of Z3 and Z2 respectively. These bases correspond to the columns of Y and X−1. Notice that

ϕ(b1) = ϕ(1,−1, 0) = (2,−4) = 2c1

ϕ(b2) = ϕ(−2, 2, 1) = (0, 8) = 8c2

ϕ(b3) = ϕ(2,−1,−2) = (0, 0)

So we have
F = 〈c1〉 ⊕ 〈c2〉 N = 〈2c1〉 ⊕ 〈8c2〉

Since 〈2c1〉 ⊆ 〈c1〉 and 〈8c2〉 ⊆ 〈c2〉we conclude (see Exercise 97) that

F/N ∼= 〈c1〉/〈2c1〉 ⊕ 〈c2〉/〈8c2〉 ∼= Z/2Z⊕ Z/8Z
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Example 16.6. LetM be the Q[X]-module F/N where F = Q[X]3 andN is the submodule of F gener-
ated by {(1−X,X, 1+X), (1+X, 1−X, 2X), (X, 1, 1)}. We derive the invariant factor decomposition
of M

Consider the homomorphism ϕ : Q[X]3 → Q[X]3 whose matrix, with respect to the standard bases,
is

A =

1−X 1 +X X
X 1−X 1

1 +X 2X 1


Then N = im(ϕ) and M = Q[X]3/N . From Example 15.5, A is equivalent to

D =

1 0 0
0 −1 0
0 0 2− 4X + 3X2 + 3X3


It follows that

M ∼= Q[X]/(1)⊕Q[X]/(−1)⊕Q[X]/(2− 4X + 3X2 + 3X3)

∼= Q[X]/(2− 4X + 3X2 + 3X3)

So M is a torsion module and annR(M) = (2− 4X + 3X2 + 3X3) � Q[X].

16.1 Exercises

127. Let V be the Z[i]-module (Z[i])2/N where N = 〈(1 + i, 2− i), (3, 5i)〉. Write V as a direct sum of
cyclic modules.

© University of Melbourne 2025
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LECTURE 17

Primary decomposition

We will use the following result to rewrite the invariant factor decomposition in an alternative way.

Lemma 17.1

Let R be a PID, and a, b ∈ R two relatively prime elements. Then

R/〈ab〉 ∼= R/〈a〉 ⊕R/〈b〉 (as R-modules)

Proof. Define ϕ : R→ R/〈a〉 ⊕R/〈b〉 by ϕ(u) = (u+ 〈a〉, u+ 〈b〉). Then ker(ϕ) = 〈a〉 ∩ 〈b〉. Since R is
a PID and a and b are relatively prime, 〈a〉 ∩ 〈b〉 = 〈ab〉. So we have ker(ϕ) = 〈ab〉.

Again, since R is a PID and a and b are relatively prime, there exist x, y ∈ R such that xa + yb = 1.
Given any element (c+ 〈a〉, d+ 〈b〉) ∈ R/〈a〉⊕R/〈b〉, we have ϕ(cyb+ dxa) = (cyb+ 〈a〉, dxa+ 〈b〉) =
(c+ 〈a〉, d+ 〈b〉). Therefore ϕ is surjective, and the required isomorphism then follows from the first
isomorphism theorem (for modules).

Theorem 17.2

Let M be a finitely generated module over a principal ideal domain R. Then there exist prime
elements p1, . . . , ps ∈ R and numbers r, n1, n2, . . . , ns ∈ N such that

M ∼= R/〈pn1
1 〉 ⊕R/〈p

n2
2 〉 ⊕ · · · ⊕R/〈p

ns
s 〉 ⊕ Rr (†)

Proof. From Theorem 16.1 we have

M ∼= R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dk〉

where d1 | d2 | · · · | dk and all di are non-unit. Each non-zero di has an irreducible factorisation

di = pn1
1 p

n2
2 . . . p

nm1
mi

Lemma 17.1 then tells us that

R/〈di〉 ∼= R/〈pn1
1 〉 ⊕ · · · ⊕R/〈p

n1
1 〉

Definition 17.3

The expression given in (†) is called the primary decomposition of M .
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Example 17.4. Suppose that M is a Q[X]-module such that

M ∼= Q[X]/〈X4 − 32X + 4〉 ⊕Q[X]/〈X5 − 1〉 ⊕Q[X]/〈X2 − 2X + 1〉

From the irreducible factorisations

X4 − 32X + 4 = (X2 − 6X + 2)(X2 + 6X + 2)

X5 − 1 = (X − 1)(X4 +X3 +X2 +X + 1)

X2 − 2X + 1 = (X − 1)(X − 1)

We obtain the primary decomposition

M = Q[X]/〈X − 1〉 ⊕Q[X]/〈X − 1〉2 ⊕Q[X]/〈X2 − 6X + 2〉 ⊕Q[X]/〈X2 + 6X + 2〉
⊕Q[X]/〈X4 +X3 +X2 +X + 1〉

17.1 Exercises

128. Show that the Z-module Zpn , where p is a prime and n a non-negative integer, is not a direct
sum of two non-trivial Z-modules.

129. Let R = Q[X] and suppose that the torsion R-module M is a direct sum of four cyclic modules
whose annihilators are 〈(X − 1)3〉, 〈(X2 + 1)2〉, 〈(X − 1)(X2 + 1)4〉, and 〈(X + 2)(X2 + 1)2〉.
Determine the primary decomposition of M and the invariant factor decomposition of M . If M
is thought of as a vector space over Q on which X acts as a linear transformation denoted A,
determine the minimum and characteristic polynomials of A and the dimension of M over Q.
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Applications of the structure theorem

18.1 Application to abelian groups

Since abelian groups are Z-modules, and Z is a PID, the above structure theorem applies to finitely
generated abelian groups. We state the result in this special case.

Theorem 18.1: Structure Theorem for Finitely Generated Abelian Groups

Let G be a finitely generated abelian group. Then

G ∼= Zd1 ⊕ · · · ⊕ Zdk ⊕ (Z)m

where m ∈ N, di ∈ N, di > 2, d1|d2| · · · |dk

Exercise 130. Find a direct sum of cyclic groups which is isomorphic to the abelian group Z3/N ,
where N 6 Z3 is generated by {(2, 2, 2), (2, 2, 0), (2, 0, 2)}.

18.2 Application to linear transformations

Suppose we have a finite dimensional vector space V over a field F. Given a linear transformation
T : V → V , we’d like to find a matrix representation of T that is as simple as possible (while using
the same basis for domain and codomain).

We can endow V with a F[X]-module structure by defining scalar multiplication as follows

(
n∑
i=0

aiX
i)v =

n∑
i=0

aiT
i(v)

where ai ∈ F and v ∈ V .

Since V is finite dimensional as an F-module, it is finitely generated as a F[X]-module. Indeed, any
generating set for FV will be a generating set for F[X]V . Since F[X]V is finitely generated and F[X] is
a PID, we can apply the structure theorem to obtain

F[X]V ∼=
F[X]

〈d1〉
⊕ F[X]

〈d2〉
⊕ · · · ⊕ F[X]

〈dk〉
⊕ (F[X])r

where r > 0, each di ∈ F[X] is non-zero and non-unit, and d1 | d2 | · · · | dk.

In fact it must be the case that r = 0, that is, that the torsion-free rank of F[X]V is zero. To see this,
note that the set {1, X,X2, . . . } ⊆ F[X] is linearly independent over F. Therefore, if r > 1 then CV
would contain an infinite linearly independent set, which would contradict the fact that V is a finite
dimensional vector space.

We thus have

F[X]V ∼=
F[X]

〈d1〉
⊕ F[X]

〈d2〉
⊕ · · · ⊕ F[X]

〈dk〉
(>)

Remark.

1. It follows from this decomposition that dk = annF[X](V ) and is therefore the minimal polyno-
mial of T . That is, mT (X) = dk(X).
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2. The characteristic polynomial is given by cT (X) = d1d2 . . . dk. (The justification for this ass-
esrtion will be clear shortly.)

Each summand in (>) is a submodule of F[X]V and is therefore a subspace of FV that is preserved by
the linear transformation T . We therefore want to understand the structure of each summand as a
vector space over F together with the linear transformation obtained by restricting T to W .

Let W denote one of the summands in (>). That is, W = F[X]/〈d 〉 for some d = Xm + am−1X
m−1 +

· · ·+ a1X + a0 ∈ F[X] with m > 1.

We will analyse the restriction of T to W . For f ∈ F[X], denote the element f + 〈d 〉 ∈W by f̄ .

Lemma 18.2

The set BW = {1̄, X̄, X̄2, . . . , X̄m−1} is a basis for FW .

Proof. Let ξi ∈ F, 1 6 i 6 m− 1. Then

m−1∑
i=1

ξiX̄
i = 0 =⇒

m−1∑
i=1

ξiX
i ∈ 〈d 〉

=⇒
m−1∑
i=1

ξiX
i = 0 (since 0 is the only element in 〈d 〉 of degree less than m)

=⇒ ∀i, ξi = 0

Hence the set is linearly independent.

From the division algorithm for F[X], we know that for any f ∈ F[X], there is a g ∈ F[X] such that
deg(g) < deg(d) = m and ḡ = f̄ . It follows that f̄ ∈ span{1̄, X̄, . . . , X̄m−1}.

Now we calculate the matrix, with respect to this basis, of the the linear transformation T |W : W →
W . For this we calculate the images of the basis elements, noting that T (f̄) = Xf̄ .

T (X̄i) = X̄i+1 (for 0 6 i < m− 1)

T (X̄m−1) = −a0 − a1X̄ − · · · − am−1X̄m−1

The matrix of T |W (with respect to BW ) is therefore

0 0 0 0 −a0
1 0 0 · · · 0 −a1
0 1 0 0 −a2

...
. . .

...
...

0 0 0 0 −am−2
0 0 0 · · · 1 −am−1


∈Mm×m(F)

Definition 18.3

A matrix in the above form is called the companion matrix of d = Xm + am−1X
m−1 + · · · +

a1X + a0 ∈ F[X] (m > 1) and will be denoted Cd.

Exercise 131. Show that the characteristic polynomial of Cd is d.

Applying this to each summand in (>) we obtain the following.
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Theorem 18.4: Rational canonical form

Let V be a finite dimensional vector space over a field F and let T : V → V be a linear transfor-
mation. There exists of basis B for V such that

[T ]B =


Cd1

Cd2 0

0
. . .
Cdk


with di ∈ F[X], deg(di) > 1, and d1 | d2 | · · · | dk.

This matrix is called the rational canonical form of T .

Proof. Discussed in the lecture.

18.3 Exercises

132. How many abelian groups of order 136 are there? Give the primary and invariant factor de-
compositions of each.

133. Determine the invariant factors of the abelian group C100 ⊕ C36 ⊕ C150.

134. Find an isomorphic direct product of cyclic groups, where V is an abelian group generated by
x, y, z and subject to relations:

(a) 3x+ 2y + 8z = 0, 2x+ 4z = 0

(b) x+ y = 0, 2x = 0, 4x+ 2z = 0, 4x+ 2y + 2z = 0

(c) 2x+ y = 0, x− y + 3z = 0.

135. Suppose that the abelian group M is generated by three elements x, y, z subject to the relations
4x+ y + 2z = 0, 5x+ 2y + z = 0, 6y − 6z = 0. Determine the invariant factors of M and hence
exhibit M as a direct sum of cyclic groups.

136. Let T : R7 → R7 be a linear transformation. Suppose that the corresponding R[X]-module can
be written as

R[X]

〈X − 2〉
⊕ R[X]

〈X3 −X2 −X − 2〉
⊕ R[X]

〈X3 −X2 −X − 2〉

(a) Write down the rational canonical form of T .

(b) What are the minimal and characteristic polynomials of T ?

© University of Melbourne 2025
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LECTURE 19

Rational Canonical Form

We saw last lecture that every linear transformation T : V → V from a finite dimensional vector
space over F to itself has a matrix representation in rational canonical form. That is, there exists a basis
B of V such that the matrix of T with respect to B is in block diagonal form

[T ]B =


Cd1

Cd2 0

0
. . .
Cdk


with monic di ∈ F[X], deg(di) > 1, and d1 | d2 | · · · | dk. The square matrices Cdi are companion
matrices.

Cd =



0 0 0 0 −a0
1 0 0 · · · 0 −a1
0 1 0 0 −a2

...
. . .

...
...

0 0 0 0 −am−2
0 0 0 · · · 1 −am−1


∈Mm×m(F)

where d = a0 + a1X + · · ·+ am−1X
m−1 +Xm

Example 19.1.

CX−2 =
[
2
]

CX2−2X+1 =

[
0 −1
1 2

]
CX3+2X2−3X−4 =

0 0 4
1 0 3
0 1 −2


Example 19.2. The following matrices are in rational canonical form

[
2 0
0 2

] 1 0 0
0 0 −1
0 1 2




0 2 0 0 0
1 0 0 0 0
0 0 0 0 −2
0 0 1 0 2
0 0 0 1 1


The following matrices are not in rational canonical form

[
2 0
0 3

] 2 0 0
0 0 −1
0 1 2




0 2 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 2
0 0 0 1 3



19.1 Minimal and characteristic polynomials

The polynomials d1, . . . , dk determine the minimal and characteristic polynomials of the linear trans-
formation (or matrix). To see this, recall that given T : V → V we can consider V as a F[X]-module
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by defining scalar multiplication such that Xu = T (u). Applying the structure thereom for finitely
generated modules over a PID (Theorem 16.1) we obtained

F[X]V ∼=
F[X]

〈d1〉
⊕ F[X]

〈d2〉
⊕ · · · ⊕ F[X]

〈dk〉

with monic di ∈ F[X], deg(di) > 1, and d1 | d2 | · · · | dk.

Proposition 19.3

The minimal and characteristic polynomials of T are given by

mT (X) = dk(X) cT (X) = d1d2 · · · dk

Proof. Both follow from the existence of a rational canonical form matrix for T and that for any
(monic, non-constant) d ∈ F[X] the companion matrix Cd has characteristic polynomial equal to d
and minimal polynomial to d.

As a corollary of the existence of rational canonical form (together with the above proposition) we
get the following well-known result.

Cayley Hamilton Theorem

A square matrix A ∈Mn(F) satisfies its own characteristic equation.

19.2 Calculating the rational canonical form

Given a matrix A ∈ Mn(F) we can calculate its rational canonical form by considering the matrix
XIn − A ∈ Mn(F[X]). Let V be a vector space over F with basis {v1, . . . , vn}. Let T : V → V be
the linear transformation whose matrix (with respect to the the basis {v1, . . . , vn}) is A, and define
F[X]V as above. Then F[X]V ∼= F[X]n/N , where N is generated by the columns of the matrix XI −A.
We then find d1, . . . , dn ∈ F[X] such that XI − A ∼ diag(d1, . . . , dn) (Theorem 15.2) and obtain that
F[X]V ∼= F[X]/〈d1〉 ⊕ · · · ⊕ F[X]/〈dn〉. From this we then get the rational canonical form of A as
explained in the previous section.

Example 19.4.

An an example, let’s calculate the rational canonical form of the matrix A =

1 1 0
0 1 0
0 1 1

 ∈ Q[X].

XI −A =

X − 1 −1 0
0 X − 1 0
0 −1 X − 1

 C1↔C2−−−−−→

 −1 X − 1 0
X − 1 0 0
−1 0 X − 1


C2+(X−1)C1−−−−−−−−→

 −1 0 0
X − 1 (X − 1)2 0
−1 −(X − 1) X − 1

 R2+(X−1)R1−−−−−−−−→
R3−R1

−1 0 0
0 (X − 1)2 0
0 −(X − 1) X − 1


R2↔R3−−−−−→

−1 0 0
0 −(X − 1) X − 1
0 (X − 1)2 0

 C3+C2−−−−→

−1 0 0
0 −(X − 1) 0
0 (X − 1)2 (X − 1)2


R3+(X−1)R2−−−−−−−−→

−1 0 0
0 −(X − 1) 0
0 0 (X − 1)2


© University of Melbourne 2025



MAST30005 Algebra, 2025 19-3

From which we get that F[X]V ∼=
F[X]
〈X−1〉 ⊕

F[X]
〈(X−1)2〉 . The rational canonical form of A is therefore

A ∼

1 0 0
0 0 −1
0 1 2



19.3 Exercises

137. Write down the minimal and characteristic polynomials of the following matrices. (Hint: they
are in rational canonical form)

(a)


1 0 0 0
0 0 0 1
0 1 0 1
0 0 1 1

 ∈M4(F2)

(b)



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 2
0 0 1 0 0 2
0 0 0 1 0 1
0 0 0 0 1 2

 ∈M6(F3)

138. Find the rational canonical forms of the following matrices. State their minimal and character-
istic polynomials.

(a)
[
2 0
0 3

]
∈M2(R)

(b)

 7 6 9
0 1 0
−4 −4 −5

 ∈M3(R)

(c)


0 −3 3 1
0 2 0 0
−2 −3 5 1
2 3 −3 1

 ∈M4(R)

139. Show that if a square matrix A ∈ Mn(F) has minimal polynomial equal to its characteristic
polynomial (both equal to d ∈ F[X]), then A is similar to the companion matrix Cd.

© University of Melbourne 2025
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LECTURE 20

Jorndan normal form

Another useful standard matrix representation for a linear transformation is Jordan normal form,
which is based on the primary decomposition.

Suppose that V is a finite-dimensional complex vector space, and T : V → V a linear transformation.
As discussed above we can equip V with the structure of a C[X]-module. Noting that the prime
elements in C[X] are exactly the linear polynomials, from Theorem 17.2, the module C[X]V has a
primary decomposition of the form

C[X]V ∼=
C[X]

〈(X − λ1)m1〉
⊕ · · · ⊕ C[X]

〈(X − λk)mk〉

for some λ1, . . . , λk ∈ C and m1, . . . ,mk ∈ Z>0. That there are no summands of the form C[X]
follows, as above, from the fact that V is finite dimensional as a vector space.

The summands are submodules of C[X]V and therefore subspaces of CV that are preserved by the
linear transformation T . Let W = C[X]/〈X −λ)m〉. We will analyse the restriction of T to W . Denote
the element f + (X − λ)m ∈W by f̄ .

Exercise 140. Show that the set

BW = {(X̄ − λ̄)m−1, (X̄ − λ̄)m−2, . . . , (X̄ − λ̄)2, X̄ − λ̄, 1̄}

is a basis for CW .

Now we calculate the matrix, with respect to this basis, of the the linear transformation T |W : W →
W . For this we calculate the images of the basis elements. Noting that T (f̄) = Xf̄ , we have

T ((X̄ − λ̄)m−1) = X(X̄ − λ̄)m−1 = (X̄ − λ̄)m + λ(X̄ − λ̄)m−1 = λ(X̄ − λ̄)m−1

T (X̄ − λ̄)i = X(X̄ − λ̄)i = (X̄ − λ̄)i+1 + λ(X̄ − λ̄)i (for 1 6 i < m− 1)
T (1̄) = X 1̄ = X̄ = (X̄ − λ̄) + λ1̄

The matrix of T |W is therefore

[T |W ]BW =



λ 1 0 0 0
0 λ 1 · · · 0 0
0 0 λ 0 0

...
. . . 1 0

0 0 0 λ 1
0 0 0 · · · 0 λ


∈Mm(C)

Definition 20.1

A matrix in the above form is called an elementary Jordan matrix and will be denoted Jλ,m.

Exercise 141. (a) Show that the characteristic polynomial of Jλ,m is (X − λ)m.

(b) Show that the minimal polynomial of Jλ,m is (X − λ)m.

(c) Show that the dimension of the eigenspace (corresponding to the only eigenvalue of A) is 1.
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Theorem 20.2: Jordan normal form

Let V be a finite-dimensional complex vector space and T : V → V a linear transformation.
There exists a basis B of V and λ1, . . . , λk ∈ C and m1, . . . ,mk ∈ Z>0 such that the matrix of T is
in block diagonal form

[T ]B =


Jλ1,m1

Jλ2,m2

. . .
Jλk,mk



Proof. Follows directly from the decomposition of V into summands of the form W and the above
matrix for T |W .

Definition 20.3

A matrix in the above form will be called a Jordan normal form matrix.

Example 20.4. The following are examples of matrices in Jordan Normal Form:

1 1 0
0 1 0
0 0 2





2 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 1 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 3 1 0 0
0 0 0 0 0 0 3 1 0
0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 3



20.1 Calculating the Jordan normal form of a matrix

We can proceed as with rational canonical form.

Given a matrix A ∈ Mn(C) we can calculate its Jordan normal form by considering the matrix
XIn −A ∈Mn(C[X]). Let V be a complex vector space with basis {v1, . . . , vn}. Let T : V → V be the
linear transformation whose matrix (with respect to the the basis {v1, . . . , vn}) is A, and define C[X]V
as in the previous section. The following lemma tells us that C[X]V ∼= C[X]n/N , whereN is generated
by the columns of the matrix XIn−A. We find d1, . . . , dn ∈ C[X] such that XI−A ∼ diag(d1, . . . , dn)
(Theorem 15.2) and obtain that C[X]V ∼= C[X]/〈d1〉 ⊕ · · · ⊕ C[X]/〈dn〉. From this we then get the pri-
mary decomposition of C[X]V and hence the Jordan Normal Form of A, as explained in the previous
section.

In summary, calculating the Smith normal form of XI −A ∈Mn(C[X]) enables us to write down the
primary decomposition of C[X]V and hence the Jordan Normal Form of the matrix A.

To justify the above process for calculating the Jordan normal form (and that for calculating the
rational canonical form) we note the following lemma.

© University of Melbourne 2025
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Lemma 20.5

Let F be a field and A ∈ Mn(F). Let F = {f1, . . . , fn} be the standard basis for (F[X])n. Let
{v1, . . . , vn} be a basis the vector space V = Fn. Let π be the surjective C[X]-module homomor-
phism π : (F[X])n → C[X]V determined by π(fi) = vi.

Let ϕ : F → F be the homomorphism whose matrix with respect to F is XI −A. Then ker(π) =
im(ϕ). In particular

F[X]V ∼=
(F[X])n

im(ϕ)

Proof. We first show that im(ϕ) ⊆ ker(π). Let V = {v1, . . . , vn}. It is enough to show that for all
fj ∈ F we have π ◦ ϕ(fj) = 0. Let aij ∈ C be the entry in the i-th row and j-th column of A. Then
(XI −A)ij = δijX − aij and

π ◦ ϕ(fj) = π(

n∑
i=1

(aij − δijX)fi) (since [ϕ]F = A−XI)

= π((

n∑
i=1

aijfi)−Xfj) =

n∑
i=1

aijπ(fi)−Xπ(fj)

=

n∑
i=1

aijvi −Xvj (from the definition of π)

=

n∑
i=1

aijvi − T (vj) (from the way in which scalar multipn is defined in C[X]V )

= T (vj)− T (vj) (since [T ]V = A)
= 0

Now for the reverse inclusion. Given any f ∈ F , we have f = (
∑

i αifi) + ϕ(f ′) for some f ′ ∈ F and
αi ∈ F. (Note that the αi are in F not F[X].)

Then

f ∈ ker(π) =⇒ π(
∑
i

αifi) + π(ϕ(f ′)) = 0

=⇒ π(
∑
i

αifi) = 0 (since im(ϕ) ⊆ ker(π))

=⇒
∑
i

αivi = 0 (since π(fi) = vi)

=⇒ αi = 0 for all i
=⇒ f = ϕ(f ′)

=⇒ f ∈ im(ϕ)
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Example 20.6. Calculate a Jordan normal form matrix that is similar to the matrix

A =


2 0 0 0
−1 1 0 0
0 −1 0 −1
1 1 1 2


We consider the matrix XI −A ∈M4×4(C) and put it into diagonal form

XI −A =


X − 2 0 0 0

1 X − 1 0 0
0 1 X 1
−1 −1 −1 X − 2

 R1↔R2−−−−−→


1 X − 1 0 0

X − 2 0 0 0
0 1 X 1
−1 −1 −1 X − 2


C2−(X−1)C1−−−−−−−−−→


1 0 0 0

X − 2 −(X − 1)(X − 2) 0 0
0 1 X 1
−1 X − 2 −1 X − 2


R2−(X−2)R1−−−−−−−−−→

R4+R1


1 0 0 0
0 −(X − 1)(X − 2) 0 0
0 1 X 1
0 X − 2 −1 X − 2


R2↔R3−−−−−→


1 0 0 0
0 1 X 1
0 −(X − 1)(X − 2) 0 0
0 X − 2 −1 X − 2


C3−XC2−−−−−−→
C4−C2


1 0 0 0
0 1 0 0
0 −(X − 1)(X − 2) X(X − 1)(X − 2) (X − 1)(X − 2)
0 X − 2 −(X − 1)2 0


R3+(X−1)(X−2)R2−−−−−−−−−−−−−→

R4−(X−2)R2


1 0 0 0
0 1 0 0
0 0 X(X − 1)(X − 2) (X − 1)(X − 2)
0 0 −(X − 1)2 0


C3↔C4−−−−−→


1 0 0 0
0 1 0 0
0 0 (X − 1)(X − 2) X(X − 1)(X − 2)
0 0 0 −(X − 1)2


C4−XC3−−−−−−→


1 0 0 0
0 1 0 0
0 0 (X − 1)(X − 2) 0
0 0 0 −(X − 1)2


This matrix is not in Smith normal form, but it is sufficient to conclude that (in the notation from the
explanation above)

C[X]V ∼=
C[X]

〈1〉
⊕ C[X]

〈1〉
⊕ C[X]

〈(X − 1)(X − 2)〉
⊕ C[X]

〈−(X − 1)2〉

From which we get that the primary decomposition is

C[X]V ∼=
C[X]

〈X − 1〉
⊕ C[X]

〈(X − 1)2〉
⊕ C[X]

〈X − 2〉

From which it follows that the Jordan normal form of the matrix A is

J =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 2


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20.2 Exercises

142. Find the Smith normal of the matrix XI −A from Example 20.6. (The point is to continue with
the given sequence of row and column operations.)

143. Suppose that the linear transformation T acts on an 8 dimensional complex vector space V .
Using T we make V into a C[t]-module (where t is an indeterminate) in the usual way. Suppose
that as a C[t]-module V ∼= C[t]/〈(t+ 5)2〉 ⊕ C[t]/〈(t− 3)3(t+ 5)3〉. What is the Jordan (normal)
form for the transformation T ? What are the eigenvalues of T and how many eigenvectors does
T have? What are the minimal and characteristic polynomials of T ?

144. Determine the Jordan normal form of the matrix

A =

1 1 0
0 1 0
0 1 1


(a) By deducing it from the characteristic and minimal polynomials;

(b) By calculating the invariant factor matrix of XI −A ∈M3×3(C).

145. Find all possible Jordan normal forms for a matrix (over C) whose characteristic polynomial is
(X + 2)2(X − 5)3

© University of Melbourne 2025
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LECTURE 21

More on calculating normal forms

We look in more detail at the process for calculating the normal forms of a matrix A ∈ Mn(F) and
give examples of finding an invertible matrix P ∈Mn(F) such that P−1AP is in normal form.

21.1 Recap

We recall the process we’ve discussed for finding the normal form of a matrix.

Let FV be the F-vector space Fn and let S = {e1, e2, . . . , en} ⊆ V be the standard basis for Fn. Given
A ∈Mn(F) define T : FV → FV to be the linear transformation given by [T ]S = A.

We equip V with the structure of an F[X]-module by defining Xu = T (u). That is, the F[X]-module
F[X]V has the same set of vectors and vector addition as FV , but with scalar multiplication given by

(
N∑
i=0

aiX
i)u =

N∑
i=0

aiT
i(u)

Note that S is a generating set for F[X]V . Let F = {u1, . . . , un} by the standard basis for F[X]n and
define a module homomorphism π : F[X]n → F[X]V by π(ui) = ei. This homomorphism is surjective
because S is a generating set for F[X]V . By the first isomorphism theorem, we have that F[X]V ∼=

F[X]n

ker(π) .

To analyse F[X]n

ker(π) we define a homomorphism of free modules ϕ : F[X]n → F[X]n by [ϕ]F = XIn−A.
Then im(ϕ) = ker(π) (see Lemma 20.5).

Consider the Smith normal form of XIn − A, D = diag(d1, . . . , dn). Then D = Z[ϕ]FY for some
invertible matrices Z, Y ∈ Mn(F[X]). Therefore, D = [ϕ]D,C for some bases C for the domain and D
for the codomain of ϕ. Let D = {v1, . . . , vn}. Then {d1v1, . . . , dnvn} is a generating set for im(ϕ) and

F[X]V ∼=
F[X]n

im(ϕ)
=

〈v1〉 ⊕ · · · ⊕ 〈vn〉
〈d1v1〉 ⊕ · · · ⊕ 〈dnvn〉

∼=
〈v1〉
〈d1v1〉

⊕ · · · ⊕ 〈vn〉
〈dnvn〉

∼=
F[X]

〈d1〉
⊕ · · · ⊕ F[X]

〈dn〉

Calculating the di enables us to deduce the normal form (either rational or Jordan). In addition,
knowing the vi enables us to calculate P such that P−1AP is in normal form. Since the matrix Z is
the transition matrix PD,F , its inverse is PF ,D. The columns of Z−1 are therefore [v1]F ,. . . , [vn]F .

21.2 Examples

Example 21.1. In Example 19.4 we determined the rational canonical form of the following matrix
A ∈M3(Q) by putting XI −A ∈M3(Q[X]) into Smith normal form:

A =

1 1 0
0 1 0
0 1 1

 XI −A ∼

−1 0 0
0 −(X − 1) 0
0 0 (X − 1)2

 = D = ZAY

To find the matrix Z−1 we consider the row operations that were applied in obtainingD fromXI−A.
They were (in the order applied):
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1. R2 + (X − 1)R1 2. R3 −R1 3. R2 ↔ R3 4. R3 + (X − 1)R2

Denoting the corresponding elementary matrices by Z1, Z2, Z3, Z4, we have

Z = Z4Z3Z2Z1

Z−1 = Z−11 Z−12 Z−13 Z−14

=

 1 0 0
−(X − 1) 1 0

0 0 1

1 0 0
0 1 0
1 0 1

1 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 −(X − 1) 1


=

 1 0 0
−(X − 1) −(X − 1) 1

1 1 0


As in the explanation above, let F denote the standard basis for F[X]3 and S = {e1, e2, e3} the stan-
dard basis for F3. Let v1, v2, v3 ∈ F[X]3 be given by the columns of Z−1. That is,

[v1]F =

 1
−(X − 1)

1

 [v2]F =

 0
−(X − 1)

1

 [v3]F =

0
1
0


The images of these elements π(v1), π(v2), π(v3) ∈ F[X]V are given by

π(v1) = e1 − (X − 1)e2 + e3 = e1 + e2 + e3 −Xe2
= e1 + e2 + e3 − T (e2) (Xv = T (v) in F[X]V )

= e1 + e2 + e3 − (e1 + e2 + e3) ([T (e2)]S = A[e2]S)

=
⇀
0 (as expected since d1 is a unit)

Similarly,

π(v2) = −(X − 1)e2 + e3 = e2 + e3 −Xe2 = e2 + e3 − T (e2) = e2 + e3 − (e1 + e2 + e3) = −e1
π(v3) = e2

Now define B = {b1, b2, b3} ⊆ V by

b1 = π(v2) = −e1
b2 = π(v3) = e2

b3 = T (b2) = T (π(v3)) = T (e2) = e1 + e2 + e3

Noting that T (b1) = b1, T (b2) = b3, and T (b3) = −b2 + 2b3, we have

[T ]B =

1 0 0
0 0 −1
0 1 2


which is in rational canonical form.

Letting P = PS,B =

−1 0 1
0 1 1
0 0 1

, the change of basis for the matrix representation of the linear

transformation ϕ : V → V gives

[T ]B = PB,S [T ]SPS,B

= P−1AP

To obtain a Q such that Q−1AQ is in Jordan normal form we make a different choice of basis for F3.
Define C = {c1, c2, c3} ⊆ V by

c1 = π(v2) = −e1
c3 = π(v3) = e2

c2 = (T − I)(c3) = e1 + e3
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Noting that T (c1) = c1, T (c2) = c2, and T (c3) = c2 + c3, we have

[T ]C =

1 0 0
0 1 1
0 0 1


which is in Jordan normal form.

With Q =

−1 1 0
0 0 1
0 1 0

, we have Q−1AQ is in Jordan normal form.

Example 21.2. In Example 20.6 we determined the Jordan normal form of the following matrix A ∈
M4(C) by using row and column operations to show

A =


2 0 0 0
−1 1 0 0
0 −1 0 −1
1 1 1 2

 XI −A ∼


1 0 0 0
0 1 0 0
0 0 (X − 1)(X − 2) 0
0 0 0 −(X − 1)2


We will find a matrix Q such that Q−1AQ is in Jordan normal form. We use the same technique and
notation as in the previous example. The row operations applied to XI −A were, in order:

1. R1 ↔ R2

2. R2 − (X − 2)R1

3. R4 +R1

4. R2 ↔ R3

5. R3 + (X − 1)(X − 2)R2

6. R4 − (X − 2)R2

Labelling the corresponding elementary matrices as Z1, Z2, Z3, Z4, Z5, Z6, we have

Z−11 Z−12 Z−13 Z−14 Z−15 Z−16 =[
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

] [
1 0 0 0

(X − 1) 1 0 0
0 0 1 0
0 0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1

] [
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] [
1 0 0 0
0 1 0 0
0 −(X − 1)(X − 2) 1 0
0 0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0
0 (X − 2) 0 1

]

=

(X − 2) −(X − 1)(X − 2) 1 0
1 0 0 0
0 1 0 0
−1 (X − 2) 0 1


Let v1, v2, v3, v4 ∈ C[X]4 be given by the columns of the above matrix.

π(v1) = −2e1 + e2 − e4 + T (e1) = −2e1 + e2 − e4 + (2e1 − e2 + e4) =
⇀
0

π(v2) = −2e1 + e3 − 2e4 + T (3e1 + e4)− T 2(e1)

= −2e1 + e3 − 2e4 + (6e1 − 3e2 − e3 + 5e4)− (4e1 − 3e2 + 3e4) =
⇀
0

π(v3) = e1

π(v4) = e4

Let C = {c1, c2, c3, c4} be the basis for C4 given by

c1 = (T − 2I)e1 = −e2 + e4

c3 = e4

c2 = (T − I)e4 = −e3 + e4

c4 = (T − I)e1 = e1 − e2 + e4

Letting Q =


0 0 0 1
−1 0 0 −1
0 −1 0 0
1 1 1 1

we have that Q−1AQ =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 2


© University of Melbourne 2025
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21.3 Exercises

146. For each of the matrices A from Exercise 138 (repeated below), find P such that P−1AP is the
rational canonical form of A.

(a)
[
2 0
0 3

]
∈M2(R)

(b)

 7 6 9
0 1 0
−4 −4 −5

 ∈M3(R)

(c)


0 −3 3 1
0 2 0 0
−2 −3 5 1
2 3 −3 1

 ∈M4(R)

147. Let F be a field and let p, q ∈ F[X] be relatively prime.

(a) Let M be a cyclic F[X]-module, and let u ∈ M be such that M = 〈u〉. Suppose that
annF[X](u) = 〈pq〉. Show that M = 〈pu〉 ⊕ 〈qu〉 (internal direct sum).

(b) LetM be an F[X]-module and suppose that there exist u, v ∈M such that annF[X](u) = 〈p〉,
annF[X](u) = 〈p〉, and M = 〈u〉 ⊕ 〈v〉. Show that M = 〈u+ v〉 and ann(u+ v) = 〈pq〉.
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Uniqueness of the decompositions

To finish our discussion of finitely generated modules over a PID we will establish the uniqueness of
the invariant factor decomposition (Theorem 16.1) and the primary decomposition (Theorem 17.2).

22.1 p-primary submodules

We first consider the following special case.

Proposition 22.1

Let p ∈ R be prime. Suppose k, l ∈ Z>1 and m1, . . . ,mk, n1, . . . nl ∈ Z>1 are such that

R

〈pm1〉
⊕ · · · ⊕ R

〈pmk〉
∼=

R

〈pn1〉
⊕ · · · ⊕ R

〈pnl〉

with m1 6 m2 6 · · · 6 mk and n1 6 n2 6 · · · 6 nl.

Then k = l and mi = ni for all i.

Proof. Let M = R
〈pm1 〉 ⊕ · · · ⊕

R
〈pmk 〉 and N = R

〈pn1 〉 ⊕ · · · ⊕
R
〈pnl 〉 . Note that mk = nl since

〈pmk〉 = annR(M) = annR(N) = 〈pnl〉

We will use induction on mk, the highest power of p appearing.

If mk = nl = 1, we have (
R

〈p〉

)k
∼=
(
R

〈p〉

)l
and therefore k = l since R

〈p〉 is a field.

For the induction step consider the submodules pM 6 M and pN 6 N . We can apply the induction
hypothesis since pM ∼= pN and annR(pM) = 〈pmk−1〉. Let α ∈ {0, 1, . . . , k} be such that exactly α of
the mi are equal to 1, and let β ∈ {0, 1, . . . , l} be such that exactly β of the ni are equal to 1. We have

pM ∼=
R

〈pmα+1−1〉
⊕ · · · ⊕ R

〈pmk−1〉
(k − α summands)

∼= pN ∼=
R

〈pnβ+1−1〉
⊕ · · · ⊕ R

〈pnl−1〉
(l − β summands)

By induction we have k − α = l− β and (mα+1, . . . ,mk) = (nβ+1, . . . , nl). We also have (see Exercise
150) that (

R

〈p〉

)k
∼=

M

pM
∼=

N

pN
∼=
(
R

〈p〉

)l
Therefore k = l and α = β and we conclude that mi = ni for all i.
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22.2 Primary and invariant factor decompositions are unique

Let M and N be finitely generated modules over a PID R. Suppose we have two decompositions as
described in Theorem 17.2

M = R/〈pm1
1 〉 ⊕R/〈p

m2
2 〉 ⊕ · · · ⊕R/〈p

mk
k 〉 ⊕ Rr

N = R/〈qn1
1 〉 ⊕R/〈q

n2
2 〉 ⊕ · · · ⊕R/〈q

nl
l 〉 ⊕ Rt

where all pi, qi ∈ R are prime, mi, ni ∈ Z>1, and r, t ∈ Z>0.

Theorem 22.2

The primary decomposition is unique. That is, with the setup above, if M ∼= N then r = t, k = l,
and (after permuting the indices if necessary) mi = ni and pi ∼ qi for all i.

Proof outline. Fix an isomorphism ϕ : M → N .

First note that M and N have isomorphic torsion submodules: ϕ(TM ) = TN . It follows that M/TM ∼=
N/TN . An explicit isomorphism is given by u+TM 7→ ϕ(u)+TN . Since M/TM ∼= Rr and N/TN ∼= Rt

we have Rr ∼= Rt and hence r = t (Proposition 13.7).

Since annR(TM ) = annR(TN ) we know that every prime that appears in the expressions for M also
appears in the expression for N , and vice versa.

For a prime p ∈ R consider the submodules

Mp ={u ∈M | peu = 0 for some e ∈ Z>1}
Np ={u ∈ N | peu = 0 for some e ∈ Z>1}

Note that Mp is given by taking those summands in the expression for M that involve a power of p.
Similarly for Np. The result then follows by applying Proposition 22.1.

Since the invariant factor decomposition is determined by the primary decomposition, and vice
versa, we have the following.

Corollary 22.3

The invariant factor decomposition is unique.

22.3 Exercises

148. Determine whether the following pairs of modules are isomorphic.

(a) M = Q[X]
〈2〉 ⊕

Q[X]
〈X2−2X+1〉 ⊕

Q[X]
〈1〉 N = Q[X]

〈1〉 ⊕
Q[X]
〈X−1〉 ⊕

Q[X]
〈X−1〉

(b) M = Q[X]
〈2〉 ⊕

Q[X]
〈X2−3X+2〉 ⊕

Q[X]
〈1〉 N = Q[X]

〈1〉 ⊕
Q[X]
〈X−2〉 ⊕

Q[X]
〈2X−2〉

(c) M = Q[X]
〈2〉 ⊕

Q[X]
〈X2−3X+2〉 ⊕

Q[X]
〈0〉 N = Q[X]

〈0〉 ⊕
Q[X]
〈X−2〉 ⊕

Q[X]
〈X−1〉

(d) M = Q[X]
〈2〉 ⊕

Q[X]
〈X2−3X+2〉 ⊕

Q[X]
〈0〉 N = Q[X]

〈1〉 ⊕
Q[X]
〈X−2〉 ⊕

Q[X]
〈X−1〉

(e) M = Q[X]
〈X4+2X3+6X2−4X+6〉 ⊕

Q[X]
〈1〉 ⊕

Q[X]
〈0〉 N = Q[X]

〈0〉 ⊕
Q[X]

〈X2+2X−6〉 ⊕
Q[X]

〈X2−4X−2〉
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149. Let R be a PID and p ∈ R a prime. Suppose that M and N are torsion R-modules with
annR(M) = annR(N) = 〈p〉. Show that M and N are isomorphic as R-modules iff they are
isomorphic as vector spaces over R/〈p〉.

150. Let R be a PID, p ∈ R a prime, and M an R-module given by M = R
〈pm1 〉 ⊕ · · · ⊕

R
〈pmk 〉 for some

mi > 1. Show that M
pM
∼=
(
R
〈p〉

)k
.
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LECTURE 23

Fields

23.1 Field extensions

We will want to enlarge a given field to, for example, ensure that a given polynomial has a root. Since
we are thinking of extending a given field, we introduce an alternative terminology to saying that
the smaller is a subfield of the larger.

Definition 23.1

If E and F are fields with E a subfield of F , we say that F is an extension of E.

Example 23.2. The complex numbers C are an extension of the real numbers R. The real numbers are
an extension of the rational numbers Q. The field Q(i) = {x+ iy | x, y ∈ Q} is a subfield of C and an
extension of Q.

Remark. An extension E of F can be regarded as a vector space over F . For example we can regard
C as a vector space over R and also as a vector space over Q. The vector spaces CC, RC, QC are not
isomorphic.

We know that a polynomial in f ∈ F [X] need not have any roots in F . However, it is always possible
to extend to a field E ⊇ F such that f has a root in E.

Example 23.3. The polynomial X2 +X + 1 ∈ F2[X] has no roots in F2. The polynomial X2 +X + 1
does have a root in the field F4 of Example 2.5. The field F4 contains a copy of F2 and can therefore
be regarded as an extension of F2.

Proposition 23.4

Let F be a field and f ∈ F [X] a non-constant polynomial. Then there is an extension field E ⊇ F
and an element α ∈ E such that f(α) = 0.

Proof. Since F [X] is a UFD, the element f has a prime factorization f = p1 . . . pn. It is therefore
sufficient to prove the result under the assumption that f is prime. Let p ∈ F [X] be prime. Because
p is prime, E = F [X]/〈p〉 is a field (Proposition 6.5 and Lemma 6.7). The map F → E given by
f 7→ f + 〈p〉 is a homomorphism. Since p has degree at least 1, this homomorphism is injective, and
so we can regard F as a subring of E. To complete the proof we note that the element X + 〈p〉 ∈ E is
a root of p, since if p = a0 + · · ·+ amX

m and I = 〈p〉we have

p(X + I) = (a0 + I)(1 + I) + (a1 + I)(X + I) + · · ·+ (am + I)(X + I)m

= (a0 + I)(1 + I) + (a1 + I)(X + I) + · · ·+ (am + I)(Xm + I)

= (a0 + I) + (a1X + I) + · · ·+ (amX
m + I)

= (a0 + · · ·+ amX
m) + I

= 0 + I (since a0 + · · ·+ amX
m = p ∈ I)

= 0E
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Example 23.5. Consider the polynomial X2 − 2 ∈ Q[X]. This clearly has no roots in Q. The field E
constructed in the above proof is Q[X]/〈X2 − 2〉 which is isomorphic to the subfield of R given by
Q(
√

2) = {x + y
√

2 | x, y ∈ Q}. Of course, we know that by extending all the way to E = C our
polynomial would have a root. The point is that we don’t need to go that far.

23.2 Algebraic and transcendental elements

Definition 23.6

Let E be an extension of the field F . An element α ∈ E is called algebraic over F if there is a
non-zero element in F [X] having α as a root. An element is called transcendental over F if it is
not algebraic.

Example 23.7.

1.
√

2 ∈ R is algebraic over Q.

2. i ∈ C is algebraic over Q.

3. π ∈ R is transcendental over Q.*

4. π ∈ R is algebraic over R.

Given an element α ∈ E ⊇ F that is algebraic over F , the set I = {f ∈ F [X] | f(α) = 0} is an ideal in
F [X]. Since F [X] is a PID, we have I = 〈p〉 for some p ∈ F [X].

Exercise 151. Let α ∈ E ⊇ F be algebraic over F .

(a) Show that I = {f ∈ F [X] | f(α) = 0} is an ideal in F [X].

Let p ∈ F [X] be such that I = 〈p〉.

(b) Show that p is irreducible.

Definition 23.8

LetE ⊇ F be fields and α ∈ E. If α is algebraic over F , the unique monic irreducible polynomial
having α as a root is called the irreducible polynomial for α over F . It will be denoted irr(α, F ).
It is also sometimes called the minimal polynomial for α. The degree of irr(α, F ) will be called
the degree of α over F and will be denoted deg(α, F ). The irreducible polynomial is also called
the minimal polynomial.

Example 23.9. Let α =
√

1 +
√

3 ∈ R. Then

α =

√
1 +
√

3 =⇒ α2 = 1 +
√

3 =⇒ (α2 − 1)2 = 3 =⇒ α4 − 2α2 − 2 = 0

Since the polynomialX4−2X2−2 is irreducible (by Eisenstein’s criterion) we conclude that irr(α,Q) =
X4 − 2X2 − 2 and deg(α,Q) = 4.

Example 23.10. Consider the element a =
√

2 +
√

3 ∈ R. Let’s calculate irr(a,Q). We are looking for
a Q-linear relationship between powers of a. Calculation gives a2 = 5 + 2

√
6, a3 = 11

√
2 + 9

√
3 and

a4 = 49 + 20
√

6. The vectors v0 = (1, 0, 0, 0), v1 = (0, 1, 1, 0), v2 = (5, 0, 0, 2), v3 = (0, 11, 9, 0) and
v4 = (49, 0, 0, 20) are linearly dependent in Q4. Since

1 0 5 0 49
0 1 0 11 0
0 1 0 9 0
0 0 2 0 20

 is row-equivalent to


1 0 0 0 −1
0 1 0 0 0
0 0 1 0 10
0 0 0 1 0


*This was first proved by the German mathematician Ferdinand von Lindemann in 1882.
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we observe that v4 = −v0+10v2. It follows that a4−10a2+1 = 0. The polynomialX4−10X2+1 ∈ Q[X]
is divisible by irr(a,Q). The polynomial X4 − 10X2 + 1 is irreducible in Q[X] (exercise!) so we
conclude that irr(

√
2 +
√

3,Q) = X4 − 10X2 + 1, and deg(
√

2 +
√

3,Q) = 4.

23.3 Exercises

152. Find irr(α,Q) and deg(α,Q) for the following polynomials. You should justify why your an-
swer for irr(α,Q) is irreducible.

(a) α =
√

3−
√

6 (b) α =
√

(13) +
√

7 (c) α =
√

2 + i

153. Show that the following elements of C are algebraic over Q and find their irreducible polyno-
mials.

(a) 2
1
3 (b)

√
3 +
√

2 (c) (
√
5+1)
2 (d) (i

√
3−1)
2

154. Let F be a field and D : F [X]→ F [X] the map given by

D(a0 + a1X + · · ·+ anX
n) = a1 + 2a2X + 3a3X

2 · · ·+ nanX
n−1

The polynomial D(f) is called the derivative of f . Note that the coefficients are in F and the
notation ‘3’, for example, means 1 + 1 + 1 ∈ F .

(a) Verify that D(fg) = D(f)g + fD(g).
(This is over any field and is purely combinatorial as defined above. There is no calculus
involved!)

An element α ∈ E in an extension E ⊇ F is called a multiple root of f ∈ F [X] if (X − α)2

divides f (in E[X]).

(b) Show that if α ∈ E is a multiple root of f ∈ F [X], then α is a root of D(f).

(c) Suppose that f ∈ F [X] is irreducible. Show that if D(f) 6= 0, then f has no multiple root
in any extension field of F .

(d) Show that if F has characteristic 0 and f ∈ F [X] is irreducible, then f has no multiple roots
in any extension field of F .

© University of Melbourne 2025
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LECTURE 24

Algebraic extensions and finite extensions

The difference between algebraic and transcendental elements is reflected in the corresponding eval-
uation maps.

Definition 24.1

Let a ∈ E ⊇ F . Recall that F [a] denotes the smallest subring of E that contains F and a. We
denote by F (a) the smallest subfield of E that contains F and a, that is, the intersection of all
subfields containing F and a. Given a1, . . . am ∈ E, F [a1, . . . , am] and F (a1, . . . , am) are defined
similarly.

Remark. It follows from the definition that F [a] ⊆ F (a).

Exercise 155. Show that F (a) is isomorphic to the field of quotients of F [a].

Lemma 24.2

Let a ∈ E ⊇ F , where E and F are fields. Let ϕa : F [X] → E be the homomorphism given by
ϕa(f) = f(a) (i.e., ϕa is evaluation at a). Then,

1. im(ϕa) = F [a]

2. If a is algebraic over F , then ϕa is not injective and ker(ϕa) = 〈irr(a, F )〉. The map ϕa
induces (as in the first isomorphism theorem) an isomorphism

F [X]/〈irr(a, F )〉 ∼= F [a] and F [a] = F (a)

3. If a is transcendental over F , then ϕa is injective and ϕa gives an isomorphism

F [X] ∼= F [a] and F [a] $ F (a)

Proof. Since the image of ϕa is a subring of E and it contains F and a, it follows that F [a] ⊆ im(ϕa).
On the other hand, im(ϕa) is contained in any subring that containsF and a. Therefore im(ϕa) ⊆ F [a].

The element a is algebraic if and only if ker(ϕa) 6= {0}. In the case in which a is algebraic, ker(ϕa) =
〈f〉 for some non-zero polynomial f since F [X] is a PID. Then Exercise 151 tells us that f is an
associate of irr(a, F ). Since irr(a, F ) is irreducible and F [X] is a PID, F [X]/〈irr(a, F )〉 is a field and
therefore F [a] = F (a).

If a is transcendental, then F [a] 6= F (a) as F [a] ∼= F [X] and F [X] is not a field.

24.1 Algebraic and finite extensions

Since F [a] is a ring, it forms an abelian group with respect to addition, and since F ⊆ F [a] we can
multiply an element of F [a] by a scalar from F in a natural way. In other words, F [a] forms a vector
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space over F .

Lemma 24.3

Let a ∈ E ⊇ F , with a algebraic over F . Let n = deg(a, F ). Then {1, a, . . . , an−1} is a basis
for F [a] as a vector space over F . Moreover, every element b ∈ F [a] is algebraic over F and
deg(b, F ) 6 deg(a, F ).

Remark. We will see shortly that in fact deg(b, F ) divides deg(a, F ).

Proof. Let B = {1, a, . . . , an−1}, and let αi ∈ F be such that irr(a, F ) =
∑n−1

i=0 αiX
i + Xn. Since a is a

root of this polynomial, we have an = −
∑n−1

i=0 αia
i. It follows that for all k > n, ak ∈ span(B), and

therefore that for all f ∈ F [X], f(a) ∈ span(B). We have shown that B is a spanning set for F [a] (as a
vector space over F ). To show linear independence, note that

∑n−1
i=0 γia

i = 0 implies that a is a root
of the polynomial g =

∑n−1
i=0 γiX

i ∈ F [X]. But deg(g) < deg(a, F ), so we must have g = 0 (i.e., for all
i, γi = 0).

Let b ∈ F [a]. The set {1, b, . . . , bn} ⊂ F [a] is necessarily linearly dependent because it has more that
dimF (F [a]) elements. Therefore there exist βi ∈ F , not all of which are zero, such that

∑n
i=0 βib

i = 0.
Letting h =

∑n
i=0 βiX

i ∈ F [X] and noting that h(b) = 0 we conclude that deg(b, F ) 6 n = deg(a, F ).

Definition 24.4

An extension E of F is called an algebraic extension if every element of E is algebraic over F .
It is called a finite extension (of degree n) if E is of finite dimension n as a vector space over F .
In the case in which E is a finite extension of F we denote the degree by [E : F ].

Remark. From Lemma 24.3 we know that if a ∈ E is algebraic over F , then F (a) is a finite extension
of F and [F (a) : F ] = deg(a, F ).

Exercise 156. Show that every finite extension is algebraic.

Example 24.5. Let E = {a ∈ R | a is algebraic over Q }. Then E is an algebraic extension of Q, but is
not a finite extension of Q. See Exercise 159.

Lemma 24.6

Let E F and K be fields, K ⊇ E ⊇ F , with E a finite extension of F and K a finite extension of
E. Then K is a finite extension of F and

[K : F ] = [K : E] [E : F ]

Proof. Let m = [E : F ] and n = [K : E]. Let {α1, . . . , αm} be a basis for E over F and let {β1, . . . , βn}
be a basis for K over E. We will show that {αiβj | 1 6 i 6 m, 1 6 j 6 n} is a basis for K over F .

© University of Melbourne 2025
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Given any k ∈ K we have

k =
n∑
j=1

bjβj (for some bi ∈ E)

=

n∑
j=1

(

m∑
i=1

aijαi)βj (for some aij ∈ F )

=

n∑
j=1

m∑
i=1

aijαiβj

∈ span{αiβj | 1 6 i 6 m, 1 6 j 6 n}

For linear independence we have

n∑
j=1

m∑
i=1

cij(αiβj) = 0 =⇒
n∑
j=1

(
m∑
i=1

cijαi)βj = 0

=⇒ ∀ j,
m∑
i=1

cijαi = 0 (since the βj are linearly independent)

=⇒ ∀ j,∀ i, cij = 0 (since the αi are linearly independent)

Corollary 24.7

Let a ∈ E ⊇ F , with a algebraic over F . Then for all b ∈ F (a), deg(b, F ) divides deg(a, F ).

Proof. We have F ⊆ F (b) ⊆ F (a) and

deg(a, F ) = [F (a) : F ] = [F (a) : F (b)] [F (b) : F ] = [F (a) : F (b)] deg(b, F )

Example 24.8. Consider a = 2
1
4 ∈ R. Then irr(a,Q) = X4 − 2 and therefore deg(a,Q) = 4. By the

above corollary, any element of Q(2
1
4 ) has degree that divides 4. So, for example, no element of Q(2

1
4 )

is a root of X3 − 2 (or any other irreducible cubic polynomial).

Remark. Finite extensions of Q are called number fields or algebraic number fields and are central
to the study of Algebraic Number Theory.

24.2 Exercises

157. Find the degree and a basis for the following extensions:

(a) R(
√

2 + i) ⊇ R
(b) Q(

√
2 + i) ⊇ Q

(c) Q(
√

2 +
√

3) ⊇ Q
(d) Q(

√
3, i) ⊇ Q

158.? Let F be a field and k ∈ F an element which is not a square in F (i.e, there does not exist an
element x ∈ F with x2 = k). Show that

K =

{(
a kb
b a

)
| a, b ∈ F

}
6M2×2(F )

is a field and that it is isomorphic to F (
√
k).
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159. Let A = {a ∈ R | a is algebraic over Q } be the set of algebraic real numbers.

(a) Show that A forms a subfield of R. (Use that a ∈ R is algebraic iff [Q(a) : Q] is finite.)

(b) Show that A is an algebraic extension of Q, but A is not a finite extension of Q.

160. Suppose that E and K are two extensions of F , and let a ∈ E and b ∈ K be algebraic over F .
Prove that irr(a, F ) = irr(b, F ) if and only if there exists an isomorphism ϕ : F (a)→ F (b) such
that ϕ(a) = b and ϕ|F = IdF .

© University of Melbourne 2025



LECTURE 25

Constructions with straight-edge and compass

There are classical questions about whether certain lengths or angles can be constructed using a
straight-edge and compass. We can establish that certain of these, such as being able to trisect an
angle or to construct a nonagon, are impossible.

25.1 Constructible points in the Euclidean plane

We first formalise what kind of operations are allowed. Two points in the plane are given. We
choose a coordinate system so that the two points are (0, 0) and (1, 0). Starting with these two points
we inductively define a subset of the plane. The points so defined will be called constructible.
Given two distinct points P and Q in the plane, denote by L(P,Q) the straight line containing P
and Q and by C(P,Q) the circle with centre P that passes through Q. Suppose that P1, Q1, P2, Q2

are constructible points in the plane with P1 6= Q1 and P2 6= Q2. Then the points given by the
sets L(P1, Q1) ∩ L(P2, Q2) and L(P1, Q1) ∩ C(P2, Q2) and C(P1, Q1) ∩ C(P2, Q2) are all defined to be
constructible.

Figure 25.1: The points (12 ,
√
3
2 ), (12 ,−

√
3
2 ) and (12 , 0) are constructible.

25.2 Constructible numbers

Definition 25.1

A real number x ∈ R is called constructible if |x| is equal to the distance between two con-
structible points.

The connection with fields and field extensions is given by the next two results.

Proposition 25.2

1. The constructible numbers form a subfield of R.

2. If a > 0 is constructible, then
√
a is constructible.

Proof. We need to show that for any two constructible numbers a, b > 0, all of the numbers a + b,
a− b, a−1, ab and

√
a are constructible. Each is shown by describing a construction and appealing to
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elementary geometry in the the Euclidean plane. We show that ab is constructible. The other cases
are similar and the details can be found in the books of Artin* and Stillwell†.

Given that a is constructible, we can construct a right triangle with non hypotenuse side lengths 1
and a as shown in Figure 25.2. We then construct a similar triangle in which the side that had length
1 is now of length b. The other non-hypotenuse side will be on length ab.

1 b

a

c

Figure 25.2: If a and b are contructible, then ab is constructible.

Proposition 25.3

Let a be a constructible real number. Then there is a chain of subfields of R

Q = F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn

such that

1. a ∈ Fn

2. For all i, there exists ai ∈ Fi such that Fi+1 = Fi(
√
ai).

Proof. Suppose that P1 6= Q1, P2 6= Q2 are points in the plane all of whose coordinates lie in some
subfield F of R. The points of L(P1, Q1) ∩ L(P1, Q1) have coordinates that are given by the solution
of a linear system of equations, and are therefore in F . Finding the points of L(P1, Q1) ∩ C(P1, Q1)
involves solving a quadratic equation and the coordinates therefore lie in F (

√
d) for some d ∈ F .

Solving for the points of C(P1, Q1) ∩ C(P1, Q1) involves solving two simultaneous quadratic equa-
tions. However, since both describe circles, taking the difference of the two equations produces a
linear equation and we have reduced to the previous case.

Now consider a constructible number a > 0. It is the distance between two constructible points
P = (p1, p2) and Q = (q1, q2). The point P is constructed from the points (0, 0) and (1, 0) by a
finite sequence of constructions involving the intersections of lines and circles. From the previous
paragraph we conclude that there is a finite sequence of subfields Q = F0 ⊆ F1 ⊆ · · · ⊆ Fk such that
Fi+1 = Fi(

√
di) for some di ∈ Fi and p1, p2 ∈ Fk. Similarly, there is a finite sequence of subfields

Q = G0 ⊆ G1 ⊆ · · · ⊆ Gl such that Gi+1 = Gi(
√
ei) for some ei ∈ Gi and q1, q2 ∈ Gl. The result then

follows by taking Fi as above for 0 6 i 6 k and Fi+1 = Fi(ei−k) for k 6 i 6 k + l − 1.

Theorem 25.4

If a ∈ R is constructible, then a is algebraic over Q and deg(a,Q) = 2n for some n ∈ N.

*Algebra, Michael Artin,1991
†The four pillars of geometry, John Stillwell, 20005
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Proof. Let ai and Fi be as in the previous proposition. Since ai ∈ Fi, deg(
√
ai, Fi) is either 1 or 2.

Note that [Fi+1 : Fi] = [Fi(ai) : Fi] = deg(
√
ai, Fi) by Lemma 24.3. Apply Lemma 24.6 repeatedly to

conclude that [Fn : Q] = 2m for some m. Then Corollary 24.7 says that deg(a,Q) divides 2m.

Remark. This result shows that while all constructible numbers are algebraic (over Q), not all algebraic
numbers are constructible. For example, 2

1
3 is algebraic, but not constructible.

25.3 Impossible constructions

Trisecting an angle

Given an angle θ we can bisect the angle, that is, we can construct the angle θ/2. By constructing an
angle we mean that we can construct points P1, Q1, P2, Q2 such that the lines L(P1, Q1) and L(P2, Q2)
intersect at that angle. If θ is constructible in this sense, then the numbers sin(θ) and cos(θ) are
constructible.

Given an angle θ, is it possible (just with straight-edge and compass) to construct the angle θ/3?

The answer is no it is not, in general, possible. For suppose that it was. Noting that π/3 is con-
structible, it would therefore be possible to construct an angle of π/9 and hence the number a =
cos(π/9) would be constructible. However, a is not constructible because deg(a,Q) = 3. To see this,
use the standard trigonometric identities to show that cos(3θ) = 4 cos3(θ)− 3 cos(θ). Letting θ = π/9
gives 1 + 6 cos(π/9)− 8(cos(π/9))3 = 0. The polynomial 1 + 6X − 8X3 ∈ Q[X] is irreducible because
it is degree 3 and its image in F5[X] has no roots.

Squaring the circle

Given a circle (ie., given two points: the centre and a point on the circle), is it possible to construct a
square having area equal to that of the circle ?

That this is not in general possible, follows from the fact that π and therefore
√
π is not constructible.

Doubling a cube

Given a cube (i.e., given a side length), is it possible to construct a cube of twice the volume?

The answer is again no, since 2
1
3 is not constructible as deg(2

1
3 ,Q) = 3.

25.4 Exercises

161. Let F be a field and let E ⊇ F be an extension with [E : F ] = 2.

(a) Show that there exists a ∈ E such that deg(a, F ) = 2 and E = F [a].

(b) Suppose in addition that 1 + 1 6= 0 in F . Show that there exists a ∈ E such that a2 ∈ F and
E = F [a].

(c) i) Let K = F3[X]/〈X2 +X+2〉. Find an element k ∈ K such that k2 ∈ F3 and K = F3[k].
ii) LetE = F2[X]/〈X2+X+1〉. Show that no element e ∈ E has the property that e2 ∈ F2

and E = F2[e].

162. Explain why a point P (x, y) is constructible iff x and y are both constructible.

163. Let C ⊆ R be the field of constructible numbers. Show the C is an algebraic extension of Q, but
not a finite extension of Q.

© University of Melbourne 2025
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LECTURE 26

Finite fields

We have seen examples of fields that have finitely many elements, namely for any prime p ∈ N,
Fp = Z/〈p〉 is a field and has p elements. Another example of a finite field is F2[X]/〈X3 + X + 1〉:
since F2[X] is a PID and X3 + X + 1 ∈ F2[X] is irreducible, F2[X]/〈X3 + X + 1〉 is a field. It has 8
elements. Is there a finite field having, for example, 6 elements? We’ll see that the answer is "no".

In this section we will investigate the size and structure of finite fields. Finite fields are sometimes
called Galois fields and a field with q elements is sometimes denoted GF (q). We’ll stick with the
notation Fq for a field of size q.

26.1 All finite fields have prime power order

We first recall the definition of the characteristic of a field. If F is any field (finite or not) there is a
natural homomorphism ϕ : Z → F that sends m ∈ Z to the element of F given by adding 1 ∈ F to
itself m times.* If ϕ is injective, we say that F is of characteristic 0. Otherwise, as F is a field, the
kernel of ϕ is a prime ideal in Z. Let p ∈ N be the unique (positive) prime such that ker(ϕ) = 〈p〉� Z.
We say that F has characteristic p. If a field is of characteristic 0, then it is necessarily infinite. A
finite field must therefore be of characteristic p for some prime p ∈ N.

Exercise 164. Give an example of an infinite field whose characteristic is not zero.

Lemma 26.1

A field F is of characteristic p if and only if F contains a subfield isomorphic to Fp.

Proof. Let ϕ : Z→ F be the homomorphism described above. If F is of characteristic p, then ker(ϕ) =
〈p〉 and so from the first isomorphism theorem im(ϕ) ∼= Z/〈p〉. Conversely, if ψ : Fp → F is an
injective homomorphism, then ϕ(m) = 1F + · · · + 1F = ψ(1Fp) + · · · + ψ(1Fp). This implies that the
characteristic of Fp divides the characteristic of F .

Remark. If F has characteristic p, then there is a unique subfield isomorphic to Fp, and we will identify
it with Fp.

Proposition 26.2

Let F be a finite field of characteristic p. Then F has order pn for some n > 1.

Proof. Since F is an extension of Fp, it is a vector space over Fp. As F is finite, it must be finite
dimensional as a vector space. Let {b1, . . . , bn} be a basis for F as an Fp-vector space. Then F =
{
∑n

i=1 βibi | βi ∈ Fp}which has cardinality pn since there are p choices for each of the n βi.

*If m < 0, add 1 to itself |m| times and then take the additive inverse.
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26.2 The group of units of a finite field is cyclic

In any commutative ring the set of units forms an abelian group under multiplication. In the case of
a finite field we will show that this group is actually cyclic. We denote by F× the group of units of
the field F .

Proposition 26.3

Let F be a finite field. Then F× is cyclic.

Proof. Let q = |F |. Note that since F is a field, F× is the set of non-zero elements in F , and therefore
|F×| = q − 1. Since F× is a finite abelian group, we know from the structure theorem that

F× ∼= Cd1 × · · · × Cdm

for some di ∈ Z, di > 2, d1| · · · |dm. It follows that q − 1 = |F×| = d1d2 . . . dm. Since every element of
Cd1 × · · · ×Cdm has order that divides dm, every element of F× is a root of the polynomial Xdm − 1 ∈
F [X]. The polynomial Xdm − 1 ∈ F [X] has at most dm roots in F . Therefore

q − 1 6 dm and q − 1 = d1 · · · dm > dm

It follows that d1 · · · dm = dm and it must be the case that m = 1 and F× ∼= Cd1 .

26.3 Exercises

165. Prove the following. (It doesn’t really need any result from this lecture!)

Fermat’s Little Theorem

Let p ∈ N be prime. Then ∀a ∈ Z, ap ≡ a (mod p).

166. Let F be a finite field of characteristic p. Show that the map ϕ : F → F , ϕ(a) = ap is an
isomorphism.

167. Let f ∈ Fp[X] and suppose that α ∈ E ⊇ Fp is a root of f in some extension E of Fp. Show that
αp is also a root of f in that extension.

168. Let F be a finite field.Write down a polynomial in F [X] that has no roots in F . Conclude that
no finite field is algebraically closed.

169. If E is a finite field of order pn, show that E has exactly one subfield of order pd for any d|n.
(Hint: If n = qd + r, then (Xn − 1) = (Xd − 1)(Xn−d + Xn−2d + · · · + Xn−qd) + (Xr − 1). It
follows that (pd − 1)|(pn − 1) if and only if d|n.)
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Existence and uniqueness of a field of size pn

27.1 Existence

To help motivate the construction we note the following.

Lemma 27.1

Let F be a field of size q = pn. Every element of F is a root of the polynomial Xq −X ∈ F [X].

Proof. By Lagrange’s theorem, since |F×| = q− 1, each element a ∈ F× satisfies a(q−1) = 1. It follows
that every element of F× is a root of the polynomial Xq −X . It is clear that zero is also a root of this
polynomial.

Remark. It follows that the polynomial Xq − X can be written as a product of q linear polynomials
from F [X].

Proposition 27.2

Let p ∈ N be prime and n ∈ N with n > 1. There exists a field of size pn.

Proof. Let q = pn and let f ∈ Fp[X] be the polynomial f = Xq −X . By Proposition 23.4 (and induc-
tion) there is a field E ⊇ Fp such that the polynomial f factors as a product of q linear polynomials
from E[X]. Let K ⊆ E be given by

K = {a ∈ E | f(a) = 0}

We will show that K is a subfield of E and has exactly q elements.

Since f is a degree q polynomial, it has at most q roots. We need to show that it has no repeated roots.
Suppose, for a contradiction, that (X−a)2 divides f in E[X]. Let g ∈ E[X] be such that f = (X−a)g.
Notice that (X − a) divides g. Applying the differentiation map D : E[X]→ E[X] we get

D(f) = D(X − a)g + (X − a)D(g) = g + (X − a)D(g)

=⇒ qXq−1 − 1 = g + (X − a)D(g)

=⇒ qaq−1 − 1 = 0 (since g(a) = 0)
=⇒ −1 = 0 (since E has characteristic p and q = pn)

As this can not be the case in the field E, we conclude that f has no repeated roots, and therefore K
has exactly q elements (and not fewer).

It remains to show that K is a subfield of E. It is clear that 0, 1 ∈ K. Let a, b ∈ K with a 6= 0. Then
aq = a and bq = b, and we have

(ab)q = aqbq = ab

(a−1)q = (aq)−1 = a−1

(−a)q = (−1)qaq = −1a = −a
(a+ b)q = aq + bq = a+ b (see Exercise 22)

Therefore ab, a−1,−a, a+ b ∈ K. It follows that K is a subfield of E.



27-2 MAST30005 Algebra, 2025

Corollary 27.3

For all p ∈ N prime and all n > 1, there exists an irreducible polynomial in Fp[X] of degree n.

Proof. Let p ∈ N be prime and let n ∈ Z>1. Let K be a field of size pn. Note that [K : Fp] = n. By
Proposition 26.3, K× is cyclic. Let a ∈ K× be a generator for K×. Then K = {0, 1, a, a2, . . . , a|K|−2}
and Fp(a) ⊆ K is in fact equal to K. Therefore deg(a,Fp) = [K : Fp] = n. Therefore irr(a,Fp) is of
degree n (and is irreducible by definition).

27.2 Uniqueness

Proposition 27.4

If two finite fields have the same cardinality, then they are isomorphic,

Proof. Let F and F ′ be two fields of cardinality q = pn. We know from Proposition 26.3 that the group
F× is cyclic. Let a ∈ F be a generator for F×. The evaluation map ϕa : Fp[X]→ F is surjective since
im(ϕa) contains 0 and contains F×. We therefore have

F ∼= Fp[X]/〈irr(a,Fp)〉

Also, irr(a,Fp) divides Xq −X in Fp[X] since it divides any polynomial having a as a root. In F ′[X]
the polynomial Xq −X factors as a product of linear polynomials. It follows that, considered as an
element of F ′[X], irr(a,Fp) factors into linear polynomials. Therefore, irr(a,Fp) has a root a′ in F ′.
Therefore irr(a′,Fp) = irr(a,Fp) and

F ∼= Fp[X]/〈irr(a,Fp)〉 = Fp[X]/〈irr(a′,Fp)〉 ∼= Fp(a′) ⊆ F ′

But as F and F ′ have the same (finite) cardinality it must be the case that F ∼= F ′.

27.3 Exercises

170.? Find an example of two infinite fields that have the same cardinality, but are not isomorphic.

171. Let F8 be the field containing 8 elements. Write out the addition and multiplication tables for
F8.

172. Let F be a field of size q = pn. Show that every irreducible polynomial in Fp[X] of degree n is a
factor of Xq −X ∈ Fp[X].
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LECTURE 28

The Galois group of an extension

Galois theory gives a connection between certain field extensions and the subgroups of an associ-
ated group. Note that in this section we will be assuming that the field F under consideration (and
therefore any extension of it) is of characteristic zero.

Definition 28.1

The set of all automorphisms of a fieldE forms a group (the operation being composition) which
will be denoted Aut(E). For a subgroup H of Aut(E) the fixed field of H is defined by

EH = {a ∈ E | ϕ(a) = a for all ϕ ∈ H}

Exercise 173. Show that EH is a subfield of E.

Definition 28.2

Now suppose that F is a subfield of E. An element ϕ ∈ Aut(E) is called an F -automorphism if
it fixes F pointwise. That is, ϕ(a) = a for all a ∈ F .

Remark. By definition, all elements of H 6 Aut(E) are EH -automorphisms.

Example 28.3. Complex conjugation is an R-automorphism of C.

Lemma 28.4

Let E ⊇ F , f ∈ F [X] and ϕ ∈ Aut(E) an F -automorphism. If a ∈ E is a root of f , then ϕ(a) is
also a root of f .

Proof. Let f =
∑n

i=0 αiX
i with αi ∈ F . Then

f(a) = 0 =⇒ ϕ(f(a)) = 0 =⇒ ϕ(

n∑
i=0

αia
i) = 0 =⇒

n∑
i=0

ϕ(αi)ϕ(a)i =
n∑
i=0

αiϕ(a)i = 0

=⇒ f(ϕ(a)) = 0

Definition 28.5

Suppose that E ⊇ F is an extension of the field F . The set of all F -automorphisms of E forms a
subgroup of Aut(E) called the Galois group of the extension. It is denoted Gal(E/F ). That is,

Gal(E/F ) = {ϕ ∈ Aut(E) | ϕ(a) = a for all a ∈ F}

Example 28.6. Gal(Q(
√

3,
√

5)/Q) is isomorphic to the Klein four group (i.e., it has four elements and
is not cyclic).
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Definition 28.7

An extension E of F is called a Galois extension if it is a finite extension and

|Gal(E/F )| = [E : F ]

For Galois extensions, there is a correspondence between subgroups of Gal(E/F ) and intermediate
fields L, F 6 L 6 E. We now state the main theorem of this section. The proof will be developed
later.

Theorem 28.8: The Fundamental Theorem of Galois Theory

Let E be a Galois extension of F .

1) The map

Φ : {H | H is a subgroup of Gal(E/F ) } → {L | L is a subfield of E with F ⊆ L ⊆ E}

given by
Φ(H) = EH

is a bijection. It has inverse given by L 7→ Gal(E/L).

Let H be a subgroup of Gal(E/F ).

2) [E : EH ] = |H|

3) EH is a Galois extension of F if and only if H is normal in Gal(E/F ).
If it is the case that EH is a Galois extension of F , then Gal(EH/F ) ∼= Gal(E/F )/H .

Example 28.9 (Quadratic extension). Let E = Q(
√

2) and let G = Gal(E/Q). By Lemma 28.4 for any
element g ∈ G, we have either g(

√
2) =

√
2 (and therefore g = idE) or g(

√
2) = −

√
2. If g(

√
2) = −

√
2,

then g(−
√

2) =
√

2. Therefore G has exactly two elements and E is a Galois extension of Q. Since the
group of size two has no proper subgroups, there are no fields lying between Q and E.

Example 28.10 (Non-Galois extension). LetE = Q(2
1
3 ). ThenE ⊆ R. Any element of Gal(E/Q) must

permute the roots of the polynomial irr(2
1
3 ,Q) = X3− 2. Since only one of these roots lies in E (since

the others are not in R), any element of Gal(E/Q) must send 2
1
3 to 2

1
3 . Such an automorphism fixes

E pointwise. Therefore |Gal(E/Q)| = 1 6= 3 = deg(2
1
3 ,Q) = [E : Q] and E is not a Galois extension.

Example 28.11 (Biquadratic extension). LetE = Q(i,
√

2). There are Q-automorphisms σ, τ ∈ Gal(E/Q)
determined by

σ(i) = −i σ(
√

2) =
√

2

τ(i) = i τ(
√

2) = −
√

2

Since any element of Gal(E/Q) must permute the roots ofX2+1 and the roots ofX2−2, Gal(E/Q) =
{id, σ, τ, στ} and we have Gal(EQ) ∼= C2 × C2 and |Gal(E/Q) = 4|. Also, Q $ Q(

√
2) $ Q(

√
2, i)

which implies that [E : Q] = [E : Q(
√

2)][Q(
√

2) : Q] = 2× 2 = 4. Therefore |Gal(E/Q) = 4 = [E : Q]
and E is a Galois extension of Q. The correspondence between subgroups and intermediate fields is
given in the following table:
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E = Q(i,
√

2)

subgroup subfield
Gal(E/Q) Q
{id, τ} Q(i)

{id, σ} Q(
√

2)

{id, στ} Q(i
√

2)
{id} E

Since G is abelian, all subgroups are normal, and therefore all the intermediate fields are Galois
extensions of Q (which also follows from the fact that all the (proper) intermediate fields are quadratic
extensions of Q).

28.1 Exercises

174. LetE ⊇ F with [E : F ] = 2 and let α ∈ E \F be such that α2 ∈ F . Show that there is an element
ϕ ∈ Gal(E/F ) such that ϕ(α) = −α.

175. Let E ⊇ F be fields and α1, . . . , αn ∈ E. Suppose that E = F (α1, . . . , αn) and ϕ ∈ Gal(E/F ) is
such that ϕ(αi) = αi for all i. Show that ϕ = idE .
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LECTURE 29

Splitting fields

29.0.1 Splitting fields

We give an alternative characterisation of Galois extensions. Given a polynomial in F [X] we want to
extend F just enough so that f has deg(f) roots.

Definition 29.1

Let f ∈ F [X] be a non-constant polynomial. An extension field E of F is a splitting field for f
if:

1. In E[X], f factors into a product of linear polynomials, f = (X − a1) . . . (X − am)

2. E = F (a1, . . . , am)

Exercise 176. Use Proposition 23.4 to prove the following lemma.

Lemma 29.2

Every polynomial f ∈ F [X] has a splitting field.

We prove a technical lemma below that establishes the following.

Proposition 29.3

If E ⊆ F is a splitting field for f ∈ F [X], then E is a Galois extension of F .

Before giving the technical lemma, we illustrate some of the ideas with two examples.

Example 29.4. Let f ∈ Q[X] be an irreducible quadratic. Let α, β ∈ C be its (necessarily) distinct
roots. Let E = Q(α, β). Then E = Q(α) = Q(β) and [E : Q] = 2. Also, we know from Exercise 160
that there is an isomorphism Q(α) → Q(β) that sends α to β and fixes Q. Together with the identity
map, we therefore have two distinct Q-automorphisms of E. But there can be no others, since such
an automorphism permutes the roots of f . Therefore E is a Galois extension.

Example 29.5. We consider a splitting field E ⊆ C of the polynomial f = X3 + 3X + 1 ∈ Q[X]. The
polynomial f is irreducible, since its image in F2[X] is irreducible. Therefore f has no repeated roots
(see Exercise 154). Let α, β, γ ∈ C be the three roots in C of this polynomial. Let E = Q(α, β, γ) ⊆ C.

We will show that E is a Galois extension of Q and find the Galois group Gal(E/Q). Exactly one
of the roots, γ say, is real (and therefore β = α ∈ C \ R). Let L = Q(γ). Notice that L 6= E since
L ⊆ R. Also, [L : Q] = deg(γ,Q) = 3. In L[X] we have the factorisation f = (X − γ)h for some
quadratic h ∈ L[X] with h(α) = h(β) = 0. Since α /∈ L, h is irreducible and deg(β, L) = 2. From
E = Q(α, β, γ) = L(β, γ) = L(β), we have [E : L] = 2. From Lemma 24.6 we get

[E : Q] = [E : L][L : Q] = 2× 3 = 6
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Since the elements of Gal(E/Q) permute the roots of f (Lemma 28.4) we know that Gal(E/Q) is
isomorphic to a subgroup of S3 (the symmetric group on three objects). Because |S3| = 6 we have
that |Gal(E/Q)| divides 6. We’ll show that Gal(E/Q) has at least 4 distinct elements, from which it
follows that Gal(E/Q) ∼= S3 and |Gal(E/Q)| = 6 = [E : Q].

The identity and complex conjugation are Q-automorphisms that permute the roots of f and are
therefore in Gal(E/Q). We demonstrate two other elements in Gal(E/F ). Let F = Q(α) and let
g ∈ F [X] be such that f = (X − α)g. Note that E = F (γ) = F (β). Because g is irreducile and has
roots β and γ, there is an element of Gal(E/F ) (which is a subset of Gal(E/Q)) that interchanges γ
and β. The same argument, with the roles of β and α interchanged, shows that there is an element in
Gal(E/Q) that fixes β and swaps α and γ.

Now for the technical lemma that shows that all splitting fields are Galois extensions.

Lemma 29.6

Let ϕ : F → F ′ be an isomorphism of fields. Let f ∈ F [X] be a polynomial and let f ′ ∈ F ′[X] be
the image of f by (the extension to F [X] of) ϕ. Let E ⊇ F and E′ ⊇ F ′ be splitting fields for f
and f ′ respectively. Then, ϕ extends to an isomorphism from E to E′. Moreover, the number of
such isomorphisms is [E : F ].

Before proving the lemma we note some consequences.

Corollary 29.7

Any two splitting fields of f ∈ F [X] are isomorphic.

Proof. Apply the lemma with F ′ = F , E and E′ the two splitting fields and ϕ = IdF .

Corollary 29.8

A splitting field of f ∈ F [X] is a Galois extension of F .

Proof. Let E be a splitting field for F . Apply the lemma with F ′ = F , E′ = E and ϕ = IdF . The
extensions of ϕ are precisely the F -automorphisms of E. Therefore |Gal(E/F )| = [E : F ] by the
lemma.

Corollary 29.9

Let F be a field, f ∈ F [X] and E ⊇ F a splitting field for f . Let g ∈ F [X] be irreducible and such
that g divides f . Let a, b ∈ E be two roots of g. Then there is an F -automorphism of E sending
a to b.
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29.1 Exercises

177. Let F ⊆ C be a field and suppose that f ∈ F [X] is an irreducible quadratic. Let the roots of f
be a, b ∈ C. Show that

(a) F (a) = F (a, b)

(b) |Gal(F (a)/F )| = 2

(c) The non-trivial element in Gal(F (a)/F ) interchanges a and b.

178. Prove Corollary 29.9.

179. Let f = X3 − 2 ∈ Q[X] and let E ⊆ C be the splitting field of f . Show that Gal(E/F ) ∼= S3.

180. Let f = X3 − 1 ∈ Q[X] and let E ⊆ C be the splitting field of f . Calculate Gal(E/F ).
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LECTURE 30

Primitive elements

Proof of Lemma 29.6. Denote by ϕ̃ : F [X]→ F ′[X] the map defined by extending ϕ, that is

ϕ̃(a0 + · · ·+ amX
m) = ϕ(a0) + · · ·+ ϕ(am)Xm

By hypothesis ϕ̃(f) = f ′. We proceed by induction on [E : F ].

If [E : F ] = 1, then E = F and f factors into linear polynomials in F [X]. It follows that f ′ factors
into linear polynomials in F ′[X], and therefore E′ = F ′. Then ϕ itself is an isomorphism from E to
E′, and it is obviously the only such.

Now suppose that [E : F ] > 1 and that the result holds for all cases with lower degree. Let a ∈ E be
a root of f , with a /∈ F . Let g = irr(a, F ) ∈ F [X] and g′ = ϕ̃(g). Then g′ ∈ F ′[X] is irreducible and
deg(g′) = deg(g) = [F (a) : F ]. Since g′ is irreducible and F ′ has characteristic zero, g′ has no repeated
roots (see Exercise 154). For each of the [F (a) : F ] (distinct) roots b of g′ there is exactly one injective
homomorphism ξ : F (a) → E′ such that ξ|F = ϕ and ξ(a) = b (cf. Exercise 160). Moreover, any
injective homomorphism from F (a) to E′ that restricts to ϕ, must send a to one of the roots of g′. It
follows that there are exactly deg(g′) = [F (a) : F ] homomorphisms from F (a) to E′ that restrict to ϕ.
Since [E : F (a)] < [E : F ] we can apply the induction hypothesis, to conclude that there are [E : F (a)]
isomorphisms from E to E′ that extend ξ. Combining, we see that the total number of isomorphisms
from E → E′ that extend ϕ is [E : F (a)][F (a) : F ] = [E : F ]. Note that any isomorphism ψ : E → E′

is an extension of ψ|F (a) and ψ(a) is necessarily a root of g′.

E
ψ−−−−→ E′x x

F (a)
ξ−−−−→ F ′(b)x x

F
ϕ−−−−→ F ′

This diagram illustrates the above argument. The vertical arrows are
just inclusions, and each horizontal map is a restriction of the one above
it. The inductive hypothesis applies to the extension of ξ to ψ. Note that
E is a splitting field for f over F (a) and E′ is a splitting field for f ′ over
F ′(b).

30.1 Primitive elements

We say last time (as a consequence of the lemma proved above) that all splitting fields are Galois
extensions. In order to prove that all Galois extensions are splitting fields, we will use the following

Proposition 30.1

Let E be a finite extension of F . There exists an element a ∈ E such that E = F (a).

Definition 30.2

An element a ∈ E such that E = F (a) is called a primitive element of the extension E ⊇ F .

Proof of Proposition 30.1. SinceE is a finite extension, there are elements bi ∈ E such thatE = F (b1, . . . , bk).
By induction it is enough to consider the case in whichE = F (b, c) with b, c ∈ E \F . Let f = irr(b, F ),
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g = irr(c, F ) and let L ⊆ E be the splitting field for the polynomial fg. Let b = b1, b2, . . . , bm ∈ L
be the roots of f and c = c1, c2, . . . , cn be the roots of g. Since f and g are irreducible and F is of
characteristic zero, both f and g have no repeated roots. Since F is of characteristic zero, it is infinite,
and we can therefore choose d ∈ F such that

d /∈ {(bj − b)(c− ci)−1 | 2 6 i 6 m, 1 6 j 6 n} ⊆ L

Let a = b + dc ∈ F (b, c) ⊆ L. We will show that F (b, c) ⊆ F (a). Let h ∈ F (a)[X] be given by
h = f(a− dX). Then h(c) = f(b) = 0 and by the choice of d we have h(ci) = f(a− dci) 6= 0 if i > 2.

Therefore c is the only common root of h and g. Since g factors as a product of linear terms in L[X]
we have that the gcd of g and h in L[X] is (X − c). On the other hand, any gcd of g and h in F (a)[X]
is also a gcd of g and h in L[X] (see Exercise 69). Therefore (X − c) is a gcd of g and h in F (a)[X]. It
follows that c ∈ F (a) and therefore also b ∈ F (a). Thus F (b, c) ⊆ F (a). The reverse inclusion is clear
from the choice of a.

As well as being used in our proof of Artin’s Theorem (below), the next lemma is often useful in
determining the irreducible polynomial of an element.

Lemma 30.3: Orbit Lemma

LetE be a field and letG be a finite subgroup of Aut(E). Let a ∈ E and let {a = a1, a2, . . . , am} ⊆
E be the orbit of a under the action of G. Then in E[X] we have

irr(a,EG) = (X − a1)(X − a2) · · · (X − am)

Proof. Let f = (X − a1) · · · (X − am) and let F = EG. First note that f ∈ F [X] since for all g ∈ G

g̃(f) = g̃((X − a1) · · · (X − am)) = (X − g(a1)) · · · (X − g(am)) = (X − a1) · · · (X − am) = f

where g̃ : E[X]→ E[X] is the homomorphism induced by g.

Then note that

irr(a, F )(ai) = irr(a, F )(ga) (for some g ∈ G)
= g(irr(a, F )(a)) = g(0) = 0

So all the ai are roots of irr(a, F ). Therefore f divides irr(a, F ). But since f(a) = 0, we also have that
irr(a, F ) divides f .

Remark. Since the order of an orbit divides the order of the group acting, we know that m divides
|G|. It need not be equal to |G|.

30.2 Exercises

181. Find an element α ∈ E = Q(
√

2,
√

3,
√

5) such that E = Q(α).

182. Let α =
√

2 + i ∈ E = Q(
√

2, i).

(a) Find the orbit of α under the action of the group Gal(E/Q). That is, calculate the set
{g(α) | g ∈ Gal(E/Q)}.

(b) Use the Orbit Lemma to calculate irr(α,Q).
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Artin’s Theorem

Theorem 31.1: Artin’s Fixed Field Theorem

Let E be a field and let G be a finite subgroup of Aut(E). Then

[E : EG] = |G|

Corollary 31.2

If E is a finite extension of F , then |Gal(E/F )| divides [E : F ].

Proof. We have that F ⊆ EGal(E/F ) ⊆ E, which implies that

[E : F ] = [E : EGal(E/F )][EGal(E/F ) : F ] = |Gal(E/F )|[EGal(E/F ) : F ]

Corollary 31.3

Let E be a field and let G be a finite subgroup of Aut(E). Then E is a Galois extension of EG and
Gal(E/EG) = G.

Proof. Clearly G ⊆ Gal(E/EG) since all elements of G fix EG pointwise. Corollary 31.2 implies that
|Gal(E/EG)| 6 [E : EG]. Then from Artin’s Theorem we have

[E : EG] = |G| 6 |Gal(E/EG)| 6 [E : EG]

It follows that G = Gal(E/EG) and |Gal(E/EG)| = [E : EG].

Corollary 31.4

If E be a Galois extension of F , then EGal(E/F ) = F .

Proof. Let G = Gal(E/F ). We have F ⊆ EG ⊆ E and therefore Gal(E/EG) ⊆ G. It is also the case
that G ⊆ Gal(E/EG) since all elements of G fix its own fixed field. Therefore G = Gal(E/EG). Also,

|Gal(E/EG)| divides [E : EG] (by 31-1 31.2)

=⇒ |G| divides [E : EG]

=⇒ [E : F ] divides [E : EG] (since E is a Galois extension of F )

But is is also the case that [E : EG] divides [E : F ] since

[E : F ] = [E : EG][EG : F ]

Therefore [E : F ] = [E : EG] and [EG : F ] = 1.
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We now give the proof of Artin’s Theorem.

Proof of Artin’s Theorem (31.1). Let F = EG. We first show that E is a finite extension of F . By the
Orbit Lemma 30.3 every element a ∈ E is algebraic over F and deg(a, F ) divides |G|. Starting with
F0 = F we define a sequence of extensions Fi of F . If Fi 6= E, let ai ∈ E \Fi and define Fi+1 = Fi(ai).

Suppose, for a contradiction, that this process continues indefinitely to give an infinite chain of sub-
fields

F $ F1 $ F2 $ · · ·

Noting that Fi+1 is a finite extension of Fi, we have that for all i, Fi is a finite extension of F and also
that [Fi : F ] > 2i. By Proposition 30.1, for all i, there exists an element bi ∈ E such that Fi = F (bi)
and therefore [Fi : F ] = deg(bi, F ). As noted at the beginning of the proof, deg(bi, F ) divides |G|. A
contradiction.

We have shown that there exists an element b ∈ E such that E = F (b). Notice that b must have trivial
stabiliser in G since if g ∈ G fixes b it fixes the whole of E (pointwise) and is therefore the identity
homomorphism. Since b has trivial stabiliser, the size of its orbit is exactly |G|. The Orbit Lemma 30.3
tells us that the size of the orbit of b is equal to deg(b, F ) = [F (b) : F ].

And finally, we show that all Galois extensions are splitting fields.

Proposition 31.5

Let E be a Galois extension of F . Then there exists a polynomial f ∈ F [X] such that E is a
splitting field for f .

Proof. Let a ∈ E be such that E = F (a), and let f = irr(a, F ). Let {a = a1, a2, . . . , am} be the orbit
of a under Gal(E/F ). Then F = EGal(E/F ) by Corollary 31.4 and Lemma 30.3 tells us that in E[X]
f = (X − a1) · · · (X − am). Therefore E is a splitting field for f .

31.1 Exercises

183. Determine the degree of the splitting fields of the following elements of Q[X].

(a) X4 − 1 (b) X3 − 2 (c) X4 + 1

184. Show that K = Q(
√

2,
√

3,
√

5) is a Galois extension of Q and identify its Galois group.

185. Show that X2 − 3 and X2 − 2X − 2 are irreducible in Q[X] and have the same splitting field.

186. Find the dimensions of the splitting fields over Q of

(a) X3 − 56 (b) X4 − 4X2 − 5

187. Find the dimension of a splitting field of X3 +X + 1 over F2.
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LECTURE 32

Proof of the fundamental theorem

32.1 Proof of the fundamental theorem

Recall the statement of the theorem.

Theorem 32.1: The main theorem of Galois theory

Let E be a Galois extension of F .

1. The map

Φ : {H | H is a subgroup of Gal(E/F ) } → {L | L is a subfield of E with F ⊆ L ⊆ E}

given by
Φ(H) = EH

is a bijection. It has inverse given by L 7→ Gal(E/L).

2. [E : L] = |H|, where L = EH .

3. L = EH is a Galois extension of F if and only if H is normal in Gal(E/F ). If it is the case
that L is a Galois extension of F , then G(L/F ) ∼= Gal(E/F )/H .

Proof. Let G = Gal(E/F ) and let

Ψ : {L | L is a subfield of E with F ⊆ L ⊆ E} → {H | H is a subgroup of G }

be the map Ψ(L) = Gal(E/L). By Corollary 31.3, Ψ ◦ Φ(H) = Ψ(EH) = Gal(E/EH) = H . Applying
Corollary 31.4 gives Φ ◦Ψ(L) = Φ(Gal(E/L)) = EGal(E/L) = L. Hence Ψ and Φ are mutually inverse
bijections. This proves the first part of the statement.

The second part is a direct consequence of Artin’s Theorem 31.1.

For the third part note that given any g ∈ G and any subgroup H 6 G we have EgHg
−1

= gEH . It
follows that H is normal in G if and only if gEH = EH for all g ∈ G.

Suppose that H is a normal subgroup of G. Then for all g ∈ G, gL = Φ(gHg−1) = Φ(H) = L. We
therefore have, by restriction, a map G → G(L/F ). The kernel of this homomorphism is equal to H
(all the elements of G that fix L pointwise). Then G/H is isomorphic to a subgroup of G(L/F ) and
noting that |G| = [E : F ] = [E : L][L : F ] = |H|[L : F ] we get

|G/H| 6 |G(L/F )| (since it is isomorphic to a subgroup)
=⇒ |G|/|H| 6 |G(L/F )|
=⇒ [L : F ] 6 |G(L/F )| (since |G| = |H|[L : F ])

It is also the case that |G(L/F )| divides [L : F ] by Corollary 31.2. Therefore |G(L/F )| = [L : F ] and
so L is a Galois extension of F .

Conversely, suppose that L is a Galois extension of F . Then L is a splitting field for some f ∈ F [X]
and every element of G permutes the roots of f . This implies that gL = L.
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32.2 Examples

Having proved the main theorem we now give some examples in which we calculate the Galois
group and list the subgroups together with corresponding subfileds.

Example 32.2 (Quadratic extension). Let E be an extension of Q with [E : Q] = 2. Then E = Q(a)
for some a with deg(a,Q) = 2. Let b be the other root of the polynomial irr(a,Q). Note that, being
irreducible over Q, irr(a,Q) has no repeated roots and so b 6= a. Consider the group G = Gal(E/Q).
For any element g ∈ G, we have either g(a) = a (and therefore g = Id) or g(a) = b. If g(a) = b, then
we must similarly have g(b) = a. Therefore G has exactly two elements, and E is a Galois extension
of Q. Since C2 has no proper subgroups, there are no fields lying between Q and E.

Example 32.3 (Non-Galois extension). Let E = Q(2
1
3 ). Then E ⊆ R. Any element of Gal(E/Q) must

permute the roots of the polynomial irr(2
1
3 ,Q) = X3− 2. Since only one of these roots lies in E (since

the others are not in R), any element of Gal(E/Q) must send 2
1
3 to 2

1
3 . Such an automorphism fixes

E pointwise. Therefore |Gal(E/Q)| = 1 6= 3 = deg(2
1
3 ,Q) = [E : Q] and E is not a Galois extension.

Example 32.4 (Biquadratic extension). LetE = Q(i,
√

2). There are Q-automorphisms σ, τ ∈ Gal(E/Q)
determined by

σ(i) = −i σ(
√

2) =
√

2

τ(i) = i τ(
√

2) = −
√

2

Since any element of Gal(E/Q) must permute the roots ofX2+1 and the roots ofX2−2, Gal(E/Q) =
{id, σ, τ, στ} and we have Gal(EQ) ∼= C2 ⊕ C2 and |Gal(E/Q) = 4|. Also, Q $ Q(

√
2) $ Q(

√
2, i)

which implies that [E : Q] = [E : Q(
√

2)][Q(
√

2) : Q] = 2×2 = 4. Therefore |Gal(E/Q) = 4| = [E : Q]
and E is a Galois extension of Q. It is a splitting field of the polynomial (X2 − 2)(X2 + 1). The
correspondence between subgroups and intermediate fields is given in the following table:

E = Q(i,
√

2)

subgroup subfield
Gal(E/Q) Q
{id, τ} Q(i)

{id, σ} Q(
√

2)

{id, στ} Q(i
√

2)
{id} K

Since G is abelian, all subgroups are normal, and therefore all the intermediate fields are Galois
extensions of Q (which also follows from the fact that all the (proper) intermediate fields are quadratic
extensions of Q).

Example 32.5. LetE ⊆ C be the splitting field ofX3+3X+1. We have already seen that Gal(E/Q) ∼=
S3. Let α1, α2, α3 ∈ C be the three roots in C of this polynomial, with α1 ∈ R and α2 = α3 /∈ R. Since
any element of Gal(E/Q) must permute the elements of {α1, α2, α3} and Gal(E/Q) = 6, we know
that all permutations of the roots are achievable by an element of Gal(E/Q). We label each element
of G by the corresponding permutation, e.g. (12) represents the automorphism determined by swap-
ping α1 and α2 but leaving α3 fixed. Knowing the subgroups of S3, we can list all intermediate
fields.
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f = X3 + 3X + 1

subgroup subfield
Gal(E/Q) = S3 Q

H = {id, (123), (132)} L = Q(δ)
{id, (12)} Q(α3)
{id, (13)} Q(α2)
{id, (23)} Q(α1)
{id} E

The determination of L needs some explanation. By the Main Theorem there is some subfield that
corresponds to the subgroup H . Call it L. Note that [L : Q] = [G : H], so [L : Q] = 2. Now
let δ = (α1 − α2)(α2 − α3)(α3 − α1). Then δ ∈ L = KH since it is fixed by the automorphism
corresponding to the permutation (123). Therefore Q(δ) ⊆ L. Also, δ /∈ Q since it is not fixed by the
automorphism corresponding to (12) (it sends δ to −δ). On the other hand δ2 ∈ Q since it remains
unchanged after any permutation of the roots. Therefore [Q(δ) : Q] = 2.

The subfields Q(α1), Q(α2) and Q(α3) are not Galois extensions of Q because the order 2 subgroups
of S3 are not normal (since, for example, (23)(12)(23)−1 = (13)). The field L is a Galois extension of
Q since the subgroup H is normal in S3.

Example 32.6. Consider the splitting field E ⊆ C of the irreducible polynomial f = X3 − 3X + 1 ∈
Q[X]. The roots α, β, γ of this polynomial are all real. Let ξ = e

2πi
9 . The roots of f are α = ξ + ξ−1,

β = ξ2 + ξ−2, and γ = ξ4 + ξ−4. Noting that α2 = ξ2 + ξ−2 + 2 = β + 2, and therefore β ∈ Q(α) we
have

Q ⊆ Q(a) = Q(α, β) = Q(α, β, γ) = E

Therefore |Gal(E/Q)| = 3. It follows that Gal(E/Q) = A3. Recall that A3 is the index 2 subgroup of
S3 given by A3 = {id, (123), (132)}. The only subgroups are {id} and A3. The corresponding fields
are E and Q respectively.

Remark. Note that in this case the element δ = (α− β)(β − γ)(γ − α) turns out to be an element of Q.
We could have concluded that Gal(E/Q) = A3 from that fact.

The discriminant D = δ2 can be calculated without knowing the roots. For cubic X3 + pX + q it is
given by D = −4p3 − 27q2. The Galois group of an irreducible cubic is A3 if δ ∈ Q and is S3 if δ /∈ Q.

32.3 Exercises

188. For each of the following polynomials f ∈ Q[X] calculate:

(i) The size of the Galois group G = Gal(E/Q), where E is the splitting field of f (over Q);

(ii) Identify the group G;

(iii) List the correspondence between subgroups of G and intermediate fields L,
Q ⊆ L ⊆ E.

(a) X2 − 5X + 6

(b) X2 − 2

(c) X4 −X2 − 2

(d) X3 − 7 (Which subfields of E are Galois extensions of Q?)

(e) X3 − 1

(f)? X5 − 1

(g) X4 − 2
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LECTURE 33

Solubility by radicals

Definition 33.1

Let F be a subfield of C. An extension E ⊇ F is called a radical extension if there are subfields

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn = E ⊆ C

such that for all k ∈ {1, . . . , n}, Fk = Fk−1(αk) for some αk ∈ Fk and nk ∈ N with αnkk ∈ Fk−1
A polynomial f ∈ F [X] is soluble by radicals if there is a splitting field for f that is contained
in a radical extension of F .

From the quadratic formula we know that all quadratic polynomials are soluble. In fact, this is also
true for polynomials of degree 3 and 4.

Theorem 33.2

If f ∈ Q[X] has degree at most 4, then f is soluble by radicals.

Famously, this does not extend to degree 5 or higher. To show this we will establish a few preliminary
results.

Lemma 33.3

Let p ∈ N be prime, let F be a subfield of C with ζ = e
2πi
p ∈ F . If E ⊇ F is a Galois extension

with [E : F ] = p, then E = F (α) for some α ∈ E that satisfies αp ∈ F .

Proof. Since |Gal(E/F )| = [E : F ] = p, Gal(E/F ) is a cyclic group. Let ϕ ∈ Gal(E/F ) \ {id}. Note
that |ϕ| = p. The map ϕ gives a linear transformation from Tϕ : FE → FE, Tϕ(u) = ϕ(u). (We don’t
really need a new name for it!) Since ϕp = 1 and ζ ∈ F , Tϕ is diagonalisable. This is because the
minimal polynomial of Tϕ divides Xp − 1 and Xp − 1 factors as a product of linear terms in F [X].
The eigenvalues of Tϕ can not all be equal to 1 because Tϕ is diagonalisable and not the identity. Let
λ ∈ F \ {1} be an eigenvalue of Tϕ. Then λp = 1 because T p = id. Let α ∈ E be an eigenvector with
eigenvalue λ. Then

ϕ(αp) = ϕ(α)p = (λα)p = λpαp = αp

Since ϕ generates Gal(E/F ), it follows that αp ∈ EGal(E/F ) = F . Also, α /∈ F because ϕ(α) = λα 6= α.
Therefore deg(α,E) = p and E = E(α).

Lemma 33.4

Let p ∈ N be prime and let ζ = e
2πi
p ∈ C.

1) Gal(Q(ζ)/Q) ∼= F×p (therefore cyclic of order p− 1)

2) For any subfield F ⊆ C we have that Gal(F (ζ)/F ) is cyclic.
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Proof. Let G = Gal(F (ζ)/F ) and let ϕ ∈ G. Then ϕ(ζ) ∈ {ζ, ζ2, . . . , ζp−1} since those are the roots
on the irreducible polynomial Xp−1 + Xp−2 + · · · + X + 1 ∈ Q[X]. We define a map f : G → F×p by
f(ϕ) = ī where ϕ(ζ) = ζi. Note that f(id) = 1̄ and that if ϕ,ψ ∈ G with ϕ(ζ) = ζi and ψ(ζ) = ζj ,
then f(ϕψ) = f(ϕ)f(ψ) because ϕψ(ζ) = ϕ(ζj) = ϕ(ζ)j = ζij . That is, f is a group homomorphism.
Moreover, f is injective because f(ϕ) = 1̄ means that ϕ(ζ) = ζ and therefore ϕ fixes the whole of
F (ζ). Hence G is isomorphic to a subgroup of a cyclic group and is therefore cyclic. For the first part
note that |G| = [Q(ζ) : Q] = deg(ζ,Q) = p− 1 and |F×p | = p− 1.

Lemma 33.5

Let F be a subfield of C and E ⊇ F a radical extension. Then there are subfields

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn

such that Fn ⊇ E and for all k ∈ {1, . . . , n}

1) Fk = Fk−1(αk) for some αk ∈ Fk and nk ∈ N with αnkk ∈ Fk−1

2) Fk is a Galois extension of Fk−1 and Gal(Fk/Fk−1) is cyclic

Proof. Since E is a radical extension, there exist Fk, αk, nk satisfying the first condition (it’s exactly
the definition). There is no lose in generality in assuming that the nk are prime (by increasing the

number of subfields if needed). Let’s rename them as pk. Let ζk = e
2πi
pk . Consider the chain of fields

F ⊆ F (ζ1) ⊆ F (ζ1, ζ2) ⊆ · · · ⊆ F (ζ1, . . . , ζn) ⊆ F (ζ1, . . . , ζn, α1) ⊆ F (ζ1, . . . , ζn, α1, α2) ⊆ · · ·
· · · ⊆ F (ζ1, . . . , ζn, α1, . . . , αn) = E ⊆ C

By Lemmas 33.3 and 33.4 each of these extensions is Galois with a cyclic Galois group.

Although we won’t prove the general result below, it’s worth stating here.

Theorem 33.6

Let f ∈ F [X] and let E ⊇ F be a splitting field. Then f is soluble by radicals if and only if
Gal(E/F ) is a soluble group.

Definition 33.7

A finite group G is called a soluble group if there are subgroups

{1} = G0 ⊆ G1 ⊆ · · · ⊆ Gn = G

such that Gi−1 �Gi and Gi/Gi−1 is cyclic.
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Qunitics

Rather than establishing the general result of Theorem 33.6, we’ll merely aim to show that there are
quintics that are not soluble by radicals. It relies on the following technical looking result. Recall that
a group is called simple if it has no proper normal subgroups (and hence no proper quotients).

Proposition 34.1

Let f ∈ F [X] and let E ⊇ F be a splitting field for f . Suppose that Gal(E/F ) is simple and
non-abelian. Let F ′ ⊇ F be a Galois extension of F with Gal(F ′/F ) an abelian group and let
E′ ⊇ F ′ be a splitting field for f ∈ F ′[X]. Then Gal(E′/F ′) ∼= Gal(E/F ).

Remark. The crucial point is that extending from F to F ′ has not gotten us any closer to a splitting
field for f .

Proof. [M. Artin] Consider first the case in which [F ′ : F ] = p is prime and (therefore) Gal(F ′/F ) is
cyclic of size p. The splitting field E′ contains a copy of E. From the Main Theorem 32.1 we have that

Gal(E/F ) ∼=
Gal(E′/F )

Gal(E′/E)
Gal(F ′/F ) ∼=

Gal(E′/F )

Gal(E′/F ′)
F ′E

E′

F

⊆ ⊆

⊆⊆

The natural projection maps from the above quotients give a map Gal(E′/F )→ Gal(E/F )×Gal(F ′/F ).
Moreover this map is injective since anything in the kernel fixes all the roots of f and all elements
of F ′. Therefore Gal(E′/F ) is isomorphic to a subgroup of Gal(E/F ) × Gal(F ′/F ). We have that
|Gal(E/F )| divides |Gal(E′/F )| which divides |Gal(E/F )×Gal(F ′/F )| = p|Gal(E/F )|. In fact we
must have |Gal(E/F )×Gal(F ′/F )| = p|Gal(E/F )| because

|Gal(E/F )| = |Gal(E′/F )| =⇒ |Gal(E′/E)| = 1 =⇒ E′ = E

which would imply that Gal(F ′/F ) is a quotient of Gal(E/F ) contradicting the hypothesis that
Gal(E/F ) is simple and non-abelian. We have then that Gal(E′/F ) = Gal(E/F ) × Gal(F ′/F ). Ap-
plying the Main Theorem to the extensions E′ ⊇ F ′ ⊇ F , we get that Gal(E′/F ′) ∼= Gal(E/F ).

For the general case, in which Gal(F ′/F ) is abelian, we can proceed by induction on [F ′ : F ]. Being
abelian, Gal(F ′/F ) has a quotient H that is of prime order. This quotient determines an intermediate
field F1 ⊇ F that is a Galois extension of F and Gal(F1/F ) = H . Let E1 be the splitting field of f
over F1. Since [F1 : F ] is prime, we know (from above) that Gal(E1/F1) = Gal(E/F ). By induction
we have that Gal(E1/F1) = Gal(E′/F ′).

Theorem 34.2

If an irreducible f ∈ F [X] has degree 5 and has Galois group isomorphic to S5 or A5, then f is
not soluble by radicals.

Proof. Let the roots be α1, . . . , α5 and let E be a splitting field for f . Consider δ =
∏
i<j(αi−αj). That

is, D = δ2 ∈ F is the discriminant of the polynomial. If the Galois group G = S5, then δ /∈ F . The
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Galois group Gal(E/F (δ)) is then A5. It is enough, therefore, to consider the case in which the Galois
group of the polynomial is A5.

We will use the fact thatA5 is a simple group. Suppose that f were soluble by radicals. Then we have

F = F0 ⊆ F1 ⊆ · · · ⊆ Fn 3 α1

with each extension being Galois and with a cyclic Galois group. From the above Proposition 34.1
we have that the Galois group of f over Fk is A5 for all k. In particular, the Galois group of f over Fn
is A5. But this contradicts the assumption that α1 ∈ Fn.

To get an explicit example of such a quintic we note the following.

Lemma 34.3

Let f ∈ Q[X] be an irreducible quintic with exactly 3 roots in R. Then the Galois group of f is
S5.

Proof. Let the roots be α1, α2, α3 ∈ R and α4, α5 ∈ C \ R. Let G be the Galois group of f over
Q. Since G acts transitively on the set of 5 roots, we have that |G| is divisible by 5 (Orbit-Stabiliser
relation). Therefore G contains an element of order 5 (Cauchy’s Theorem). The only elements of
order 5 in S5 are the cycles of length 5. We have Q(α1, α2, α3, α4, α5) ⊇ Q(α1, α2, α3 is a quadratic
extension. Therefore there is an element in the Galois group of that extension that interchanges α4

and α5. Therefore G contains a transposition. Since G is a subgroup of S5 that contains a 5-cycle and
a transposition, we have G = S5.

Example 34.4. The polynomial f = X5 − 16X + 2 ∈ Q[X] is irreducible and has exactly three roots
in R. Therefore, it is not soluble by radicals.
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